Skip to main content
Log in

ACE Inhibitors and the Kidney

A Risk-Benefit Assessment

  • Review Article
  • Risk-Benefit Assessment
  • Published:
Drug Safety Aims and scope Submit manuscript

Summary

ACE inhibitors effectively reduce systemic vascular resistance in patients with hypertension, heart failure or chronic renal disease. This antihypertensive efficacy probably accounts for an important part of their long term renoprotective effects in patients with diabetic and non-diabetic renal disease.

The renal mechanisms underlying the renal adverse effects of ACE inhibitors — intrarenal efferent vasodilation with a consequent fall in filtration pressure — are held to be involved in their renoprotective effects as well. The fall in filtration pressure presumably contributes to the antiproteinuric effect as well as to long term renoprotection. The former is suggested by the positive correlation between the fall in filtration fraction and the reduction in proteinuria found during ACE inhibition. The latter is suggested by the correlation between the (slight) reduction in glomerular filtration rate at onset of therapy and a more favourable course of renal function in the long term. Such a fall in filtration rate at the onset of ACE inhibitor treatment is reversible after withdrawal, and can be considered the tradeoff for long term renal protection in patients with diabetic and nondiabetic chronic renal disease.

In conditions in which glomerular filtration is critically dependent on angiotensin II-mediated efferent vascular tone (such as a post-stenotic kidney, or patients with heart failure and severe depletion of circulating volume), ACE inhibition can induce acute renal failure, which is reversible after withdrawal of the drug.

Systemic and renal haemodynamic effects of ACE inhibition, both beneficial and adverse, are potentiated by sodium depletion. Consequently, sodium repletion contributes to the restoration of renal function in patients with ACE inhibitor-induced acute renal failure. On the other hand, co-treatment with diuretics and sodium restriction can improve therapeutic efficacy in patients in whom the therapeutic response of blood pressure or proteinuria is insufficient.

Patients at the greatest risk for renal adverse effects (those with heart failure, diabetes mellitus and/or chronic renal failure) also can expect the greatest benefit. Therefore, ACE inhibitors should not be withheld in these patients, but dosages should be carefully titrated, with monitoring of renal function and serum potassium levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heerdink ER, Leufkens HG, Glerum JH, et al. Polypharmacy in the elderly: clustering of drug use. In: Clustering of drug use in the elderly [thesis]. University of Utrecht: 1995; 65–80

    Google Scholar 

  2. Captopril: benefits and risks in severe hypertension [editorial]. Lancet 1980; II: 129–30

  3. Parving H-H, Hommel E, Smidt UM. Protection of kidney function and decrease in albuminuria by Captopril in insulin-dependent diabetics with nephropathy. BMJ 1988; 297: 1086–91

    PubMed  CAS  Google Scholar 

  4. Heeg JE, de Jong PE, van der Hem, et al. Reduction of proteinuria by angiotensin converting enzyme inhibition. Kidney Int 1987; 32: 78–83

    PubMed  CAS  Google Scholar 

  5. Raij L, Keane WF. Glomerular mesangium: its function and relationship to angiotensin II. Am J Med 1985; 79 Suppl. 3c: 24–30

    PubMed  CAS  Google Scholar 

  6. Schor N, Ichikawa I, Brenner BM. Mechanism of action of various hormones and vasoactive substances on glomerular ultrafiltration in the rat. Kidney Int 1981; 20: 442–51

    PubMed  CAS  Google Scholar 

  7. Hricik DE. Captopril-induced renal insufficiency and the role of sodium balance. Ann Intern Med 1985; 103: 222–3

    PubMed  CAS  Google Scholar 

  8. Schuster V. Effect of angiotensin on proximal tubular reabsorption. Fed Proc 1986; 45: 1444–7

    PubMed  CAS  Google Scholar 

  9. Hollenberg NK, Swartz SL, Passan DR. Increased glomerular filtration rate after converting enzyme inhibition in essential hypertension. N Engl J Med 1979; 29: 9–12

    Google Scholar 

  10. Atlas SA, Case DB, Sealey JE, et al. Interruption of the renin-angiotensin system in hypertensive patients by Captopril induces sustained reduction in aldosterone secretion, potassium retention and natriuresis. Hypertension 1979; 1: 274–80

    PubMed  CAS  Google Scholar 

  11. Tarazi RC, Bravo EL, Fouad FM, et al. Hemodynamic and volume changes associated with Captopril. Hypertension 1980; 2: 576–85

    PubMed  CAS  Google Scholar 

  12. Berk BC, Vekshtein V, Gordon HM, et al. Angiotensin II-stimulated protein synthesis in cultured vascular smooth muscle cells. Hypertension 1989; 13: 305–14

    PubMed  CAS  Google Scholar 

  13. Wolthuis A, Boes A, Rodemann HP, et al. Vasoactive agents affect growth and protein synthesis of cultured mesangial cells. Kidney Int 1992; 41: 124–31

    PubMed  CAS  Google Scholar 

  14. Kagami S, Border WA, Miller DE, et al. Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-beta expression in rat glomerular mesangial cells. J Clin Invest 1994: 93: 2431–7

    PubMed  CAS  Google Scholar 

  15. Grond J, Elema JD. Glomerular mesangium: analysis of the increased activity observed in experimental acute aminonucleoside nephrosis in the rat. Lab Invest 1981; 45; 400–9

    PubMed  CAS  Google Scholar 

  16. Anderson SA, Rennke HG, Brenner BM. Therapeutic advantage of converting enzyme inhibition in arresting progressive renal disease associated with systemic hypertension in the rat. J Clin Invest 1986; 77: 1993–2000

    PubMed  CAS  Google Scholar 

  17. Wapstra FH, van Goor H, Navis GJ, et al. The antiproteinuric effect predicts renal protection by ACE-inhibition in rats with established adriamycin nephrosis. Clin Sci 1996; 90: 393–401

    PubMed  CAS  Google Scholar 

  18. Johnston CI, Burrell LM. Evolution of blockade of the renin angiotensin system. J Hum Hypertens 1995; 9: 375–80

    PubMed  CAS  Google Scholar 

  19. Navis GJ, de Jong PE, Donker AJM, et al. Diuretic effects of ACE-inhibition: comparison of low and liberal sodium diet in hypertensive patients. J Cardiovasc Pharmacol 1987; 9: 743–8

    PubMed  CAS  Google Scholar 

  20. Heeg JE, de Jong PE, van der Hem GK, et al. Efficacy and variability of the antiproteinuric effect of ACE inhibition by lisinopril. Kidney Int 1989; 36: 272–9

    PubMed  CAS  Google Scholar 

  21. Hollenberg NK, Meggs LG, Williams GH, et al. Sodium intake and renal responses to Captopril in normal man and in essential hypertension. Kidney Int 1981; 20: 240–5

    PubMed  CAS  Google Scholar 

  22. Navis GJ, de Jong PE, Donker AJM, et al. Moderate sodium restriction in hypertensive subjects: renal effects of ACE-inhibition. Kidney Int 1987; 31: 815–9

    PubMed  CAS  Google Scholar 

  23. Veterans Administration Cooperative Study Group on Antihypertensive Agents. Low dose Captopril for the treatment of mild to moderate hypertension. Arch Intern Med 1984; 144: 1947–53

    Google Scholar 

  24. Ruilope LM, Lahera V, Alcazar JM, et al. Randomly allocated study of the effects of standard therapy versus ACE inhibition on micro-albuminuria in essential hypertension. J Hypertens 1994; 12(4) Suppl.: 59S–63S

    Google Scholar 

  25. Madhaven S, Stockwell D, Cohen H, et al. Renal function during antihypertensive treatment. Lancet 1995; 345: 749–51

    Google Scholar 

  26. Himmelmann A, Hansson L, Hanson B-G, et al. ACE-inhibition preserves renal function better than beta-blockade in the treatment of essential hypertension. Blood Press 1995; 4: 85–90

    PubMed  CAS  Google Scholar 

  27. Himmelmann A, Hansson L, Hansson B-G, et al. Superior renal preservation with an ACE-inhibitor in essential hypertension: a transient effect? [abstract] Proceedings of the 7th European Meeting on Hypertension; 1995 June 9–12; Milan, 81

  28. Bravo EL, Tarazi RC. Efficacy of an orally active converting enzyme inhibitor (SQ 14,225) in the treatment of renovascular hypertension (RVH) in man. Kidney Int 1977; 12: 497–50

    Google Scholar 

  29. Derkx FHM, Tan-Tjiong HL, Wenting GJ. Captopril test for diagnosis of renovascular hypertension. In: Glorioso N, Laragh JH, Rapelli A, editors. Renovascular hypertension. New York: Raven Press, 1986: 70–5

    Google Scholar 

  30. Wenting GJ, Derkx FH, Tan-Tjiong LH, et al. Risks of angiotensin converting enzyme inhibition in renal artery stenosis. Kidney Int 1987; 31 Suppl. 20: 180S–183S

    Google Scholar 

  31. Textor SC, Tarazi RC, Novick AC, et al. Regulation of renal hemodynamics and glomerular filtration in patients with renovascular hypertension during converting enzyme inhibition with Captopril. Am J Med 1984; 76: 29–37

    PubMed  CAS  Google Scholar 

  32. Ribstein J, Mourad G, Mimran A. Contrasting acute effects of Captopril and nifedipine on renal function in renovascular hypertension. Am J Hypertens 1988; 1: 239–44

    PubMed  CAS  Google Scholar 

  33. Silas JH, Klenka A, Solomon SA. Captopril-induced reversible renal failure: a marker of renal artery stenosis affecting a solitary kidney. BMJ 1983; 286: 1702–3

    PubMed  CAS  Google Scholar 

  34. van der Woude FJ, van Son W, Tegzess AM, et al. Effect of Captopril on blood pressure and renal function in patients with transplant renal artery stenosis. Nephron 1985; 39: 184–8

    PubMed  Google Scholar 

  35. Hricik DE, Browning PJ, Kopelman R, et al. Captopril-induced functional renal insufficiency in patients with bilateral renal-artery stenosis or renal artery stenosis in a single kidney. N Engl J Med 1983; 308: 373–6

    PubMed  CAS  Google Scholar 

  36. Durand D, Van Tran T, Ader JL. L’insufficance rénale apres administration de Captopril dans les sténoses de l’artere rénale sur rein unique ou les sténoses bilatérales n’est pas obligatoire. Arch Mal Coeur 1984; 11: 1272–7

    Google Scholar 

  37. Salahudeen AK, Pingle A. Reversibility of captopril-induced renal insufficiency after prolonged use in an unusual case of renovascular hypertension. J Hum Hypertens 1988; 2: 57

    PubMed  CAS  Google Scholar 

  38. Hoefnagels WHL, Thien T. Renal artery occlusion in patients with renovascular hypertension treated with Captopril. BMJ 1986: 292: 24–5

    PubMed  CAS  Google Scholar 

  39. Kremer Hovinga TK, de Jong PE, Piers DA, et al. Diagnostic use of angiotensin converting enzyme inhibitors in radioisotope evaluation of unilateral renal artery stenosis. J Nucl Med 1989; 30: 605–14

    PubMed  CAS  Google Scholar 

  40. Fommei E, Ghione S, Palla L, et al. Renal scintigraphic Captopril test in the diagnosis of renovascular hypertension. Hypertension 1987; 10: 212–20

    PubMed  CAS  Google Scholar 

  41. Visscher CA, de Zeeuw D, Huisman RM. Effect of chronic ACE-inhibition on the diagnostic value of renography for renovascular hypertension; a preliminary report. Nephrol Dial Transplant 1995; 10: 263–5

    PubMed  CAS  Google Scholar 

  42. Buter H, Hemmelder MH, de Zeeuw D, et al. Hydrochlorothiazide potentiates the antiproteinuric efficacy of ACE-inhibition in patients with non-diabetic renal disease. In press

  43. Gansevoort RT, de Zeeuw D, de Jong PE. Additive antiproteinuric effect of ACE inhibition and a low-protein diet in human renal disease. Nephrol Dial Transplant 1995; 10: 497–504

    PubMed  CAS  Google Scholar 

  44. Apperloo AJ, de Zeeuw D, Sluiter HE, et al. Differential effects of enalapril and atenolol on proteinuria and renal haemodynamics in non-diabetic renal disease. BMJ 1991; 303: 821–4

    PubMed  CAS  Google Scholar 

  45. Gansevoort RT, Sluiter WJ, Hemmelder MH, et al. The antiproteinuric effect of blood pressure lowering agents: a metaanalysis of comparative trials. Nephrol Dial Transplant 1995; 10: 1963–74

    PubMed  CAS  Google Scholar 

  46. Gansevoort RT, Heeg JE, Dikkeschei FD, et al. Symptomatic antiproteinuric treatment decreases serum lipoprotein (a) concentration in patients with glomerular proteinuria. Nephrol Dial Transplant 1994; 9: 244–50

    PubMed  CAS  Google Scholar 

  47. Rabelink AJ, Hené R, Erkelens DW, et al. Partial remission of nephrotic syndrome in patients on long-term simvastatin. Lancet 1990; 335: 1045–6

    PubMed  CAS  Google Scholar 

  48. Keane WF, Kasiske BL, O’Donneil MP. Hyperlipidemia and the progression of chronic renal disease. Am J Clin Nutr 1988; 47: 157–60

    PubMed  CAS  Google Scholar 

  49. Apperloo AJ, Zeeuw D de, de Jong PE. Short-term antiproteinuric response to antihypertensive treatment predicts long-term GFR decline in patients with non-diabetic renal disease. Kidney Int 1994; 45 Suppl.: 174S–178S

    Google Scholar 

  50. Gansevoort RT, de Zeeuw D, de Jong PE. Long-term benefits of the anti-proteinuric effect of ACE-inhibition in non-diabetic renal disease. Am J Kidney Dis 1993; 2: 202–6

    Google Scholar 

  51. Remuzzi G, Bertani T. Is glomerulosclerosis a consequence of altered glomerular permeability to macromolecules? Kidney Int 1990; 38: 384–94

    PubMed  CAS  Google Scholar 

  52. de Jong PE, Anderson S, de Zeeuw D. Glomerular preload and afterload reduction as a tool to lower urinary protein leakage: will such treatments also help to improve renal function outcome? J Am Soc Nephrol 1993; 3: 1333–41

    PubMed  Google Scholar 

  53. de Jong PE, Heeg JE, Apperloo AJ, et al. The antiproteinuric effect of blood-pressure lowering agents: differences between diabetics and non-diabetics. J Cardiovasc Pharmacol 1992; 19:Suppl. 6: 28S–32S

    Google Scholar 

  54. Apperloo AJ, de Zeeuw D, de Jong PE. A short-term antihypertensive treatment-induced fall in glomerular filtration rate reflects long-term renal progression. Kidney Int 1994: 45; 174–8

    Google Scholar 

  55. Heeg JE, de Jong PE, Vriesendorp R, et al. Additive antiproteinuric effect of the NSAID indomethacin and the ACE inhibitor lisinopril. Am J Nephrol 1990; 10 Suppl. 1: 94–7

    PubMed  Google Scholar 

  56. Mann JFE, Resich C, Ritz E. Use of angiotensin-converting enzyme inhibitors for the preservation of kidney function: a retrospective study. Nephron 1990; 55 Suppl.: 38–42

    PubMed  Google Scholar 

  57. Kamper A-L, Strandgaard S, Leyssac PP. Late outcome of a controlled trial of enalapril treatment in progressive chronic renal failure: hard end-points and influence of proteinuria. Nephrol Dial Transplant 1995; 10: 1182–88

    PubMed  CAS  Google Scholar 

  58. Hannedouche T, Landais P, Goldfarb B, et al. Randomised controlled trial of enalapril and beta-blockers in non-diabetic chronic renal failure. BMJ 1994; 309: 833–7

    PubMed  CAS  Google Scholar 

  59. Zucchelli P, Zuccala A, Gaggi R. Comparison of the effects of ACE-inhibitors and calcium channel blockers on the progression of renal failure. Nephrol Dial Transplant 1995; 10 Suppl. 9: 46–51

    PubMed  Google Scholar 

  60. van Essen GG, Rensma PL, de Zeeuw D, et al. Association between angiotensin-converting-enzyme gene polymorphism and failure of renoprotective therapy. Lancet 1996; 347: 94–5

    PubMed  Google Scholar 

  61. Cambien F, Poirier O, Lecerf L, et al. Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature 1992; 359: 641–4

    PubMed  CAS  Google Scholar 

  62. Rigat B, Hubert C, Alhenc-Gelas F, et al. An insertion/deletion polymorphism in the angiotensin-I converting enzyme gene accounting for half of the variance in serum enzyme levels. J Clin Invest 1990; 86: 1343–6

    PubMed  CAS  Google Scholar 

  63. Yoshida H, Mitarai T, Kawamura T, et al. Role of the deletion polymorphism of the angiotensin converting enzyme gene in the progression and therapeutic responsiveness of IgA nephropathy. J Clin Invest 1995; 96: 2162–9

    PubMed  CAS  Google Scholar 

  64. van der Kleij FHG, Navis GJ, Scheffer H, et al. ACE genotype does not determine short-term renal response to ACE inhibition in proteinuric patients. Nephrol Dial Transplant. In press

  65. Chapman AB, Gabow PA, Schrier RW. Reversible renal failure associated with angiotensin-converting enzyme inhibitors in polycystic kidney disease. Ann Intern Med 1991; 115: 769–73

    PubMed  CAS  Google Scholar 

  66. Toto RD, Mitchell HC, Lee H-C, et al. Reversible renal failure due to angiotensin converting enzyme inhibitors in hypertensive nephrosclerosis. Ann Intern Med 1991; 115: 513–9

    PubMed  CAS  Google Scholar 

  67. Nath KA, Crumbley AJ, Murray BM, et al. Captopril and renal insufficiency. N Engl J Med 1983; 309: 666

    Google Scholar 

  68. Hené RJ, Boer P, Koomans HA, et al. Plasma aldosterone concentrations in chronic renal disease. Kidney Int 1092; 21: 98–101

    Google Scholar 

  69. Textor SC, Bravo EL, Fouad FM. Hyperkalemia in azotemic patients during angiotensin-converting enzyme inhibition and aldosterone reduction with Captopril. Am J Med 1982; 73: 719–25

    PubMed  CAS  Google Scholar 

  70. Ravid M, Savin H, Jutrin Y, et al. Long-term stabilizing effect of angiotensin-converting enzyme inhibition on plasma creatinine and on proteinuria in normotensive type II diabetic patients. Ann Intern Med 1993; 118: 577–81

    PubMed  CAS  Google Scholar 

  71. Björck S, Nyberg G, Mulec H, et al. Beneficial effects of angiotensin converting enzyme inhibition on renal function in patients with diabetic nephropathy. BMJ 1986; 293: 467–70

    Google Scholar 

  72. Björck S, Mulec H, Johnsen SA, et al. Renal protective effects of enalapril in diabetic nephropathy. BMJ 1992; 304: 339–43

    PubMed  Google Scholar 

  73. Ravid M, Neumann L, Lishner M. Plasma lipids and the progression of nephropathy in diabetes mellitus type II: effects of ACE-inhibitors. Kidney Int 1995; 47: 907–10

    PubMed  CAS  Google Scholar 

  74. Mulec H, Johnson SA, Wiklund O, et al. Cholesterol as a renal risk factor in diabetic nephropathy. Am J Kidney Dis 1993; 22: 193–201

    Google Scholar 

  75. Parving HH, Andersen AR, Smidt UM, et al. Effect of antihypertensive treatment on kidney function in diabetic nephropathy. BMJ 1987; 294: 1443–7

    PubMed  CAS  Google Scholar 

  76. Lewis EJ, Hunsicker LG, Bain RP, et al. The effect of angiotensin converting enzyme inhibition on diabetic nephropathy. N Engl J Med 1993; 329: 1456–62

    PubMed  CAS  Google Scholar 

  77. Kasiske B, Kalil RSN, Ma JZ, et al. Effect of antihypertensive therapy on the kidney in patients with diabetes: a meta-regression analysis. Ann Intern Med 1993; 118: 129–38

    PubMed  CAS  Google Scholar 

  78. Anderson S, Rennke HG, Garcia DL, et al. Short and long term effects of antihypertensive therapy in the rat. Kidney Int 1989; 36: 526–36

    PubMed  CAS  Google Scholar 

  79. Viberti GC, Mogensen CE, Groop LC, et al. Effect of Captopril on progression to clinical proteinuria in patients with insulin-dependent diabetes mellitus and microalbuminuria. JAMA 1994; 271: 275–9

    PubMed  CAS  Google Scholar 

  80. Mathiesen ER, Hommel E, Giese J, et al. Efficacy of Captopril in postponing nephropathy in normotensive insulin dependent diabetic patients with microalbuminuria. BMJ 1991; 303: 81–7

    PubMed  CAS  Google Scholar 

  81. Ravid M, Lang R, Rachmani R, et al. Long-term renoprotective effect of angiotensin-converting enzyme inhibition in non-insulin-dependent diabetes mellitus: a 7-year follow-up. Arch Intern Med 1996; 156: 286–9

    PubMed  CAS  Google Scholar 

  82. Lebovitz HE, Wiegmann TB, Cnaan A, et al. Renal protective effects of enalapril in hypertensive NIDDM: role of baseline albuminuria. Kidney Int 1994; 45 Suppl. 45: 150S–55S

    Google Scholar 

  83. Mogensen CE, Keane WF, Bennett PH, et al. Prevention of diabetic renal disease with special reference to microalbuminuria. Lancet 1995; 346: 1080–4.

    PubMed  CAS  Google Scholar 

  84. Tuck ML, Mayes DM. Mineralocorticoid biosynthesis in patients with hyporeninemic hypoaldosteronism. J Clin Endocrinol Metab 1980; 50: 341–7

    PubMed  CAS  Google Scholar 

  85. Schambelan M, Sebastian A, Biglieri EG. Prevalence, pathogenesis and functional significance of aldosterone deficiency in hyperkalemic patients with chronic renal insufficiency. Kidney Int 1980: 17; 89–101

    PubMed  CAS  Google Scholar 

  86. Toto RD. Renal insuffiency due to angiotensin-converting enzyme inhibitors. Miner Electrolyte Metab 1994; 20: 193–200

    PubMed  CAS  Google Scholar 

  87. SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 1991; 325: 293–7

    Google Scholar 

  88. Kubo S, Nishioka A, Nishimura H, et al. Effects of Captopril on arterial and venous pressure, renal function, and humoral factors in severe chronic congestive heart failure. Clin Pharmacol Ther 1984; 36: 456–63

    PubMed  CAS  Google Scholar 

  89. Gavras I, Gavras H. Captopril and enalapril. Ann Intern Med 1983; 94: 58–9

    Google Scholar 

  90. Packer M, Lee WH, Medina N, et al. Functional renal insufficiency during long-term therapy with Captopril and enalapril in severe chronic heart failure. Ann Intern Med 1987; 106: 346–54

    PubMed  CAS  Google Scholar 

  91. Dzau VJ, Hollenberg NK. Renal response to Captopril in severe heart failure: role of furosemide in natriuresis and reversal of hyponatremia. Ann Intern Med 1984; 100: 777–82

    PubMed  CAS  Google Scholar 

  92. Hoorntje SJ, Kallenberg CGM, Weening JJ, et al. Immune-complex glomerulopathy in patients treated with Captopril. Lancet 1980; I: 1212–4

    Google Scholar 

  93. Smith WR, Neill J, Cushman WC, et al. Captopril-associated acute interstitial nephritis. Am J Nephrol 1989; 9: 230–5

    PubMed  CAS  Google Scholar 

  94. Murphy BF, Whitworth JA, Kincaid-Smith P. Renal insufficiency with combinations of angiotensin converting enzyme inhibitors and diuretics. BMJ 1984; 288: 844–5

    PubMed  CAS  Google Scholar 

  95. DiBianco R. Adverse reactions with angiotensin converting enzyme (ACE) inhibitors. Medical Toxicol 1986; 1: 122–41

    CAS  Google Scholar 

  96. Shionoiri H. Pharmacokinetic drug interactions with ACE-inhibitors. Clin Pharmacokinet 1993; 25: 20–58

    PubMed  CAS  Google Scholar 

  97. Murray MD, Brater DC. Renal toxicity of the non-steroidal anti-inflammatory drugs. Annu Rev Toxicol 1993; 435–65

    Google Scholar 

  98. Covi G, Minuz P, Capuzzo G, et al. Reduction in the antihypertensive effect of Captopril induced by prostaglandin synthetase inhibition. Int J Clin Pharmacol Res 1984; 4: 47–52

    PubMed  CAS  Google Scholar 

  99. Dzau VJ, Packer M, Lilly LS, et al. Prostaglandins in severe heart failure. N Engl J Med 1984; 310: 347–52

    PubMed  CAS  Google Scholar 

  100. Heerdink ER, Leufkens HG, Herings RM, et al. NSAIDS increase the risk of congestive heart failure in elderly patients on diuretics. In press

  101. Leonetti G, Cuspidi C. Choosing the right ACE inhibitor: a guide to selection. Drugs 1995; 49: 516–35

    PubMed  CAS  Google Scholar 

  102. Carter BL. Dosing of antihypertensive medications in patients with renal insufficiency. J Clin Pharmacol 1995; 35: 81–6

    PubMed  CAS  Google Scholar 

  103. Demeillers B, Jover B, Mimran A. Renal function in one kidney, one clip sodium-restricted rats: influence of enalapril and losartan. J Hypertens 1995; 13: 1764–6

    Google Scholar 

  104. Kohara K, Mikami H, Okuda N, et al. Angiotensin blockade and the progression of renal damage in the spontaneously hypertensive rats. Hypertension 1993; 21: 975–9

    PubMed  CAS  Google Scholar 

  105. Anderson S, Jung FF, Ingelfinger JR. Renal renin-angiotensin system in diabetes: functional, immunohistochemical, and molecular biological considerations. Am J Physiol 1993; 265: F477–86

    PubMed  CAS  Google Scholar 

  106. Hutchinson FN, Webster SK. Effect of Ang II receptor antagonist on albuminuria and renal function in passive Heymann nephritis. Am J Physiol 1992; 263: F311–F318

    PubMed  CAS  Google Scholar 

  107. Tanaka R, Kon V, Yoshioka T, et al. Angiotensin converting enzyme inhibitor modulates glomerular function and structure by distinct mechanisms. Kidney Int 1994; 43: 537–42

    Google Scholar 

  108. Gansevoort RT, de Zeeuw D, de Jong PE. Is the antiproteinuric effect of ACE-inhibition mediated by interference with the renin-angiotensin system? Kidney Int 1994; 45: 861–7

    PubMed  CAS  Google Scholar 

  109. Johnston CI. Angiotensin receptor antagonists: focus on losartan. Lancet 1995; 346: 1403–7

    PubMed  CAS  Google Scholar 

  110. Stoll M, Steckelings UM, Paul M, et al. The angiotensin II AT2 receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest 1995; 95: 651–7

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul E. de Jong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navis, G., Faber, H.J., de Zeeuw, D. et al. ACE Inhibitors and the Kidney. Drug-Safety 15, 200–211 (1996). https://doi.org/10.2165/00002018-199615030-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-199615030-00005

Keywords

Navigation