Skip to main content
Log in

Thiazolidinediones

Beyond Glycemic Control

  • Review Article
  • Published:
Treatments in Endocrinology

Abstract

Our knowledge and understanding of the role played by peroxisome proliferator-activated γ receptors in physiology and pathophysiology has expanded dramatically over the past 5 years. Originally described as having important functions in adipogenesis and glucose homeostasis, their pharmacologic agonists, the thiazolidinediones, were introduced as antihyperglycemic, insulin-sensitizing agents for the management of type 2 diabetes mellitus. However, it was to some degree inevitable that the thiazolidinediones would be rapidly recognized as having vasculoprotective properties beyond glycemic control that might also be beneficial. First, diabetic complications are vascular in nature, the earliest feature of these is endothelial dysfunction. Second, it is being increasingly appreciated that these complications develop through inflammatory and procoagulant pathways in which increased oxidative stress is considered a major etiologic mechanism, and which are closely linked to the presence of insulin resistance, visceral obesity, and hyperglycemia. Early appreciation that the thiazolidinediones have antioxidant, anti-inflammatory, anti-procoagulant, and antiproliferative properties in addition to their insulin-sensitizing, anti-lipotoxic properties created a marriage of investigative pathways that has not only led to a very large body of literature on the pleiotropic effects of thiazolidinediones, but also to the development of new understandings of the connections between insulin resistance, obesity, and hyperglycemia and the onset of vascular disease. Understandably, most of the focus has been directed at the macrovascular complications of diabetes, since these are the major causes of morbidity and mortality in this population. However, there is evidence that these agents may have benefits for the microvascular complications as well, and their potential role for cardiovascular disease prevention in non-diabetic patients with the metabolic syndrome is a logical extension of the work performed in diabetes. The recently reported results of the effects of pioglitazone versus placebo on cardiovascular events in patients with type 2 diabetes support the contention that these agents have vasculoprotective effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I

Similar content being viewed by others

References

  1. Takano H, Komuro I. Roles of peroxisome proliferator-activated receptor gamma in cardiovascular disease. J Diabetes Complications 2002; 16: 108–14

    Article  PubMed  Google Scholar 

  2. Chinetti-Gbaguidi G, Fruchart J, Staels B. Role of the PPAR family of receptors in the regulation of metabolic and cardiovascular homeostasis: new approaches to therapy. Curr Opin Pharmacol 2005; 5: 177–83

    Article  PubMed  CAS  Google Scholar 

  3. Yki-Jarvinen H. Thiazolidinediones. N Engl J Med 2004; 351: 1106–18

    Article  PubMed  Google Scholar 

  4. Bishop-Bailey D. Peroxisome proliferator-activated receptors in the cardiovascular system. Br J Pharmacol 2000; 129: 823–34

    Article  PubMed  CAS  Google Scholar 

  5. Unger RH. Minireview: weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome. Endocrinology 2003; 144: 5159–65

    Article  PubMed  CAS  Google Scholar 

  6. Kunhiraman B, Jawa A, Fonseca V. Potential cardiovascular benefits of insulin sensitizers. Endocrinol Metab Clin North Am 2005; 34: 117–35

    Article  PubMed  CAS  Google Scholar 

  7. Colhoun HM, Betteridge DJ, Durrington PN, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre, randomized, placebo-controlled trial. Lancet 2004; 364: 685–96

    Article  PubMed  CAS  Google Scholar 

  8. Alexander CM, Landsman PB, Teutsch SM, et al. Third National Health and Nutrition Examination Survey (NHANES III); National Cholesterol Education Program (NCEP): NCEP-defined metabolic syndrome, diabetes, and prevalence of coronary heart disease among NHANES III participants aged 50 years and older. Diabetes 2003; 52: 1210–4

    Article  PubMed  CAS  Google Scholar 

  9. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet 2005; 365: 1415–28

    Article  PubMed  CAS  Google Scholar 

  10. Plutzky J. The vascular biology of atherosclerosis. Am J Med 2003; 115(8A): 55S–61S

    Article  PubMed  CAS  Google Scholar 

  11. Ritchie SA, Ewart MA, Perry CG, et al. The role of insulin and the adipocytokines in regulation of vascular endothelial function. Clin Sci (Lond) 2004; 107: 519–32

    Article  CAS  Google Scholar 

  12. Bierhaus A, Schiekofer S, Schwaninger M, et al. Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes 2001; 50: 2792–808

    Article  PubMed  CAS  Google Scholar 

  13. Dandona P, Aljada A, Bandyopadhyay A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol 2004; 25: 4–7

    Article  PubMed  CAS  Google Scholar 

  14. Shankar SS, Steinberg HO. FFAs: do they play a role in vascular disease in the insulin resistance syndrome? Curr Diab Rep 2005; 5: 30–5

    Article  PubMed  Google Scholar 

  15. Venugopal SK, Devaraj S, Jialal I. Effect of C-reactive protein on vascular cells: evidence for a proinflammatory, proatherogenic role. Curr Opin Nephrol Hypertens 2005; 14: 33–7

    Article  PubMed  CAS  Google Scholar 

  16. Weisberg SP, McCann D, Desai M, et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112: 1796–808

    PubMed  CAS  Google Scholar 

  17. Suganami T, Nishida J, Ogawa Y. A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol 2005; 25: 2062–8

    Article  PubMed  CAS  Google Scholar 

  18. Caballero A, Saouaf R, Lim S, et al. The effects of troglitazone, an insulin-sensitizing agent, on the endothelial function in early and late type 2 diabetes: a placebo-controlled randomized clinical trial. Metabolism 2003; 52: 173–80

    Article  PubMed  CAS  Google Scholar 

  19. Pistrosch F, Passauer J, Fischer S, et al. In type 2 diabetes, rosiglitazone therapy for insulin resistance ameliorates endothelial dysfunction independent of glucose control. Diabetes Care 2004; 27: 484–90

    Article  PubMed  CAS  Google Scholar 

  20. Tack CJ, Ong MK, Lutterman JA, et al. Insulin-induced vasodilatation and endothelial function in obesity/insulin resistance: effects of troglitazone. Diabetologia 1998; 41: 569–76

    Article  PubMed  CAS  Google Scholar 

  21. Moroe H, Fujii H, Honda H, et al. Characterization of endothelium-dependent relaxation and modulation by treatment with pioglitazone in the hypercholesterolemic rabbit renal artery. Eur J Pharmacol 2004; 497: 317–25

    Article  PubMed  CAS  Google Scholar 

  22. Calnek DS, Mazzella L, Roser S, et al. Peroxisome proliferator-activated receptor gamma ligands increase release of nitric oxide from endothelial cells. Arterioscler Thromb Vasc Biol 2003; 23: 52–7

    Article  PubMed  CAS  Google Scholar 

  23. Satoh H, Tsukamoto K, Hashimoto Y, et al. Thiazolidinediones suppress endothelin-1 secretion from bovine vascular endothelial cells: a new possible role of PPARgamma on vascular endothelial function. Biochem Biophys Res Commun 1999; 254: 757–63

    Article  PubMed  CAS  Google Scholar 

  24. Martin-Nizard F, Furman C, Delerive P, et al. Peroxisome proliferator-activated receptor activators inhibit oxidized low-density lipoprotein-induced endothelin-1 secretion in endothelial cells. J Cardiovasc Pharmacol 2002; 40: 822–31

    Article  PubMed  CAS  Google Scholar 

  25. Cominacini L, Garbin U, Pasini AF, et al. The expression of adhesion molecules on endothelial cells is inhibited by troglitazone through its antioxidant activity. Cell Adhes Commun 1999; 7: 223–31

    Article  PubMed  CAS  Google Scholar 

  26. Ghanim H, Garg R, Aljada A, et al. Suppression of nuclear factor-kappaB and stimulation of inhibitor kappaB by troglitazone: evidence for an anti-inflammatory effect and a potential anti-atherosclerotic effect in the obese. J Clin Endocrinol Metab 2001; 86: 1306–12

    Article  PubMed  CAS  Google Scholar 

  27. Imamoto E, Yoshida N, Uchiyama K, et al. Inhibitory effect of pioglitazone on expression of adhesion molecules on neutrophils and endothelial cells. Biofactors 2004; 20: 37–47

    Article  PubMed  CAS  Google Scholar 

  28. Mohanty P, Aljada A, Ghanim H, et al. Evidence for a potent anti-inflammatory effect of rosiglitazone. J Clin Endocrinol Metab 2004; 89: 2728–35

    Article  PubMed  CAS  Google Scholar 

  29. Jiang C, Ting A, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 1998; 391: 82–6

    Article  PubMed  CAS  Google Scholar 

  30. Wellen KE, Uysal KT, Wiesbrock S, et al. Interaction of tumor necrosis factor-alpha and thiazolidinedione-regulated pathways in obesity. Endocrinology 2004; 145: 2214–20

    Article  PubMed  CAS  Google Scholar 

  31. Da Ros R, Assaloni R, Ceriello A. The preventive anti-oxidant action of thiazolidinediones: a new therapeutic prospect in diabetes and insulin resistance. Diabet Med 2004; 21: 1249–52

    Article  Google Scholar 

  32. Bagi Z, Koller A, Kaley G. PPARgamma activation, by reducing oxidative stress, increases NO bioavailability in coronary arterioles of mice with type 2 diabetes. Am J Physiol Heart Circ Physiol 2004; 286: H742–8

    Article  PubMed  CAS  Google Scholar 

  33. Garg R, Kumbkarni Y, Aljada A, et al. Troglitazone reduces reactive oxygen species generation by leukocytes and lipid peroxidation and improves flow-mediated vasodilatation in obese subjects. Hypertension 2000; 36: 430–5

    Article  PubMed  CAS  Google Scholar 

  34. Adachi T, Inoue M, Hara H, et al. Relationship of plasma extracellular-superoxide dismutase level with insulin resistance in type 2 diabetic patients. J Endocrinol 2004; 181: 413–7

    Article  PubMed  CAS  Google Scholar 

  35. Marx N, Walcher D, Ivanova N, et al. Thiazolidinediones reduce endothelial expression of receptors for advanced glycation end products. Diabetes 2004; 53: 2662–8

    Article  PubMed  CAS  Google Scholar 

  36. Chu NV, Kong AP, Kim DD, et al. Differential effects of metformin and troglitazone on cardiovascular risk factors in patients with type 2 diabetes. Diabetes Care 2002; 25: 542–9

    Article  PubMed  CAS  Google Scholar 

  37. Haffner SM, Greenberg AS, Weston WM, et al. Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation 2002; 106: 679–84

    Article  PubMed  CAS  Google Scholar 

  38. Satoh N, Ogawa Y, Usui T, et al. Antiatherogenic effect of pioglitazone in type 2 diabetic patients irrespective of the responsiveness to its antidiabetic effect. Diabetes Care 2003; 26: 2493–9

    Article  PubMed  CAS  Google Scholar 

  39. Lagathu C, Bastard JP, Auclair M, et al. Chronic interleukin-6 (IL-6) treatment increased IL-6 secretion and induced insulin resistance in adipocyte: prevention by rosiglitazone. Biochem Biophys Res Commun 2003; 311: 372–9

    Article  PubMed  CAS  Google Scholar 

  40. Morrow DA, Ridker PM. C-reactive protein, inflammation, and coronary risk. Med Clin North Am 2000; 84: 149–61

    Article  PubMed  CAS  Google Scholar 

  41. Wang TD, Chen WJ, Lin JW, et al. Effects of rosiglitazone on endothelial function, C-reactive protein, and components of the metabolic syndrome in nondiabetic patients with the metabolic syndrome. Am J Cardiol 2004; 93: 362–5

    Article  PubMed  CAS  Google Scholar 

  42. Hetzel J, Balletshofer B, Rittig K, et al. Rapid effects of rosiglitazone treatment on endothelial function and inflammatory biomarkers. Arterioscler Thromb Vasc Biol 2005; 25: 1804–9

    Article  PubMed  CAS  Google Scholar 

  43. Verma S, Wang CH, Weisel RD, et al. Hyperglycemia potentiates the proatherogenic effects of C-reactive protein: reversal with rosiglitazone. J Mol Cell Cardiol 2003; 35: 417–9

    Article  PubMed  CAS  Google Scholar 

  44. Ouchi N, Kihara S, Funahashi T, et al. Obesity, adiponectin and vascular inflammatory disease. Curr Opin Lipidol 2003; 14: 561–6

    Article  PubMed  CAS  Google Scholar 

  45. Varo N, Vincent D, Libby P, et al. Elevated plasma levels of the atherogenic mediator soluble CD40L in patients with type 2 diabetes and coronary artery disease. Circulation 2003; 107: 1954–7

    Article  CAS  Google Scholar 

  46. Marx N, Imhof A, Froehlich J, et al. Effect of rosiglitazone treatment on soluble CD40L in patients with type 2 diabetes and coronary artery disease. Circulation 2003; 107: 1954–7

    Article  PubMed  CAS  Google Scholar 

  47. Sumita C, Maeda M, Fujio Y, et al. Pioglitazone induces plasma platelet activating factor-acetylhydrolase and inhibits platelet activating factor-mediated cytoskeletal reorganization in macrophage. Biochim Biophys Acta 2004; 1673: 115–21

    Article  PubMed  CAS  Google Scholar 

  48. Tontonoz P, Nagy L, Alvarez JG, et al. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998; 93: 241–52

    Article  PubMed  CAS  Google Scholar 

  49. Chawla A, Boisvert WA, Lee CH, et al. A PPARgamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 2001; 7: 161–71

    Article  PubMed  CAS  Google Scholar 

  50. Zhang L, Chawla A. Role of PPARgamma in macrophage biology and atherosclerosis. Trends Endocrinol Metab 2004; 15: 500–5

    Article  PubMed  CAS  Google Scholar 

  51. Liang CP, Han S, Okamoto H, et al. Increased CD36 protein as a response to defective insulin signaling in macrophages. J Clin Invest 2004; 113: 764–73

    PubMed  CAS  Google Scholar 

  52. Bruemmer D, Blaschke F, Law RE. New targets for PPARgamma in the vessel wall: implications for restenosis. Int J Obes Relat Metab Disord 2005; 29 Suppl. 1: S26–30

    Article  CAS  Google Scholar 

  53. Redondo S, Ruiz E, Santos-Gallego CG, et al. Pioglitazone induces vascular smooth muscle cell apoptosis through a peroxisome proliferator-activated receptor-gamma, transforming growth factor-beta1, and a Smad2-dependent mechanism. Diabetes 2005; 54: 811–7

    Article  PubMed  CAS  Google Scholar 

  54. Chen K, Chen J, Li D, et al. Angiotensin II regulation of collagen type I expression in cardiac fibroblasts: modulation by PPAR-gamma ligand pioglitazone. Hypertension 2004; 44: 655–61

    Article  PubMed  CAS  Google Scholar 

  55. Calkin AC, Forbes JM, Smith CM, et al. Rosiglitazone attenuates atherosclerosis in a model of insulin insufficiency independent of its metabolic effects. Arterioscler Thromb Vasc Biol 2005; 25: 1903–9

    Article  PubMed  CAS  Google Scholar 

  56. Diep QN, El Mabrouk M, Cohn JS, et al. Structure, endothelial function, cell growth, and inflammation in blood vessels of angiotensin II-infused rats: role of peroxisome proliferator-activated receptor-gamma. Circulation 2002; 105: 2296–302

    Article  PubMed  CAS  Google Scholar 

  57. Takeda K, Ichiki T, Tokunou T, et al. Peroxisome proliferator-activated receptor gamma activators downregulate angiotensin II type 1 receptor in vascular smooth muscle cells. Circulation 2005; 102: 1834–9

    Article  Google Scholar 

  58. Ferrario CM. Use of angiotensin II receptor blockers in animal models of atherosclerosis. Am J Hypertens 2002; 15: 9S–13S

    Article  PubMed  CAS  Google Scholar 

  59. Marx N, Froelich J, Siam L, et al. Antidiabetic PPAR gamma-activator rosiglitazone reduces MMP-9 serum levels in type 2 diabetic patients with coronary artery disease. Arterioscler Thromb Vasc Biol 2003; 23: 283–8

    Article  PubMed  CAS  Google Scholar 

  60. Sidhu J, Cowan D, Tooze J, et al. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reduces circulating platelet activity in patients without diabetes mellitus who have coronary artery disease. Am Heart J 2004; 147: 1032–7

    Article  CAS  Google Scholar 

  61. Li D, Chen K, Sinha N, et al. The effects of PPARγ ligand pioglitazone on platelet aggregation and arterial thrombus formation. Cardiovasc Res 2005; 65: 907–12

    Article  PubMed  CAS  Google Scholar 

  62. Sidhu JS, Cowan D, Kaski JC. The effects of rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist, on markers of endothelial cell activation, C-reactive protein, and fibrinogen levels in non-diabetic coronary artery disease patients. J Am Coll Cardiol 2003; 42: 1764–6

    Article  CAS  Google Scholar 

  63. Zirlik A, Leugers A, Lohrmann J, et al. Direct attenuation of plasminogen activator inhibitor type-1 expression in human adipose tissue by thiazolidinediones. Thromb Haemost 2004; 91: 674–82

    PubMed  CAS  Google Scholar 

  64. Liu HB, Hu YS, Medcalf RL, et al. Thiazolidinediones inhibit TNFalpha induction of PAI-1 independent of PPARgamma activation. Biochem Biophys Res Commun 2005; 334: 30–7

    Article  PubMed  CAS  Google Scholar 

  65. Kanehara H, Tohda G, Oida K, et al. Thrombomodulin expression by THP-1 but not by vascular endothelial cells is upregulated by pioglitazone. Thromb Res 2002; 108: 227–34

    Article  PubMed  CAS  Google Scholar 

  66. Akbiyik F, Ray DM, Gettings KF, et al. Human bone marrow megakaryocytes and platelets express PPARgamma, and PPARgamma agonists blunt platelet release of CD40 ligand and thromboxanes. Blood 2004; 104: 1361–8

    Article  PubMed  CAS  Google Scholar 

  67. Shiomi M, Ito T, Tsukada T, et al. Combination treatment with troglitazone, an insulin action enhancer, and pravastatin, an inhibitor of HMG-CoA reductase, shows a synergistic effect on atherosclerosis of WHHL rabbits. Atherosclerosis 1999; 142: 345–53

    Article  PubMed  CAS  Google Scholar 

  68. Chen Z, Ishibashi S, Perrey S, et al. Troglitazone inhibits atherosclerosis in apolipoprotein E-knockout mice: pleiotropic effects on CD36 expression and HDL. Arterioscler Thromb Vasc Biol 2001; 21: 372–7

    Article  PubMed  CAS  Google Scholar 

  69. Collins AR, Meehan WP, Kintscher U, et al. Troglitazone inhibits formation of early atherosclerotic lesions in diabetic and nondiabetic low density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 2001; 21: 365–71

    Article  PubMed  CAS  Google Scholar 

  70. Li AC, Brown KK, Silvestre MJ, et al. Peroxisome proliferator-activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2000; 106: 523–31

    Article  PubMed  CAS  Google Scholar 

  71. Claudel T, Leibowitz MD, Fievet C, et al. Reduction of atherosclerosis in apolipoprotein-E knockout mice by activation of the retinoid X receptor. Proc Natl Acad Sci U S A 2001; 98: 2610–5

    Article  PubMed  CAS  Google Scholar 

  72. Levi Z, Shaish A, Yacov N, et al. Rosiglitazone (PPARgamma-agonist) attenuates atherogenesis with no effect on hyperglycaemia in a combined diabetes-atherosclerosis mouse model. Diabetes Obes Metab 2003; 5: 45–50

    Article  PubMed  CAS  Google Scholar 

  73. Clough MH, Schneider DJ, Sobel BE, et al. Attenuation of accumulation of neointimal lipid by pioglitazone in mice genetically deficient in insulin receptor substrate-2 and apolipoprotein E. J Histochem Cytochem 2005; 53: 603–10

    Article  PubMed  CAS  Google Scholar 

  74. Spiegelman BM. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 1998; 47: 507–14

    Article  PubMed  CAS  Google Scholar 

  75. Boden G, Homko C, Mozzoli M, et al. Thiazolidinediones upregulate fatty acid uptake and oxidation in adipose tissue of diabetic patients. Diabetes 2005; 54: 880–5

    Article  PubMed  CAS  Google Scholar 

  76. Unger RH. Lipid overload and overflow: metabolic trauma and the metabolic syndrome. Trends Endocrinol Metab 2003; 14: 398–403

    Article  PubMed  CAS  Google Scholar 

  77. Schadinger SE, Bucher NL, Schreiber BM, et al. PPARgamma2 regulates lipogenesis and lipid accumulation in steatotic hepatocytes. Am J Physiol Endocrinol Metab 2005; 288: E1195–205

    Article  PubMed  CAS  Google Scholar 

  78. Miyazaki Y, Mahankali A, Matsuda M, et al. Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab 2002; 87: 2784–91

    Article  PubMed  CAS  Google Scholar 

  79. Petersen KF, Shulman GI. Pathogenesis of skeletal muscle insulin resistance in type 2 diabetes mellitus. Am J Cardiol 2002; 90: 11G–8G

    Article  PubMed  CAS  Google Scholar 

  80. Neuschwander-Tetri BA, Brunt EM, Wehmeier KR, et al. Interim results of a pilot study demonstrating the early effects of the PPAR-gamma ligand rosiglitazone on insulin sensitivity, aminotransferases, hepatic steatosis and body weight in patients with non-alcoholic steatohepatitis. J Hepatol 2003; 38: 434–40

    Article  PubMed  CAS  Google Scholar 

  81. Promrat K, Lutchman G, Uwaifo GI, et al. A pilot study of pioglitazone treatment for nonalcoholic steatohepatitis. Hepatology 2004; 39: 188–96

    Article  PubMed  CAS  Google Scholar 

  82. Siegel R, Cupples A, Schaefer E, et al. Lipoproteins, apolipoproteins, and low-density lipoprotein size among diabetics in the Framingham offspring study. Metabolism 1996; 45: 1267–72

    Article  PubMed  CAS  Google Scholar 

  83. Del Pilar Solano M, Goldberg RB. Management of diabetic dyslipidemia. Endocrinol Metab Clin North Am 2005; 34: 1–25

    Article  Google Scholar 

  84. Van Wijk JP, de Koning EJ, Martens EP, et al. Thiazolidinediones and blood lipids in type 2 diabetes. Arterioscler Thromb Vasc Biol 2003; 23: 1744–9

    Article  PubMed  CAS  Google Scholar 

  85. Chiquette E, Ramirez G, Defronzo R. A meta-analysis comparing the effect of thiazolidinediones on cardiovascular risk factors. Arch Intern Med 2004; 164: 2097–104

    Article  PubMed  CAS  Google Scholar 

  86. Goldberg RB, Kendall D, Deeg M, et al. A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care 2005; 28: 1547–54

    Article  PubMed  CAS  Google Scholar 

  87. Wagner JA, Larson PJ, Weiss S, et al. Individual and combined effects of peroxisome proliferator-activated receptor gamma agonists, fenofibrate and rosiglitazone, on biomarkers of lipid and glucose metabolism in healthy nondiabetic volunteers. J Clin Pharmacol 2005; 45: 504–13

    Article  PubMed  CAS  Google Scholar 

  88. Nagashima K, Lopez C, Donovan D, et al. Effects of the PPARgamma agonist pioglitazone on lipoprotein metabolism in patients with type 2 diabetes mellitus. J Clin Invest 2005; 115: 1323–32

    PubMed  CAS  Google Scholar 

  89. Lewis GF, Murdoch S, Uffelman K, et al. Hepatic lipase mRNA, protein, and plasma enzyme activity is increased in the insulin-resistant, fructose-fed Syrian golden hamster and is partially normalized by the insulin sensitizer rosiglitazone. Diabetes 2004; 53: 2893–900

    Article  PubMed  CAS  Google Scholar 

  90. Bogacka I, Xie H, Bray GA, et al. Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes 2005; 54: 1392–9

    Article  PubMed  CAS  Google Scholar 

  91. Natali A, Ferrannini E. Hypertension, insulin resistance, and the metabolic syndrome. Endocrinol Metab Clin North Am 2004; 33: 417–29

    Article  PubMed  CAS  Google Scholar 

  92. Raji A, Seely E, Bekins S, et al. Rosiglitazone improves insulin sensitivity and lowers blood pressure in hypertensive patients. Diabetes Care 2003; 26(1): 172–8

    Article  PubMed  CAS  Google Scholar 

  93. Sarafidis P, Lasaridis A, Nilsson P, et al. Ambulatory blood pressure reduction after rosiglitazone treatment in patients with type 2 diabetes and hypertension correlated with insulin sensitivity increase. J Hypertens 2004; 22: 1769–77

    Article  PubMed  CAS  Google Scholar 

  94. Fullert S, Schneider F, Haak E, et al. Effects of pioglitazone in nondiabetic patients with arterial hypertension: a double-blind, placebo-controlled study. J Clin Endocrinol Metab 2002; 87: 5503–6

    Article  PubMed  CAS  Google Scholar 

  95. Ryan MJ, Didion SP, Mathur S, et al. PPAR (gamma) agonist rosiglitazone improves vascular function and lowers blood pressure in hypertensive transgenic mice. Hypertension 2004; 43: 661–6

    Article  PubMed  CAS  Google Scholar 

  96. Nicol CJ, Adachi M, Akiyama TE, et al. PPARgamma in endothelial cells influences high fat diet-induced hypertension. Am J Hypertens 2005; 18: 549–56

    Article  PubMed  CAS  Google Scholar 

  97. Imano E, Kanda T, Nakatani Y, et al. Effect of troglitazone on microalbuminuria in patients with incipient diabetic nephropathy. Diabetes Care 1998; 21: 2135–9

    Article  PubMed  CAS  Google Scholar 

  98. Nakamura T, Ushiyama C, Osada S, et al. Pioglitazone reduces urinary podocyte excretion in type 2 diabetes patients with microalbuminuria. Metabolism 2001; 50: 1193–6

    Article  PubMed  CAS  Google Scholar 

  99. Bakris G, Viberti G, Weston WM, et al. Rosiglitazone reduces urinary albumin excretion in type II diabetes, J Hum Hypertens 2003; 17: 7–12

    Article  PubMed  CAS  Google Scholar 

  100. Sarafidis P, Lasaridis A, Nilsson P, et al. The effect of rosiglitazone on urine albumin excretion in patients with type 2 diabetes mellitus and hypertension. Am J Hypertens 2005; 18: 227–34

    Article  PubMed  CAS  Google Scholar 

  101. Stephens TW, Bergman JA, Bue-Valleskey JM, et al. Thiazolidinedione induced cardiac biochemical changes and increased IGF-1 action on cardiomyocytes [abstract]. Diabetologia 1995; 38: A200

    Google Scholar 

  102. Breider MA, Gough AW, Haskins JR, et al. Troglitazone-induced heart and adipose tissue cell proliferation in mice. Toxicol Pathol 1999; 27: 545–52

    Article  PubMed  CAS  Google Scholar 

  103. Young LH. Insulin resistance and the effects of thiazolidinediones on cardiac metabolism. Am J Med 2003; 115 Suppl. 8A: 75S–80S

    Article  Google Scholar 

  104. Ghazzi M, Perez J, Antonucci T, et al. Cardiac and glycemic benefits of troglitazone treatment in NIDDM: the Troglitazone Study Group. Diabetes 1997; 46: 433–9

    Article  PubMed  CAS  Google Scholar 

  105. Asakawa M, Takano H, Nagai T, et al. Peroxisome proliferator-activated receptor gamma plays a critical role in inhibition of cardiac hypertrophy in vitro and in vivo. Circulation 2002; 105: 1240–6

    Article  PubMed  CAS  Google Scholar 

  106. St John S, Rendell M, Dandona P, et al. A comparison of the effects of rosiglitazone and glyburide on cardiovascular function and glycemic control in patients with type 2 diabetes. Diabetes Care 2002; 25: 2058–64

    Article  Google Scholar 

  107. Scherbaum WA, Goke B. Metabolic efficacy and safety of once-daily pioglitazone monotherapy in patients with type 2 diabetes: a double-blind, placebo-controlled study. Horm Metab Res 2002; 34: 589–95

    Article  PubMed  CAS  Google Scholar 

  108. Young LH. The patient with diabetes mellitus and heart failure: at-risk issues. Am J Med 2003; 115 Suppl. 8A: 107S–10S

    Google Scholar 

  109. Zhu P, Lu L, Xu Y, et al. Troglitazone improves recovery of left ventricular function after regional ischemia in pigs. Circulation 2000; 101: 1165–71

    Article  PubMed  CAS  Google Scholar 

  110. Yue T, Bao W, Gu J, et al. Rosiglitazone treatment in Zucker diabetic fatty rats is associated with ameliorated cardiac insulin resistance and protection from ischemia/reperfusion-induced myocardial injury. Diabetes 2005; 54: 554–62

    Article  PubMed  CAS  Google Scholar 

  111. Shiomi T, Tsutsui H, Hayashidani S, et al. Pioglitazone, a PPAR gamma agonist, attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation 2002; 106: 3126–32

    Article  PubMed  Google Scholar 

  112. Xu Y, Gen M, Lu L, et al. PPAR-gamma activation fails to provide myocardial protection in ischemia and reperfusion in pigs. Am J Physiol Heart Circ Physiol 2005; 288: H1314–23

    Article  PubMed  CAS  Google Scholar 

  113. Murakami T, Mizuno S, Ohsato K, et al. Effects of troglitazone on frequency of coronary vasospastic-induced angina pectoris in patients with diabetes mellitus. Am J Cardiol 1999; 84: 92–4

    Article  PubMed  CAS  Google Scholar 

  114. Hodis HN, Mack WJ, LaBree L, et al. The role of carotid arterial intima-media thickness in predicting clinical coronary events. Ann Intern Med 1998; 128: 262–9

    PubMed  CAS  Google Scholar 

  115. Rajaram V, Pandhya S, Patel S, et al. Role of surrogate markers in assessing patients with diabetes mellitus and the metabolic syndrome and in evaluating lipid-lowering therapy. Am J Cardiol 2004; 93: 32C–48C

    Article  PubMed  CAS  Google Scholar 

  116. Xiang A, Peters R, Kjos S, et al. Effect of thiazolidinedione treatment of progression of subclinical atherosclerosis in premenopausal women at high risk for type 2 diabetes. J Clin Endocrinol Metab 2005; 90: 1986–91

    Article  PubMed  CAS  Google Scholar 

  117. Minamikawa J, Tanaka S, Yamauchi M, et al. Potent inhibitory effect of troglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 1998; 83: 1818–20

    Article  PubMed  CAS  Google Scholar 

  118. Koshiyama H, Shimono D, Kuwamura N, et al. Inhibitory effect of pioglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 2001; 86: 3452–6

    Article  PubMed  CAS  Google Scholar 

  119. Sidhu J, Kaposzta Z, Markus H, et al. Effect of rosiglitazone on common carotid intima-media thickness progression in coronary artery disease patients without diabetes mellitus. Arterioscler Thromb Vasc Biol 2004; 24: 930–4

    Article  PubMed  CAS  Google Scholar 

  120. Kornowski R, Mintz G, Kent K. Increased restenosis in diabetes mellitus after coronary interventions is due to exaggerated intimai hyperplasia: a serial intravascular ultrasound study. Circulation 1997; 95: 1366–9

    Article  PubMed  CAS  Google Scholar 

  121. Takagi T, Akasaka T, Yamamuro A. Troglitazone reduces neointimal tissue proliferation after coronary stent implantation in patients with non-insulin dependent diabetes mellitus: a serial intravascular ultrasound study. J Am Coll Cardiol 2000; 36: 1529–35

    Article  PubMed  CAS  Google Scholar 

  122. Takagi T, Yamamuro A, Tamita K. Impact of troglitazone on coronary stent implantation using small stents in patients with type 2 diabetes mellitus. Am J Cardiol 2002; 89: 318–22

    Article  PubMed  CAS  Google Scholar 

  123. Takagi T, Yamamuro A, Tamita K, et al. Pioglitazone reduces neointimal tissue proliferation after coronary stent implantation in patients with type 2 diabetes mellitus: an intravascular ultrasound scanning study. Am Heart J 2003; 146(2): 1–8

    Article  CAS  Google Scholar 

  124. Choi D, Kim S, Choi S, et al. Preventative effects of rosiglitazone on restenosis after coronary stent implantation in patients with type 2 diabetes. Diabetes Care 2004; 27(11): 2654–60

    Article  PubMed  CAS  Google Scholar 

  125. Dormandy JA, Charbonnel B, Eckland DJA, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 2005; 366: 1279–89

    Article  PubMed  CAS  Google Scholar 

  126. Home PD, Pocock SJ, Beck-Nielsen H, et al. Rosiglitazone evaluated for cardiac outcomes and regulation of glycaemia in diabetes (RECORD): study design and protocol. Diabetologia 2005; 48: 1726–35

    Article  PubMed  CAS  Google Scholar 

  127. Gerstein HC, Yusuf S, Holman R, et al. Rationale, design, and recruitment characteristics of a large, simple international trial of diabetes prevention: the DREAM trial. Diabetologia 2004; 47: 1519–27

    Article  PubMed  CAS  Google Scholar 

  128. Sobel B, Frye R, Detre K. Burgeoning dilemmas is the management of diabetes and cardiovascular disease: rationale for the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI2D) trial. Circulation 2003; 107: 636–42

    Article  PubMed  Google Scholar 

  129. Pershadsingh H. Peroxisome proliferators-activated receptor-y: therapeutic target for diseases beyond diabetes: quo vadis? Expert Opin Investig Drugs 2004; 13: 215–28

    Article  PubMed  CAS  Google Scholar 

  130. Palakurthi S, Aktas H, Grubissich L, et al. Anticancer effects of thiazolidinediones are independent of peroxisome proliferators-activated receptor γ and mediated by inhibition of translation initiation. Cancer Res 2001; 61: 6213–8

    PubMed  CAS  Google Scholar 

  131. Ferruzzi P, Ceni E, Tarocchi M, et al. Thiazolidinediones inhibit growth and invasiveness of the human adrenocortical cancer cell line H295R. J Clin Endocrinol Metab 2005; 90: 1332–9

    Article  PubMed  CAS  Google Scholar 

  132. Panigrahy D, Shen L, Kieran M, et al. Therapeutic potential of thiazolidinediones as anticancer agents. Expert Opin Investig Drugs 2003; 12: 1925–37

    Article  PubMed  CAS  Google Scholar 

  133. Storer P, Xu J, Chavis J, et al. Peroxisome proliferator-activated receptor-gamma agonists inhibit the activation of microglia and astrocytes: implications for multiple sclerosis. J Neuroimmunol 2005; 161: 113–22

    Article  PubMed  CAS  Google Scholar 

  134. Ehrmann D. Polycystic ovary syndrome. N Engl J Med 2005; 352: 1223–36

    Article  PubMed  CAS  Google Scholar 

  135. Glueck C, Papanna R, Wang P, et al. Incidence and treatment of metabolic syndrome in newly referred women with confirmed polycystic ovarian syndrome. Metabolism 2003; 52: 908–15

    Article  PubMed  CAS  Google Scholar 

  136. Ghazeeri G, Kutteh W, Bryer-Ash M, et al. Effect of rosiglitazone on spontaneous and clomiphene citrate-induced ovulation in women with polycystic ovary syndrome. Fertil Steril 2003; 79: 562–6

    Article  PubMed  Google Scholar 

  137. Belli S, Graffigna M, Oneto A, et al. Effect of rosiglitazone on insulin resistance, growth factors, and reproductive disturbances in women with polycystic ovary syndrome. Fertil Steril 2004; 81: 624–9

    Article  PubMed  CAS  Google Scholar 

  138. Romualdi D, Guido M, Ciampelli M, et al. Selective effects of pioglitazone on insulin and androgen abnormalities in normo- and hyperinsulinemic obese patients with polycystic ovary syndrome. Hum Reprod 2003; 18: 1210–8

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald B. Goldberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynolds, K., Goldberg, R.B. Thiazolidinediones. Mol Diag Ther 5, 25–36 (2006). https://doi.org/10.2165/00024677-200605010-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00024677-200605010-00004

Keywords

Navigation