Skip to main content
Log in

Antineoplastic Agents

Drug Interactions of Clinical Significance

  • Review Article
  • Drug Experience
  • Published:
Drug Safety Aims and scope Submit manuscript

Summary

With the use of numerous drugs in the treatment of cancer, the potential for drug interactions is considerable. Because of the limited therapeutic indices of anticancer drugs, one should be aware that even small alterations in pharmacokinetics or pharmacodynamics may result in serious adverse effects.

Pharmacokinetic drug interactions may alter absorption, bioavailability, distribution, metabolism and elimination patterns. For example, allopurinol inhibits the enzyme xanthine oxidase, thereby blocking the first-pass metabolism of mercaptopurine. Due to this drug interaction, plasma concentrations of mercaptopurine can increase up to 5-fold.

Pharmacodynamic drug interactions are characterised by a similar or opposing pharmacological effect of both drugs upon the same biological system. For example, cotrimoxazole (trimethoprim-sulfamethoxazole) inhibits folic acid metabolism through direct binding to dihydrofolate reductase, an enzyme which is also inhibited by methotrexate.

More pharmacological investigations are needed to understand the mechanisms and clinical implications of drug interactions with antineoplastic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paxton JW. High-dose methotrexate therapy: an area of uncertainty. Aust NZ J Med 1979; 9: 722–32

    CAS  Google Scholar 

  2. Roncherà CL, Hernandez T, Peris JE, et al. Pharmacokinetic interaction between high-dose methotrexate and amoxycillin. Ther Drug Monit 1993; 15: 375–9

    PubMed  Google Scholar 

  3. Evans WE, Christensen ML. Drug interactions with methotrexate. J Rheumatol 1985; 12 Suppl. 12: 15–20

    CAS  Google Scholar 

  4. Ferrazzini G, Klein J, Sulh H, et al. Interaction between trimethoprim-sulfamethoxazole and methotrexate in children with leukemia. J Pediatr 1990; 117: 823–6

    PubMed  CAS  Google Scholar 

  5. Maricic M, Davis M, Gall EP. Megaloblastic pancytopenia in a patient receiving concurrent methotrexate and trimethoprim-sulfamethoxazole treatment. Arthritis Rheum 1986; 29: 133–5

    PubMed  CAS  Google Scholar 

  6. Maiche AG, Lappalainen K, Teerenhovi L. Renal insufficiency in patients treated with high dose methotrexate. Acta Oncol 1988; 27: 73–4

    PubMed  CAS  Google Scholar 

  7. Aherne GW, Piall E, Marks V, et al. Prolongation and enhancement of serum methotrexate concentrations by probenecid. BMJ 1978; 1: 1097–9

    PubMed  CAS  Google Scholar 

  8. Cohen MH, Creaven PJ, Fossieck BE, et al. Effect of oral prophylactic broad spectrum nonabsorbable antibiotics on the gastrointestinal absorption of nutrients and methotrexate in small cell bronchogenic carcinoma patients. Cancer 1976; 38: 1556–9

    PubMed  CAS  Google Scholar 

  9. Shen DD, Azarnoff DL. Clinical pharmacokinetics of methotrexate. Clin Pharmacokinet 1978; 3: 1–13

    PubMed  CAS  Google Scholar 

  10. Taylor JR, Halprin KM. Effect of sodium salicylate and indo-methacin on methotrexate-serum albumin binding. Arch Dermatol 1977; 113: 588–91

    PubMed  CAS  Google Scholar 

  11. Furst DE, Herman RA, Koehnke R. Effect of aspirin and sulindac on methotrexate clearance. J Pharmacol Sci 1990; 79: 782–6

    CAS  Google Scholar 

  12. Beck HI, Foged EK. Toxic hepatitis due to combination therapy with methotrexate and etretinate in psoriasis. Dermatologica 1983; 167: 94–6

    PubMed  CAS  Google Scholar 

  13. Larsen FG, Nielsen-Kudsk F, Jakobsen P, et al. Interaction of etretinate with methotrexate pharmacokinetics in psoriatic patients. J Clin Pharmacol 1990; 30: 802–7

    PubMed  CAS  Google Scholar 

  14. Haim N, Kedar A, Robinson E. Methotrexate-related deaths in patients previously treated with cis-diamminedichloride platinum. Cancer Chemother Pharmacol 1984; 13: 223–5

    PubMed  CAS  Google Scholar 

  15. Crom WR, Pratt CB, Green AA, et al. The effect of prior cisplatin therapy on the pharmacokinetics of high-dose methotrexate. J Clin Oncol 1984; 2: 655–61

    PubMed  CAS  Google Scholar 

  16. Wajima T, Mukhopadhyay P. Possible interactions between warfarin and 5-fluorouracil [letter]. Am J Hematol 1992; 40: 238

    PubMed  CAS  Google Scholar 

  17. Chlebowski RT, Gota CH, Chan KK, et al. Clinical and pharmacokinetic effects of combined warfarin and 5-flourouracil in advanced colon cancer. Cancer Res 1982; 42: 4827–30

    PubMed  CAS  Google Scholar 

  18. Kirsch WM, Schulz D, Van Buskirk JJ, et al. Effects of sodium warfarin and other carcinostatic agents on malignant cells: a study of drug synergy. J Med 1974; 5: 69–82

    PubMed  CAS  Google Scholar 

  19. Harvey VJ, Sievin ML, Dilloway MR, et al. The influence of cimetidine on the pharmacokinetics of 5-fluorouracil. Br J Clin Pharmacol 1984; 18: 421–30

    PubMed  CAS  Google Scholar 

  20. McDermott BJ, van den Berg HW, Martin WM, et al. Pharmacokinetic rationale for the interaction of 5-fluorouracil and misonidazol in humans. Br J Cancer 1983; 48: 705–10

    PubMed  CAS  Google Scholar 

  21. Fox RM, Woods RL, Tattersall MH, et al. Allopurinol modulation of fluorouracil toxicity. Cancer Chemother Pharmacol 1981; 5: 151–5

    PubMed  CAS  Google Scholar 

  22. Howell SB, Wung WE, Taetle R, et al. Modulation of 5-fluorouracil toxicity by allopurinol in man. Cancer 1981; 48: 1281–9

    PubMed  CAS  Google Scholar 

  23. Woolley PV, Ayoob MJ, Smith FP, et al. A controlled trial of the effect of 4-hydroxypyrazolopyrimidine (allopurinol) on the toxicity of a single bolus dose of 5-fluorouracil. J Clin Oncol 1985; 3: 103–9

    PubMed  CAS  Google Scholar 

  24. Erlichman C, Moore M, Thiessen JJ, et al. Phase I pharmacokinetic study of cyclosporin A combined with doxorubicin. Cancer Res 1988; 53: 4837–42

    Google Scholar 

  25. Poon MA, Os’Connell MJ, Moertel CG, et al. Biochemical modulation of fluorouracil: evidence of significant improvement of survival and quality of life in patients with advanced colorectal carcinoma. J Clin Oncol 1989; 7: 1407–18

    PubMed  CAS  Google Scholar 

  26. Petrelli N, Douglass Jr HO, Herrera L, et al. The modulation of fluorouracil with leucovorin in metastatic colorectal carcinoma: a prospective randomized phase III trial. J Clin Oncol 1989; 7: 1419–26

    PubMed  CAS  Google Scholar 

  27. Grem JL, Chu E, Boarman D, et al. Biochemical modulation of fluorouracil with leucovorin and interferon: preclinical and clinical investigations. Semin Oncol 1992; 19 (2 Suppl. 3): 36–44

    PubMed  CAS  Google Scholar 

  28. Schuller J, Czejka MJ, Schernthaner G, et al. Influence of interferon alfa-2b with or without folinic acid on pharmacokinetics of fluorouracil. Semin Oncol 1993; 19 (2 Suppl. 3): 93–7

    Google Scholar 

  29. Sotos GA, Grogan L, Allegra CJ. Preclinical and clinical aspects of biomodulation of 5-fluorouracil. Cancer Treat Rev 1994; 20: 11–49

    PubMed  CAS  Google Scholar 

  30. Greenberg B, Ahmann F, Garewal H, et al. Neoadjuvant therapy for advanced head and neck cancer with allopurinol-modulated high dose 5-fluorouracil and cisplatin. A phase I–II study. Cancer 1987; 59: 1860–5

    PubMed  CAS  Google Scholar 

  31. Lennard L, van Loon JA, Weinshilboum RM. Pharmacogenetics of acute azathioprine toxicity: relationship to thiopurine methyltransferase genetic polymorphism. Clin Pharmacol Ther 1989; 46: 149–54

    PubMed  CAS  Google Scholar 

  32. Weinshilboum RM. Human pharmacogenetics of methyl conjugation. Fed Proc 1984; 43: 2303–7

    PubMed  CAS  Google Scholar 

  33. Zimm S, Collins JM, Os’Neill D, et al. Inhibition of first-pass metabolism in cancer chemotherapy: interaction of 6-mercaptopurine and allopurinol. Clin Pharmacol Ther 1983; 34: 810–7

    PubMed  CAS  Google Scholar 

  34. Einhorn M, Davidson I. Hepatotoxicity of mercaptopurine. JAMA 1964; 188: 802–6

    PubMed  CAS  Google Scholar 

  35. Murrell GA, Rapeport WG. Clinical pharmacokinetics of allopurinol. Clin Pharmacokinet 1986; 11: 343–53

    PubMed  CAS  Google Scholar 

  36. Brooks RJ, Dorr RT, Durie BG. Interaction of allopurinol with 6-mercaptopurine and azathioprine. Biomed Pharmacother 1982; 36: 217–22

    PubMed  CAS  Google Scholar 

  37. Poplack DG, Balis FM, Zimm S. The pharmacology of orally administered chemotherapy. A reappraisal. Cancer 1986; 58 (2 Suppl.): 473–80

    PubMed  CAS  Google Scholar 

  38. Rees CA, Lennard L, Lilleyman JS, et al. Disturbance of 6-mercaptopurine metabolism by cotrimoxazole in childhood lymphoblastic leukaemia. Cancer Chemother Pharmacol 1984; 12: 87–9

    PubMed  CAS  Google Scholar 

  39. Bradley PP, Warden GD, Maxwell JG, et al. Neutropenia and thrombocytopenia in renal allograft recipients treated with trimethoprim-sulfamethoxazole. Ann Intern Med 1980; 93: 560–2

    PubMed  CAS  Google Scholar 

  40. Minow RA, Stern MH, Casey JH, et al. Clinico-pathologic correlation of liver damage in patients treated with 6-mercaptopurine and adriamycin. Cancer 1976; 38: 1524–8

    PubMed  CAS  Google Scholar 

  41. Rodriguez V, Bodey GP, McCredie KB, et al. Combination 6-mercaptopurine-adriamycin in refractory adult acute leukemia. Clin Pharmacol Ther 1975; 18: 462–5

    PubMed  CAS  Google Scholar 

  42. Balis FM, Holcenberg JS, Zimm S, et al. The effect of methotrexate on the bioavailability of oral 6-mercaptopurine. Clin Pharmacol Ther 1987; 41: 384–7

    PubMed  CAS  Google Scholar 

  43. Speth PA, van Hoesel QG, Haanen C. Clinical pharmacokinetics of doxorubicin. Clin Pharmacokinet 1988; 15: 15–31

    PubMed  CAS  Google Scholar 

  44. Steinherz L, Steinherz P. Delayed cardiac toxicity from anthracycline therapy. Pediatrician 1991; 18: 49–52

    PubMed  CAS  Google Scholar 

  45. Minow RA, Benjamin RS, Gottlieb JA. Adriamycin (NSC-123127) cardiomyopathy: an overview with determination of risk factors. Cancer Chemother Rep 1975; 6: 195–201

    Google Scholar 

  46. Minow RA, Benjamin RS, Lee ET, et al. Adriamycin cardiomyopathy-risk factors. Cancer 1977; 39: 1397–402

    PubMed  CAS  Google Scholar 

  47. Kushner JP, Hansen VL, Hammar SP. Cardiomyopathy after widely separated courses of adriamycin exacerbated by actinomycin-D and mithramycin. Cancer 1975; 36: 1577–84

    PubMed  CAS  Google Scholar 

  48. Buzdar AU, Legha SS, Tashima CK, et al. Adriamycin and mitomycin C: possible synergistic cardiotoxicity. Cancer Treat Rep 1978; 62: 1005–8

    PubMed  CAS  Google Scholar 

  49. Ford JM, Panasci L, Leclerc Y, et al. Phase II trial of a combination of doxorubicin and mitoxantrone in metastatic breast cancer. Cancer Treat Rep 1987; 71: 921–5

    PubMed  CAS  Google Scholar 

  50. Kerr DJ, Graham J, Cummings J, et al. The effect of verapamil on the pharmacokinetics of adriamycin. Cancer Chemother Pharmacol 1986; 18: 239–42

    PubMed  CAS  Google Scholar 

  51. Dalton WS, Grogan TM, Meltzer PS, et al. Drug-resistance in multiple myeloma and non-Hodgkins’s lymphoma: detection of P-glycoprotein and potential circumvention by addition of verapamil to chemotherapy. J Clin Oncol 1989; 7: 415–24

    PubMed  CAS  Google Scholar 

  52. Ozols RF, Cunnion RE, Klecker Jr RW, et al. Verapamil and adriamycin in the treatment of drug-resistant ovarian cancer patients. J Clin Oncol 1987; 5: 641–7

    PubMed  CAS  Google Scholar 

  53. Sonneveld P, Durie BG, Lokhorst HM, et al. Modulation of multidrug-resistant multiple myeloma by cyclosporin. The Leukaemia Group of the EORTC and the HOVON. Lancet 1992; 340: 255–9

    PubMed  CAS  Google Scholar 

  54. Erlichman C, Fine S, Wong A, et al. A randomized trial of fluorouracil and folinic acid in patients with metastatic colorectal carcinoma. J Clin Oncol 1993; 6: 469–75

    Google Scholar 

  55. Rushing DA, Raber SR, Rodvold KA, et al. The effects of cyclosporine on the pharmacokinetics of doxorubicin in patients with small cell lung cancer. Cancer 1994; 74: 834–41

    PubMed  CAS  Google Scholar 

  56. Bennett WM, Pastore L, Houghton DC. Fatal pulmonary bleomycin toxicity in cisplatin-induced acute renal failure. Cancer Treat Rep 1980; 64: 921–4

    PubMed  CAS  Google Scholar 

  57. Perry DJ, Weiss RB, Taylor HG. Enhanced bleomycin toxicity during acute renal failure. Cancer Treat Rep 1982; 66: 592–3

    PubMed  CAS  Google Scholar 

  58. Yee GC, Crom WR, Champion JE, et al. Cisplatin-induced changes in bleomycin elimination. Cancer Treat Rep 1983; 67: 587–9

    PubMed  CAS  Google Scholar 

  59. Van Barneveld PW, Sleijfer DT, van der Mark TW, et al. Influence of platinum-induced renal toxicity on bleomycin-induced pulmonary toxicity in patients with disseminated testicular carcinoma. Oncology 1984; 41: 4–7

    PubMed  Google Scholar 

  60. Montes A, Powles TJ, Os’Brien ME, et al. A toxic interaction between mitomycin C and tamoxifen causing the haemolytic uraemic syndrome. Eur J Cancer 1993; 29A: 1854–7

    PubMed  CAS  Google Scholar 

  61. Halperin JA, editor. United States pharmacopeial dispensing information. Taunton, MA: Rand McNally, 1993: 1093

    Google Scholar 

  62. Bagley Jr CM, Bostick FW, De Vita Jr VT. Clinical pharmacology of cyclophosphamide. Cancer Res 1973; 33: 226–33

    PubMed  Google Scholar 

  63. Moore MJ, Hardy RW, Thiessen JJ, et al. Rapid development of enhanced clearance after high-dose cyclophosphamide. Clin Pharmacol Ther 1988; 44: 622–8

    PubMed  CAS  Google Scholar 

  64. Faber OK, Mouridsen HT, Skovsted L. The biotransformation of cyclophosphamide in man: influence of prednisone. Acta Pharmacol Toxicol 1974; 35: 195–200

    CAS  Google Scholar 

  65. Jao JY, Jusko WJ, Cohen JL. Phénobarbital effects on cyclophosphamide pharmacokinetics in man. Cancer Res 1972; 32: 2761–4

    PubMed  CAS  Google Scholar 

  66. Webberley MJ, Murray JA. Life-threatening acute hyponatraemia induced by low dose cyclophosphamide and indomethacin. Postgrad Med J 1989; 65: 950–2

    PubMed  CAS  Google Scholar 

  67. Wang R, Ross C. Prolonged apnea following succinylcholine in cancer patients receiving AB-132. Anesthesiology 1963; 24: 363–7

    PubMed  CAS  Google Scholar 

  68. Walker IR, Zapf PW, Mackay IR. Cyclophosphamide, cholinesterase and anaesthesia. Aust NZ J Med 1972; 2: 247–51

    CAS  Google Scholar 

  69. Mone JG, Mathie WE. Qualitative defects of pseudocholinesterase activity. Anaesthesia 1967; 22: 55–68

    PubMed  CAS  Google Scholar 

  70. Dillman JB. Safe use of succinylcholine during repeated anesthetics in a patient treated with cyclophosphamide. Anesth Analg 1987; 66: 351–3

    PubMed  CAS  Google Scholar 

  71. Stofer-Vogel B, Cerny T, Borner M, et al. Oral bioavailability of mesna tablets. Cancer Chemother Pharmacol 1993; 32: 78–81

    PubMed  CAS  Google Scholar 

  72. Goren MP. Oral mesna: a review. Semin Oncol 1992; 19: 65–72

    PubMed  CAS  Google Scholar 

  73. Elias AD, Eder JP, Shea T, et al. High-dose ifosfamide with mesna uroprotection: a phase I study. J Clin Oncol 1990; 8: 170–8

    PubMed  CAS  Google Scholar 

  74. Hall G, Lind MJ, Huang M, et al. Intravenous infusions of ifosfamide/mesna and perturbation of warfarin anticoagulant control. Postgrad Med J 1990; 66: 860–1

    PubMed  CAS  Google Scholar 

  75. Pratt CB, Goren MP, Meyer WH, et al. Ifosf amide neurotoxicity is related to previous cisplatin treatment for pediatrie solid tumors. J Clin Oncol 1990; 8: 1399–401

    PubMed  CAS  Google Scholar 

  76. Goren MP, Wright RK, Pratt CB, et al. Potentiation of ifosfamide neurotoxicity, hematotoxicity, and tubular nephrotoxicity by prior cis-diamminedichloroplatinum (II) therapy. Cancer Res 1987; 47: 1457–60

    PubMed  CAS  Google Scholar 

  77. Rossi R, Godde A, Kleinebrand A, et al. Unilateral nephrectomy and cisplatin as risk factors of ifosfamide-induced nephrotoxicity: analysis of 120 patients. J Clin Oncol 1994; 12: 159–65

    PubMed  CAS  Google Scholar 

  78. Cantwell BM, Harris AL. Ifosfamide/mesa and encephalopathy [letter]. Lancet 1985; 1: 752

    PubMed  CAS  Google Scholar 

  79. Salloum E, Flamant F, Ghosn M, et al. Irreversible encephalopathy with ifosfamide/mesna [letter]. J Clin Oncol 1987; 5: 1303–4

    PubMed  CAS  Google Scholar 

  80. Goren MP, Wright RK, Pratt CB, et al. Dechloroethylation of ifosfamide and neurotoxicity [letter]. Lancet 1986; 2: 1219–20

    PubMed  CAS  Google Scholar 

  81. Sviland L, Robinson A, Proctor SJ, et al. Interaction of cimetidine with oral melphalan. A pharmacokinetic study. Cancer Chemother Pharmacol 1987; 20: 173–5

    PubMed  CAS  Google Scholar 

  82. Ehrsson H, Eksborg S, Waalin I, et al. Oral melphalan pharmacokinetics: influence of interferon-induced fever. Clin Pharmacol Ther 1990; 47: 86–90

    PubMed  CAS  Google Scholar 

  83. Cunningham D, Cummings J, Blackie RB, et al. The pharmacokinetics of high dose cyclophosphamide and high dose etoposide. Med Oncol Tumor Pharmacother 1988; 5: 117–23

    PubMed  CAS  Google Scholar 

  84. Pflüger KH, Schmidt L, Merkel M, et al. Drug monitoring of etoposide (VP16-213). Correlation of pharmacokinetic parameters to clinical and biochemical data from patients receiving etoposide. Cancer Chemother Pharmacol 1987; 20: 59–66

    PubMed  Google Scholar 

  85. Radman JH, Murry DJ, Madden T, et al. Altered etoposide pharmacokinetics and time to engraftment in paediatric patients undergoing autologous bone marrow transplantation. J Clin Oncol 1994; 12: 2390–7

    Google Scholar 

  86. Lum BL, Kaubisch S, Yahanda AM, et al. Alteration of etoposide pharmacokinetics and pharmacodynamics by cyclosporine in a phase I trial to modulate multidrug resistance. J Clin Oncol 1992; 10: 1635–42

    PubMed  CAS  Google Scholar 

  87. Lum BL, Fisher GA, Brophy NA, et al. Clinical trials of modulation of multidrug resistance. Pharmacokinetic and pharmacodynamic considerations. Cancer 1993; 72 (11 Suppl.): 3502–14

    PubMed  CAS  Google Scholar 

  88. Yahanda AM, Alder KM, Fisher GA, et al. Phase I trial of etoposide with cyclosporine as a modulator of multidrug resistance. J Clin Oncol 1992; 10: 1624–34

    PubMed  CAS  Google Scholar 

  89. Kloke O, Osieka R. Interaction of cyclosporin A with antineoplastic agents. Klin Wochenschr 1985; 63: 1081–2

    PubMed  CAS  Google Scholar 

  90. Baker DK, Relling MV, Pui CH, et al. Increased teniposide clearance with concomitant anticonvulsant therapy. J Clin Oncol 1992; 10: 311–5

    PubMed  CAS  Google Scholar 

  91. Grossman SA, Sheidler VR, Gilbert MR. Decreased phenytoin levels in patients receiving chemotherapy. Am J Med 1989; 87: 505–10

    PubMed  CAS  Google Scholar 

  92. Neef C, de Voogd-van der Straaten I. An interaction between cytostatic and anticonvulsant drugs. Clin Pharmacol Ther 1988; 43: 372–5

    PubMed  CAS  Google Scholar 

  93. Christensen ML, Stewart CF, Crom WR. Evaluation of aminoglycoside disposition in patients previously treated with cisplatin. Ther Drug Monit 1989; 11: 631–6

    PubMed  CAS  Google Scholar 

  94. Rowinsky EK, Citardi MJ, Noe DA, et al. Sequence-dependent cytotoxic effects due to combinations of cisplatin and the antimicrotubule agents taxol and vincristine. J Cancer Res Clin Oncol 1993; 119: 727–33

    PubMed  CAS  Google Scholar 

  95. Schellens JHM, Ma J, Bruno R, et al. Pharmacokinetics of cisplatin and taxotere (docetaxel) and WBC DNA-adduct formation of cisplatin in the sequence taxotere/cisplatin and cisplatin/taxotere in a phase I/II study in solid tumor patients. Proc Am Soc Clin Oncol 1994; 13: 132

    Google Scholar 

  96. Rowinsky EK, Gilbert MR, McGuire WP, et al. Sequences of taxol and cisplatin: a phase I and pharmacologic study. J Clin Oncol 1991; 9: 1692–703

    PubMed  CAS  Google Scholar 

  97. Lodwick R, McConkey B, Brown AM. Life threatening interaction between tamoxifen and warfarin. BMJ 1987; 295: 1141

    PubMed  CAS  Google Scholar 

  98. Tenni P, Lalich DL, Byrne MJ. Life threatening interaction between tamoxifen and warfarin. BMJ 1989; 298: 93

    PubMed  CAS  Google Scholar 

  99. Ritchie LD, Grant SM. Tamoxifen-warfarin interaction: the Aberdeen hospitals drug file. BMJ 1989; 298: 1253

    PubMed  CAS  Google Scholar 

  100. Santen RJ, Lipton A, Kendall J. Successful medical adrenalectomy with amino-glutethimide. Role of altered drug metabolism. JAMA 1974; 230: 1661–5

    PubMed  CAS  Google Scholar 

  101. Halpern J, Catane R, Baerwald H. A call for caution in the use of aminoglutethimide: negative interactions with dexamethasone and beta blocker treatment. J Med 1984; 15: 59–63

    PubMed  CAS  Google Scholar 

  102. Lønning PE, Kvinnsland S, Jahren G. Aminoglutethimide and warfarin. A new important drug interaction. Cancer Chemother Pharmacol 1984; 12: 10–2

    PubMed  Google Scholar 

  103. Lønning PE, Kvinnsland S, Bakke OM. Effect of aminoglutethimide on antipyrine, theophylline, and digitoxin disposition in breast cancer. Clin Pharmacol Ther 1984; 36: 796–801

    PubMed  Google Scholar 

  104. Lønning PE, Ueland PM, Kvinnsland S. The influence of a graded dose schedule of aminoglutethimide on the disposition of the optical enantiomers of warfarin in patients with breast cancer. Cancer Chemother Pharmacol 1986; 17: 177–81

    PubMed  Google Scholar 

  105. Lien EA, Anker G, Lønning PE, et al. Decreased serum concentrations of tamoxifen and its metabolites induced by aminoglutethimide. Cancer Res 1990; 50: 5851–7

    PubMed  CAS  Google Scholar 

  106. Zukiwski AA, David CL, Coan J, et al. Increased incidence of hypersensitivity to iodine-containing radiographie contrast media after interleukin-2 administration. Cancer 1990; 65: 1521–4

    PubMed  CAS  Google Scholar 

  107. Oldham RK, Brogley J, Braud E. Contrast medium ‘recalls’ interleukin-2 toxicity [letter]. J Clin Oncol 1990; 8: 942–3

    PubMed  CAS  Google Scholar 

  108. Abi-Aad AS, Figlin RA, Belldegrun A, et al. Metastatic renal cell cancer: interleukin-2 toxicity induced by contrast agent injection. J Immunother 1991; 10: 292–5

    PubMed  CAS  Google Scholar 

  109. Fishman JE, Aberle DR, Moldawer NP, et al. Atypical contrast reactions associated with systemic interleukin-2 therapy. Am J Roentgenol 1991; 156: 833–4

    CAS  Google Scholar 

  110. Choyke PL, Miller DL, Lotze MT, et al. Delayed reactions to contrast media after interleukin-2 immunotherapy. Radiology 1992; 183: 111–4

    PubMed  CAS  Google Scholar 

  111. Shulman KL, Thompson JA, Benyunes MC, et al. Adverse reactions to intravenous contrast media in patients treated with interleukin-2. J Immunother 1993; 13: 208–12

    CAS  Google Scholar 

  112. Chabot GG, Flaherty LE, Valdivieso M, et al. Alteration of dacarbazine pharmacokinetics after interleukin-2 administration in melanoma patients. Cancer Chemother Pharmacol 1990; 27: 157–60

    PubMed  CAS  Google Scholar 

  113. Vetto JT, Papa MZ, Lotze MT, et al. Reduction of toxicity of interleukin-2 and lymphokine-activated killer cells in humans by the administration of corticosteroids. J Clin Oncol 1987; 5: 496–503

    PubMed  CAS  Google Scholar 

  114. Mier JW, Vachino G, Klempner MS, et al. Inhibition of inter-leukin-2-induced tumor necrosis factor release by dexamethasone: prevention of an acquired neutrophil chemotaxis defect and differential suppression of interleukin-2-associated side effects. Blood 1990; 76: 1933–40

    PubMed  CAS  Google Scholar 

  115. Williams SJ, Baird-Lambert JA, Farrell GC. Inhibition of theophylline metabolism by interferon. Lancet 1987; 2: 939–41

    PubMed  CAS  Google Scholar 

  116. Jonkman JH, Nicholson KG, Farrow PR, et al. Effects of alpha-interferon on theophylline pharmacokinetics and metabolism. Br J Clin Pharmacol 1989; 27: 795–802

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Meerten, E., Verweij, J. & Schellens, J.H.M. Antineoplastic Agents. Drug-Safety 12, 168–182 (1995). https://doi.org/10.2165/00002018-199512030-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-199512030-00003

Keywords

Navigation