Skip to main content
Log in

Management of Cancer Pain

Focus on New Opioid Analgesic Formulations

  • Review Article
  • Published:
American Journal of Cancer

Abstract

Cancer pain management necessitates the use of opioids when pain is moderate or severe. Opioids need to be versatile and effective. Newer formulations may improve patient compliance and may be more conducive to the management of transient flares of pain; they also may be tailored to treat certain special populations and may be particularly effective in certain clinical situations. For example, newer opioids have been developed for transdermal, nasal, and nebulized administration, providing a ‘needle-less’ means of controlling pain in those unable to take oral medications. However, newer opioid formulations are not a substitute for good pain management strategies and will not control pain unless provided in adequate doses and schedules. Newer opioid formulations have niche roles in clinical practice, and pain and palliative specialists need to be aware of new developments in opioids and delivery systems. This state-of-the-art review provides a synopsis of recent advances and evolving technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Davis MP, Walsh D. Epidemiology of cancer pain and factors influencing poor pain control. Am J Hosp Palliat Care 2004; 21: 137–42

    Article  PubMed  Google Scholar 

  2. Estfan B, Shaheen P, Walsh D, et al. Errors in opioid prescribing: a prospective survey [abstract]. J Palliat Med 2005; 8(1): 221

    Google Scholar 

  3. Kochhar R, LeGrand SB, Walsh D, et al. Opioids in cancer pain: common dosing errors. Oncology 2003; 4: 571–5

    Google Scholar 

  4. Davis MP, LeGrand SB, Lagman R. Look before leaping; combined opioids may not be the rave. Support Care Cancer 2005; 13: 769–74

    Article  PubMed  Google Scholar 

  5. Davis MP, Weissman DE, Arnold RM. Opioid dose titration for severe cancer pain: a systematic evidence based review. J Palliat Med 2004; 7: 462–8

    Article  PubMed  Google Scholar 

  6. Bianchi AL, Denavit Saubie D, Champagnat J. Central control of breathing mammals: neuronal circuitry, membrane properties, and neurotransmitters. Physiol Rev 1995; 75(1): 1–45

    PubMed  CAS  Google Scholar 

  7. Ravenscroft P, Schneider J. Bedside perspectives on the use of opioids: transferring results of clinical research into practice. Clin Exp Pharmacol Physiol 2000; 27: 529–32

    Article  PubMed  CAS  Google Scholar 

  8. Davis MP, Walsh D, Lagman R, et al. Controversies in pharmacotherapy of pain management. Lancet Oncol 2005; 6: 696–704

    Article  PubMed  CAS  Google Scholar 

  9. Quigley C. Opioid switching to improve pain relief and drug tolerability. Cochrane Database Syst Rev 2004; (3): CD004847

  10. Hanks GW, Conno F, Cherny N, et al. Morphine and alternative opioids in cancer pain: the EAPC recommendations. Br J Cancer 2001Mar; 84(5): 587–93

    Article  PubMed  CAS  Google Scholar 

  11. Estfan B, LeGrand SB, Walsh D, et al. Opioid rotation in cancer patients: pros and cons. Oncology 2005; 19: 511–6

    PubMed  Google Scholar 

  12. DeConno F, Ripamonti C, Brunelli C. Opioid purchases and expenditures in nine Western European countries: “Are we killing off morphine?”. Palliat Med 2005; 19: 179–84

    Article  Google Scholar 

  13. Bruster S, Jarman B, Bosanquet N, et al. National survey of hospital patients. BMJ 1994; 309: 1542–6

    Article  PubMed  CAS  Google Scholar 

  14. Jamison RN, Taft K, O’Hara JP, et al. Psychosocial and pharmacologic predictors of satisfaction with intravenous patient-controlled analgesia. Anesth Analg 1993; 77(1): 121–5

    PubMed  CAS  Google Scholar 

  15. Ozlap G, Sarioglu R, Tuncel G, et al. Preoperative emotional states in patients with breast cancer and postoperative pain. Acta Anesthesiol Scand 2003; 47(1): 26–9

    Article  Google Scholar 

  16. Perry F, Parker RK, White PF, et al. Role of psychosocial factors in postoperative pain control and recovery with patient-controlled analgesia. Clin J Pain 1994; 10(1): 57–63

    Article  PubMed  CAS  Google Scholar 

  17. Walsh D, Doona M, Molnar M, et al. Symptom control in advanced cancer: important drugs and routes of administration. Semin Oncol 2000; 1: 6983

    Google Scholar 

  18. Hanks GW, Reid C. Contribution to variability in response to opioids. Support Care Cancer 2005; 13: 145–52

    Article  PubMed  Google Scholar 

  19. Lawlor PG. The panorama of opioid-related cognitive dysfunction in patients with cancer. Cancer 2002; 94: 1836–53

    Article  PubMed  CAS  Google Scholar 

  20. Mao J, Mayer DJ. Spinal cord neuroplasticity following repeated opioid exposure and its relation to pathological pain. Ann N Y Acad Sci 2001; 933: 175–84

    Article  PubMed  CAS  Google Scholar 

  21. King T, Ossipov MH, Vanderah TW, et al. Is paradoxical pain induced by sustained opioid exposure an underlying mechanism of opioid antinociceptive tolerance? Neurosignals 2005; 14(4): 194–205

    Article  PubMed  CAS  Google Scholar 

  22. Gardell LR, King T, Ossipov MH, et al. Opioid receptor-mediated hyperalgesia and antinociceptive tolerance induced by sustained opiate delivery. Neurosci Lett 2006; 296: 44–9

    Article  CAS  Google Scholar 

  23. McNally GP. Pain facilitatory circuits in the mammalian central nervous system: their behavioral significance and role in morphine analgesic tolerance. Neurosci Biobehav Rev 1999; 23: 1059–78

    Article  PubMed  CAS  Google Scholar 

  24. Laulin JP, Celerier E, Larcher A, et al. Opiate tolerance to daily heroin administration: an apparent phenomenon associated with enhanced pain sensitivity. Neuroscience 1999; 89(3): 631–6

    Article  PubMed  CAS  Google Scholar 

  25. Celerier E, Laulin JP, Larcher A, et al. Evidence for opiate-activated NMDA processes masking opiate analgesia in rats. Brain Res 1999; 847: 18–25

    Article  PubMed  CAS  Google Scholar 

  26. Xie JY, Herman DA, Stiller CO, et al. Cholecystokinin in the rostral ventromedial medulla mediates opioid-induced hyperalgesia and antinociceptive tolerance. J Neuroscience 2005; 25(2): 409–16

    Article  CAS  Google Scholar 

  27. Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science 2000; 288: 1765–8

    Article  PubMed  CAS  Google Scholar 

  28. Kind PC, Neumann PE. Plasticity: downstream of glutamate. Trends Neurosci 2001; 24(10): 553–5

    Article  PubMed  CAS  Google Scholar 

  29. Ru-Rong J, Woolf CJ. Neuronal plasticity and signal transduction in nociceptive neurons: implications for the initiation and maintenance of pathological pain. Neurobiol Dis 2001; 8: 1–10

    Article  CAS  Google Scholar 

  30. Mao J. Opioid induced abnormal pain sensitivity. Curr Pain Headache Rep 2006; 10: 67–70

    Article  PubMed  Google Scholar 

  31. Twycross RG. Clinical experience with diamorphine in advanced malignant disease. Int J Clin Pharmacol 1974; 7: 184–98

    PubMed  CAS  Google Scholar 

  32. Moulin DE, Palma D, Watling C, et al. Methadone in the management of intractable neuropathic noncancer pain. Can J Neurol Sci 2005; 32(3): 271–2

    Google Scholar 

  33. Rowbotham MC, Twilling L, Davies PS, et al. Oral opioid therapy for chronic peripheral and central neuropathic pain. N Engl J Med 2003; 348(13): 1223–32

    Article  PubMed  CAS  Google Scholar 

  34. Dellemijn P. Are opioids effective in relieving neuropathic pain? Pain 1999; 80(3): 453–62

    Article  PubMed  CAS  Google Scholar 

  35. Elkadar A, Sproule B. Buprenorphine: clinical pharmacokinetics in the treatment of opioid dependence. Clin Pharmacokinet 2005; 44(7): 661–80

    Article  Google Scholar 

  36. Johnson RE, Strain EC, Amass L. Buprenorphine: how to use it right. Drug Alcohol Depend 2003; 70(2 Suppl.): S49–77

    Google Scholar 

  37. Strain EC, Stoller K, Walsh SL, et al. Effects of buprenorphine versus buprenorphine/naloxone tables in non-dependent opioid abuser. Psychopharmacology 2000; 148(4): 374–83

    Article  PubMed  CAS  Google Scholar 

  38. Alford DP, Compton P, Samet JH. Acute pain management for patients receiving maintenance methadone or buprenorphine therapy. Ann Intern Med 2006; 144: 127–34

    PubMed  CAS  Google Scholar 

  39. Chou R, Clark E, Helfand M. Comparative efficacy and safety of long-acting oral opioids for chronic non-cancer pain: a systematic review. J Pain Symptom Manage 2003; 26: 1026–48

    Article  PubMed  CAS  Google Scholar 

  40. Reder R. Opioid formulations: tailoring to the needs in chronic pain. Eur J Pain 2001; 5Suppl. A: 109–11

    Article  PubMed  CAS  Google Scholar 

  41. Gourlay GK. Sustained relief of chronic pain: pharmacokinetics of sustained release morphine. Clin Pharmacokinet 1998; 35(3): 173–90

    Article  PubMed  CAS  Google Scholar 

  42. Chao J. Retrospective analysis of Kadian (morphine sulfate sustained release capsules) in patients with chronic nonmalignant pain. Pain Med 2005; 6: 262–5

    Article  PubMed  Google Scholar 

  43. Broomhead A, Kerr R, Tester W, et al. Comparison of once-a-day sustained-release morphine formulation with standard oral morphine treatment for cancer pain. J Pain Symptom Manage 1997Aug; 14(2): 63–73

    Article  PubMed  CAS  Google Scholar 

  44. Morales ME, Gallardo LV, Calpena AC, et al. Comparative study of morphine diffusion from sustained release polymeric suspensions. J Control Release 2004; 95(1): 75–81

    Article  PubMed  CAS  Google Scholar 

  45. Takatori T, Yamamoto K, Yamaguchi T, et al. Design of controlled-release morphine suppositories containing polyglycerol ester of fatty acid. Biol Pharm Bull 2005; 28(8): 1480–4

    Article  PubMed  CAS  Google Scholar 

  46. Babul N, Darke AC, Anslow JA, et al. Pharmacokinetics of two novel rectal controlled-release morphine formulations. J Pain Symptom Manage 1992; 7(7): 400–5

    Article  PubMed  CAS  Google Scholar 

  47. Kaiko RF, Fitzmartin RD, Thomas GB, et al. The bioavailability of morphine in controlled-release 30-mg tablets per rectum compared with immediate release 30mg rectal suppositories and controlled-release 30mg oral tablets. Pharmacotherapy 1992; 12(2): 197–13

    Google Scholar 

  48. Bruera E, Fainsinger R, Spachynski K, et al. Steady-state pharmacokinetic evaluation of a novel, controlled-release morphine suppository and subcutaneous morphine in cancer pain. J Clin Pharmacol 1995; 35(7): 666–72

    PubMed  CAS  Google Scholar 

  49. Moolenaar F, Meijler WJ, Frijlink HW, et al. Control efficacy, safety and pharmacokinetics of a newly developed controlled release morphine sulphate suppository in patients with cancer pain. Eur J Clin Pharmacol 2000; 56: 219–23

    Article  PubMed  CAS  Google Scholar 

  50. Grosset A, Roberts M, Woodson M, et al. Comparative efficacy of oral extended-release hydromorphone and immediate-release hydromorphone in patients with persistent moderate to severe pain: two randomized controlled trials. J Pain Symptom Manage 2005Jun; 29(6): 584–94

    Article  PubMed  CAS  Google Scholar 

  51. Malonne H, Sonet B, Streel B, et al. Pharmacokinetic evaluation of a new oral sustained release dosage form of tramadol. Br J Clin Pharmacol 2003; 57(3): 270–8

    Article  Google Scholar 

  52. Davis M. Buprenorphine in cancer pain. Support Care Cancer 2005; 13: 878–87

    Article  PubMed  Google Scholar 

  53. Chawarski MC, Moody DE, Pakes J, et al. Buprenorphine tablets versus liquid: a clinical trial comparing plasma levels, efficacy, and symptoms. J Subst Abuse Treat 2005; 29(4): 307–12

    Article  PubMed  Google Scholar 

  54. Ciraulo DA, Hitzemann RJ, Somoza E, et al. Pharmacokinetics and pharmacodynamics of multiple sublingual buprenorphine tablets in dose-escalation trials. J Clin Pharmacol 2006; 46: 179–92

    Article  PubMed  CAS  Google Scholar 

  55. Ceccarelli I, DePavado AM, Fiorenzani P, et al. Single opioids administration modifies gonadal steroids in both the CNS and plasma of male rats. Neuroscience 2006; 140(3): 929–37

    Article  PubMed  CAS  Google Scholar 

  56. Dahan A, Yassen A, Romberg R, et al. Buprenorphine induces ceiling in respiratory depression but not analgesia. Br J Anaesth 2006May; 96(5): 627–32. Epub 2006 Mar 17

    Article  PubMed  CAS  Google Scholar 

  57. Megarbane B, Marie N, Pirnay S, et al. Buprenorphine is protective against the depressive effects of norbuprenorphine on ventilation. Toxicol Appl Pharmacol 2006May 1; 212(3): 256–67

    Article  PubMed  CAS  Google Scholar 

  58. Malinoff HL, Barkin RL, Wilson G. Sublingual buprenorphine is effective in the treatment of chronic pain syndrome. Am J Ther 2005; 12: 379–84

    Article  PubMed  Google Scholar 

  59. Watson PJQ, McQuay HJ, Bullingham RES, et al. Single-dose comparison of buprenorphine 0.3 and 0.6mg iv given after operation: clinical effects and plasma concentrations. Br J Anaseth 1982; 54: 37–43

    Article  CAS  Google Scholar 

  60. Mok MS, Lippmann M, Steen SN. Multidose/observational, comparative clinical analgesic evaluation of buprenorphine. J Clin Pharmacol 1981; 21: 323–9

    PubMed  CAS  Google Scholar 

  61. Filitz J, Gressinger W, Sittl R, et al. Effects of intermittent hemodialysis on buprenorphine and nor buprenorphine plasma concentrations in chronic pain: patients treated with transdermal buprenorphine. Eur J Pain. Epub 2006 Jan 17

  62. Adams M, Ahdieh H. Single- and multiple-dose pharmacokinetic and dose-proportionality study of oxymorphone immediate-release tablets. Drugs R D 2005; 6(2): 91–9

    Article  PubMed  CAS  Google Scholar 

  63. Adams MA, Pieneaszek HJ, Gammaitoni AR. Oxymorphone extended release does not affect CYP2C9 or CYP3A4 metabolic pathways. J Clin Pharmacol 2005; 45: 337–45

    Article  PubMed  CAS  Google Scholar 

  64. Adams M, Ahdieh H. Pharmacokinetics and dose-proportionality of oxymorphone extended release and its metabolites: results of a randomized crossover study. Pharmacotherapy 2004; 24(4): 468–4

    Article  PubMed  CAS  Google Scholar 

  65. Gabrail N, Dvergste C, Ahdieh H. Establishing the dosage equivalency of oxymorphone extended release and oxycodone controlled release in patients with cancer pain: a randomized controlled study. Curr Med Res Opin 2004; 20(6): 911–8

    Article  PubMed  CAS  Google Scholar 

  66. Sloan P, Slatkin N, Ahdieh N. Effectiveness and safety of oral extended-release oxymorphone for the treatment of cancer pain: a pilot study. Support Care Cancer 2005; 13: 57–65

    Article  PubMed  Google Scholar 

  67. Davis MP. Levorphanol. In: Davis M, Glare P, Hardy J, editors. Opioids in cancer pain. Oxford: Oxford University Press, 2005

    Google Scholar 

  68. Choi DW, Peters S, Viseskul V. Dextrorphan and levorphanol selectively block N-methyl-D-aspartate receptor-mediated neurotoxicity on cortical neurons. J Pharmacol Exp Ther 1987; 242(2): 713–20

    PubMed  CAS  Google Scholar 

  69. Church J, Lodge D, Berry SC. Differential effects of dextrorphan and levorphanol on the excitation of rat spinal neurons by amino acids. Eur J Pharmacol 1985; 111(2): 185–90

    Article  PubMed  CAS  Google Scholar 

  70. Weinbroum AA, Rudick V, Paret G. The role of dextromethorphan in pain control. Can J Anesth 2000; 47(6): 585–96

    Article  PubMed  CAS  Google Scholar 

  71. Pechnick R, Poland R. Comparison of the effects of dextromethorphan, dextrorphan, and levorphanol on the hypothalamo-pituitary-adrenal axis. J Pharmacol Exp Ther 2004; 309(2): 515–22

    Article  PubMed  CAS  Google Scholar 

  72. He N, Daniel HI, Hajiloo L, et al. Dextromethorphan O-demethylation polymorphism in an African-American population. Eur J Clin Pharmacol 1999; 55(6): 4547–9

    Article  Google Scholar 

  73. Woodworth JR, Dennis SR, Moore L, et al. The polymorphic metabolism of dextromethorphan. J Clin Pharmacol 1987; 27(2): 139–43

    PubMed  CAS  Google Scholar 

  74. Galer BS, Lee D, Ma T, et al. MorphiDex (morphine sulfate/dextromethorphan hydrobromide combination) in the treatment of chronic pain: three multicenter, randomized, double-blind, controlled clinical trials fail to demonstrate enhanced opioid analgesia or reduction in tolerance. Pain 2005; 115(3): 284–95

    Article  PubMed  CAS  Google Scholar 

  75. Adams JU, Paronis CA, Holtzman SG. Assessment of relative intrinsic activity of mu-opioid analgesics in vivo by using beta-flunaltrexamine. J Pharmacol Exp Ther 1990; 255(3): 1027–32

    PubMed  CAS  Google Scholar 

  76. AHFS drug formulary. Bethesda (MD): American Society of Health-System Pharmacists, 2002: 2044-60

  77. Nicholson AB. Methadone for cancer pain. Cochrane Database Syst Rev 2004; (2): CD003971

  78. Davis MP. Methadone. In: Davis M, Glare P, Hardy J, editors. Opioids in cancer pain. Oxford: Oxford University Press, 2005

    Google Scholar 

  79. Sindrup SH, Andersen G, Madsen C, et al. Tramadol relieves pain and allodynia in polyneuropathy: a randomized, double-blind, controlled-trial. Pain 1999; 83(1): 85–90

    Article  PubMed  CAS  Google Scholar 

  80. Davis MP. Tramadol. In: Davis M, Glare P, Hardy J, editors. Opioids in cancer pain. Oxford: Oxford University Press, 2005

    Google Scholar 

  81. Leppert W, Luczak J. The role of tramadol in cancer pain treatment: a review. Support Care Cancer 2005; 13: 5–17

    Article  PubMed  Google Scholar 

  82. Shipton EA. Tramadol: present and future. Anaesth Intensive Care 2000; 28(4): 363–74

    PubMed  CAS  Google Scholar 

  83. Grond S, Sablotzki A. Clinical pharmacology of tramadol. Clin Pharmacokinet 2004; 43(13): 879–923

    Article  PubMed  CAS  Google Scholar 

  84. Mattia C, Coluzzi F. Tramadol: focus on musculoskeletal and neuropathic pain. Minerva Anestesiol 2005; 71: 565–84

    PubMed  CAS  Google Scholar 

  85. Anonymous. Tramadol oral solution: new drug: poorly evaluated and potentially dangerous in children. Prescrire Int 2005 Jun; 14 (77): 83-5

  86. Dale O, Hjortkjaer R, Kharasch D, et al. Nasal administration of opioids for pain management in adults. Acta Anaesthesiol Scand 2002; 46: 759–70

    Article  PubMed  CAS  Google Scholar 

  87. Davis GA, Rudy AC, Archer SM, et al. Pharmacokinetics of butorphanol tartrate administered from single-dose intranasal sprayer. Am J Health Syst Pharm 2004Feb; 61: 261–6

    PubMed  CAS  Google Scholar 

  88. Toussaint S, Maidl J, Schwagmeier R, et al. Patient-controlled intranasal analgesia: effective alternative to intravenous PCA for postoperative pain relief. Can J Anesth 2000; 47(4): 299–302

    Article  PubMed  CAS  Google Scholar 

  89. Paech MJ, Lim CB, Banks SL, et al. A new formulation of nasal fentanyl spray for postoperative analgesia: a pilot study. Anaesthesia 2003; 58: 740–4

    Article  PubMed  CAS  Google Scholar 

  90. Striebel HW, Pommerening J, Rieger A. Intranasal fentanyl titration for postoperative pain management in an unselected population. Anaesthesia 1993Sep; 48(9): 753–7

    Article  PubMed  CAS  Google Scholar 

  91. Dale O, Hoffer C, Pamela S, et al. Disposition of nasal, intravenous, and oral methadone in healthy volunteers. Clin Pharmacol Ther 2002Nov; 72(5): 537–45

    Article  CAS  Google Scholar 

  92. Fitzgibbon D, Morgan D, Dockter D, et al. Initial pharmacokinetic, safety and efficacy evaluation of nasal morphine gluconate for breakthrough pain in cancer patients. Pain 2003; 106: 309–15

    Article  PubMed  CAS  Google Scholar 

  93. Finn J, Wright J, Fong J, et al. A randomized crossover trial of patient controlled intranasal fentanyl and oral morphine for procedural wound care in adult patients with burns. Burns 2004; 30: 262–8

    Article  PubMed  Google Scholar 

  94. Coda BA, Rudy AC, Archer SM, et al. Pharmacokinetics and bioavailability of single-dose intranasal hydromorphone hydrochloride in healthy volunteers. Anesth Analg 2003; 97: 117–23

    Article  PubMed  CAS  Google Scholar 

  95. Ilium L, Watts P, Fisher AN, et al. Intranasal delivery of morphine. J Pharmacol Exp Ther 2002; 301(1): 391–400

    Article  Google Scholar 

  96. Pavis H, Wilcock A, Edgecombe J, et al. Pilot study of nasal morphine-chitosan for the relief of breakthrough pain in patients with cancer. J Pain Symptom Manage 2002Dec; 24(6): 598–601

    Article  PubMed  CAS  Google Scholar 

  97. Takala A, Kaasalainen V, Seppala T, et al. Pharmacokinetic comparison of intravenous and intranasal administration of oxycodone. Acta Anaesthesiol Scand 1997Feb; 41(2): 309–12

    Article  PubMed  CAS  Google Scholar 

  98. Lindhardt K, Ravn C, Gizurarson S, et al. Intranasal absorption of buprenorphine: in vivo bioavailability study n sheep. Int J Pharm 2005; 205(1–2): 159–63

    Google Scholar 

  99. Zeppetella G. Nebulized and intranasal fentanyl in the management of cancer-related breakthrough pain. Palliat Med 2000; 14: 57–8

    Article  PubMed  CAS  Google Scholar 

  100. Wermeling DP, Grant GM, Lee A, et al. Analgesic effects of intranasal butorphanol tartrate administered via a unit-dose device in the dental impadion pain model: a randomized, double blind, placebo-controlled, parallel-group study. Clin Ther 2005; 27(4): 430–40

    Article  PubMed  CAS  Google Scholar 

  101. Masood AR, Thomas SH. Systemic absorption of nebulized morphine compared with oral morphine in healthy subjects. Br J Clin Pharmacol 1006Mar; 41(3): 250–2

    Article  Google Scholar 

  102. Worsley MH, MacLeod AD, Brodie MJ, et al. Inhaled fentanyl as a method of analgesia [letter]. Anaesthesia 1990; 45(11): 992

    Article  Google Scholar 

  103. Hung OR, Whynot SC, Varvel JR, et al. Pharmacokinetics of inhaled liposome-encapsulated fentanyl. Anesthesiology 1995Aug; 83(2): 277–84

    Article  PubMed  CAS  Google Scholar 

  104. Mather LE, Woodhouse A, Ward ME, et al. Pulmonary administration of aerosolized fentanyl: pharmacokinetic analysis of systemic delivery. Br J Clin Pharmacol 1998; 46: 37–43

    Article  PubMed  CAS  Google Scholar 

  105. Bartfield JM, Flint RD, McErlean M, et al. Nebulized fentanyl for relief of abdominal pain. Acad Emerg Med 2003Mar; 10(3): 215–8

    Article  PubMed  Google Scholar 

  106. Mehdizadeh A, Toliate T, Rouini M, et al. Design and in vitro evaluation of new drug-in-adhesive formulations of fentanyl transdermal patches. Acta Pharmacol 2004; 54: 301–17

    CAS  Google Scholar 

  107. Larsen RH, Nielsen F, Sorensen JA, et al. Dermal penetration of fentanyl: inter-and intraindividual variations. Pharmacol Toxicol 2003; 93: 244–8

    Article  PubMed  CAS  Google Scholar 

  108. Vanbever R, LeBoulenge E, Preat V. Transdermal delivery of fentanyl by electroporation I. Influence of electrical factors. Pharm Res 1996; 13(4): 559–65

    Article  PubMed  CAS  Google Scholar 

  109. Vanbever R, Langers G, Monmayeur S, et al. Transdermal delivery of fentanyl: rapid onset of analgesia using skin electroporation. J Control Release 1998; 50(1-3): 225–35

    Article  PubMed  CAS  Google Scholar 

  110. Ashburn MA, Ogden LL, Zhang J, et al. The pharmacokinetics of transdermal fentanyl delivered with and without controlled heat. J Pain 2003; 4(6): 291–7

    Article  PubMed  CAS  Google Scholar 

  111. Gupta SK, Sathyan G, Phipps B, et al. Reproducible fentanyl doses delivered intermittently at different time intervals from an electro transport system. J Pharm Sci 1999; 88(8): 835–41

    Article  PubMed  CAS  Google Scholar 

  112. Roy SD, Flynn GL. Transdermal delivery of narcotic analgesics: pH, anatomical, and subject influences on cutaneous permeability of fentanyl and sufentanil. Pharm Res 1990; 7(8): 842–7

    Article  PubMed  CAS  Google Scholar 

  113. Solassol I, Caumette L, Bressolle F, et al. Inter- and intra-individual variability in transdermal fentanyl absorption in cancer pain patients. Oncol Rep 2005; 14(4): 1029–36

    PubMed  Google Scholar 

  114. Marquardt KA, Tharratt RS, Musallam NA. Fentanyl remaining in a transdermal system following three days of continuous use. Ann Pharmacother 1995; 29(10): 969–71

    PubMed  CAS  Google Scholar 

  115. Budd K, Collett BJ. Old dog: new (ma)trix. Br J Anaesth 2003; 90(6): 722–4

    Article  PubMed  CAS  Google Scholar 

  116. Sathyan G, Guo C, Sivakumar L, et al. Evaluation of the bioequivalence of two transdermal fentanyl systems following single and repeat applications. Curr Med Res Opin 2005; 21(12): 1961–8

    Article  PubMed  CAS  Google Scholar 

  117. Roy SD, Gutierrez M, Flynn G, et al. Controlled transdermal delivery of fentanyl: characterizations of pressure-sensitive adhesives for matrix patch design. J Pharm Sci 1996May; 85(5): 491–5

    Article  PubMed  CAS  Google Scholar 

  118. Sathyan G, Zomorodi K, Gidwani S, et al. The effect of dosing frequency on the pharmacokinetics of a fentanyl HCI patient-controlled transdermal system (PCTS). Clin Pharmacokinet 2005; 44 Suppl. 1: 17–24

    Google Scholar 

  119. Chelly JE, Grass J, Houseman TW, et al. The safety and efficacy of a fentanyl patient-controlled transdermal system for acute postoperative analgesia: a multicenter, placebo-controlled trial. Anesth Analg 2004; 98: 427–33

    Article  PubMed  CAS  Google Scholar 

  120. Sinatra R. The fentanyl HC1 patient-controlled transdermal fentanyl system (PCTS) an alternative to intravenous patient controlled analgesia in the postoperative setting. Clin Pharmacokinet 2006; 44 Suppl. 1: 1–6

    Google Scholar 

  121. Viscusi ER, Reynolds L, Chung F, et al. Patient-controlled transdermal fentanyl hydrochloride vs intravenous morphine pump for postoperative pain: a randomized controlled trial. JAMA 2004; 291(11): 1333–41

    Article  PubMed  CAS  Google Scholar 

  122. Gupta SK, Hwang S, Southam M, et al. Effects of application site and subject demographics on the pharmacokinetics of fentanyl HCI patient-controlled transdermal system (PCTS). Clin Pharmacokinet 2005; 44Suppl. 1: 25–32

    PubMed  CAS  Google Scholar 

  123. Radbruch L, Vielvoye-Kerkmeer A. Buprenorphine TDS: the clinical development rationale and results. Int J Clin Pract Suppl 2003 Feb; (133): 15-8

  124. Evans HC, Easthope SE. Transdermal buprenorphine. Drugs 2003; 63(19): 1999–2010

    Article  PubMed  CAS  Google Scholar 

  125. Muriel C, Failde I, Mico JA, et al. Effectiveness and tolerability of the buprenorphine transdermal system in patients with moderate to severe chronic pain: a multicenter, open-label uncontrolled, prospective observational clinical study. Clin Ther 2005; 27(4): 451–62

    Article  PubMed  CAS  Google Scholar 

  126. Sittl R. Transdermal buprenorphine in the treatment of chronic pain. Expert Rev Neurother 2005May; 5(3): 315–23

    Article  PubMed  CAS  Google Scholar 

  127. Sittl R, Likar R, Poulsen Nautrup B. Equipotent doses of transdermal fentanyl and transdermal buprenorphine in patients with cancer and non cancer pain: results of a retrospective cohort study. Clin Ther 2005; 27(2): 225–37

    Article  PubMed  CAS  Google Scholar 

  128. Reidenberg B, El-Tahtawy A, Munera C, et al. Absolute bioavailability of a novel buprenorphine transdermal system (BTDS) applied for seven days [abstract]. J Clin Pharmacol 2001; 41: 1026

    Google Scholar 

  129. Reidenberg B, El-Tahtawy A, Munera C, et al. Daily pharmacokinetic performance of a buprenorphine transdermal system (BTDS) for up to seven days [abstract]. J Clin Pharmacol 2001; 41: 1027

    Google Scholar 

  130. Sobel B-FX, Sigmon SC, Walsh SL, et al. Open-label trial of an injection depot formulation of buprenorphine in opioid detoxification. Drug Alcohol Depend 2004; 73: 11–22

    Article  PubMed  CAS  Google Scholar 

  131. Sigmon SC, Wong CJ, Chausmer AL, et al. Evaluation of an injection depot formulation of buprenorphine: placebo comparison. Addiction 2004; 99: 1439–49

    Article  PubMed  Google Scholar 

  132. Yaksh TL, Provencher JC, Rathbun ML, et al. Safety assessment of encapsulated morphine delivered epidurally in a sustained-release multivesicular liposome preparation in dogs. Drug Deliv 2000; 7: 27–36

    Article  PubMed  CAS  Google Scholar 

  133. Anonymous. Morphine liposomal -SkyePharma: C 0401, D 0401, morphine -DepoFoam, SKY 0401. Drugs R D 2003; 4 (6): 373-5

Download references

Acknowledgments

M.P. Davis has consulted for Mallinckrodt Pharmaceuticals.

No sources of funding were used to assist in the preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mellar P. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, M.P. Management of Cancer Pain. Am J Cancer 5, 171–182 (2006). https://doi.org/10.2165/00024669-200605030-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00024669-200605030-00004

Keywords

Navigation