Skip to main content
Log in

Clinical Pharmacokinetics of Antithyroid Drugs

  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Organic antithyroid drugs used today include propylthiouracil and the mercaptoimidazolines, carbimazole and methimazole. They can be measured with accuracy and in small quantities in serum by gas-liquid chromatography, high performance liquid chromatography and radio-immunaassay. Bioavailability of these drugs varies from 80 to 95%. During absorption carbimazole, which itself is inactive, is completely converted to methimazole. The total volume of distribution is about 40L for methimazole and around 30L for propylthiouracil, which is about 80% protein-bound, while methimazole is virtually non-protein-bound. Drug transfer across the placenta and into breast milk is also higher for the more lipid-soluble methimazole than for propylthiouracil, which is excreted into breast milk only in small quantities so that no harmful effect to the suckling infant is to be expected. Both drugs are concentrated in the thyroid gland, exerting an effect on intrathyroidal iodine metabolism for periods exceeding those in which serum concentrations can be measured.

Less than 10% of both drugs is excreted unchanged in the urine, but detailed metabolic pathways are unknown. The half-life of methimazole is 3 to 5 hours with a total clearance of about 200ml/minute. Propylthiouracil has a half-life of 1 to 2 hours with a clearance of around 120ml/min/m2. Some studies have shown an increased rate of metabolism of antithyroid drugs in hyperthyroidism, in particular for methimazole. No reliable information exists regarding pharmacokinetics of these agents in renal and hepatic failure or in children. The clearance of propylthiouracil is unchanged in the elderly. Several mechanisms for the inhibiting effect of these agents on intrathyroidal hormone metabolism have been suggested. In contrast to methimazole, propylthiouracil inhibits the peripheral conversion of thyroxine to tri-iodothyronine. Preliminary dose-response studies with propylthiouracil suggest a peak therapeutic serum concentration of above 4μg/ml in the treatment of thyrotoxicosis.

The choice between the antithyroid drugs is based more upon personal preference and experience than on strict pharmacological principles, as no important differences exist between these drugs with regard to the rate of remission or frequency of occurrence of serious adverse reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abuid, J. and Larsen, P.R.: Triiodothyronine and thyroxine in hyperthyroidism. Journal of Clinical Investigation 54: 201–208 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Alexander, W.E.; Evans, V.; MacAulay, A.; Gallagher, T.F. and Londono, J.: Metabolism of 35 S-labelled antithyroid drugs in man. British Journal of Medicine 2: 290–291 (1969).

    Article  CAS  Google Scholar 

  • Astwood, E.B.: Treatment of hyperthyroidism with thiourea and thiouracil. Journal of American Medical Association 122: 78–81 (1943).

    Article  CAS  Google Scholar 

  • Astwood, E.B.: Chemotherapy of hyperthyroidism. Harvey Lectures Series XL: 195–235 (1944–45).

    Google Scholar 

  • Astwood, E.B. and VanderLaan, W.P.: Thiouracil derivatives of greater activity for the treatment of hyperthyroidism. Journal of Clinical Endocrinology 5: 424–430 (1945).

    Article  CAS  Google Scholar 

  • Astwood, E.B. and VanderLaan, W.P.: Treatment of hyperthyroidism with propylthiouracil. Annals of Internal Medicine 25: 813–821 (1946).

    PubMed  CAS  Google Scholar 

  • Astwood, E.B.; Sullivan, J.; Bissel, A. and Tyslowitz, R.: Action of certain sulfonamides and of thiourea upon the function of the thyroid gland of the rat. Endocrinology 32: 210–225 (1943).

    Article  CAS  Google Scholar 

  • Astwood, E.B.; Bissel, L.A. and Hughes, A.M.: Further studies on the chemical nature of compounds which inhibit the function of the thyroid gland. Endocrinology 37: 456–481 (1945).

    Article  PubMed  CAS  Google Scholar 

  • Aungst, B.J.; Vesell, E.S.; Shipiro, J.R.: Unusual characteristics of the dose-dependent uptake of propylthiouracil by thyroid gland in vivo. Biochemical Pharmacology 28: 1479–1484 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Balzer, J.; Lartz, H.G. and Van Zwieten, P.A.: Serum Spiegel und urinausscheidung von 14C-thiamazol bei Patienten mit Schild-drüsenüberfunktion. Deutsche Medizinische Wochenschrift 100: 548–552 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Barnes, H.V.: Treatment of hyperthyroidism in children and adolescents; in Hershman and Bray (Eds) The Thyroid, pp.281–299 (Pergamon, Oxford 1979).

    Google Scholar 

  • Bending, M.R. and Stevenson, D.: Measurement of methimazole in human plasma using gas-liquid chromatography. Journal of Chromatography 154: 267–271 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Braverman, L.E.: Thyrotoxicosis: therapeutic considerations. Clinics in Endocrinology and Metabolism 7: 221–240 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Biirgi, H.; Vimpfheimer, C.; Burger, A.; Zaunbauer, W.; Rosier, H. and Lamarchand-Beraud, T.: Changes of circulatory thyroxine, triiodothyronine and reverse triiodothyronine after radiographic contrast agents. Journal of Clinical Endocrinology and Metabolism 43: 1203–1210 (1976).

    Article  Google Scholar 

  • Burrow, G.N.: Hyperthyroidism during pregnancy. New England Journal of Medicine 298: 150–153 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Cavalieri, R.R.; Sung, L.C. and Becker, C.R.: Effects of phenobarbital on thyroxine and triiodothyronine kinetics in Graves’ disease. Journal of Clinical Endocrinology and Metabolism 37: 308–316 (1973).

    Article  Google Scholar 

  • Cavalieri, R.R.; Gavin, L.A.; Bui, F.; McMahon, F. and Hammond, M.: Conversion of thyroxine to 3,3′,5′-triiodothyronine (reverse-T3) by a soluble enzyme system of rat liver. Biochemical and Biophysical Research Communications 79: 897–902 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Cheron, R.G.; Kaplan, M.M.; Larsen, P.R.; Selenkow, H.A. and Crigler, J.F.: Neonatal thyroid function after propylthiouracil therapy for maternal Graves’ disease. New England Journal of Medicine 304: 525–528 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Chopra, I.J.; Wu, S.Y.; Nakamura, Y. and Solomon, D.H.: Monodeiodination of 3,5,3′-triodothyronine and 3,3′5′,-triodothyronine to 3,3′-diiodothyronine in vitro. Endocrinology 102: 1099–1106 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Christensen, H.N.: Analytical determination and some properties of several thyroid-inhibiting compounds and of substances related to them. Journal of Biological Chemistry 162: 27–35 (1945).

    Google Scholar 

  • Collen, R.J.; Landaw, E.M.; Kaplan, S.A. and Lippe, B.M.: Remission rates of children and adolescents with thyrotoxicosis treated with antithyroid drugs. Pediatrics 65: 550–556 (1980).

    PubMed  CAS  Google Scholar 

  • Cooper, D.S.; Saxe, V.C.; Maloof, F. and Ridgway, E.C.: Studies of propylthiouracil using a newly developed radioimmunoassay. Journal of Clinical Endocrinology and Metabolism 52: 204–213 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Crooks, J.; Hedley, A.J.; McNee, C. and Stevenson, I.H.: Changes in drug metabolizing ability in thyroid disease. British Journal of Pharmacology 49: 156P–157P (1973).

    Google Scholar 

  • Crooks, J.; O’Malley, K. and Stevenson, I.H.: Pharmacokinetics in the elderly. Clinical Pharmacokinetics 1: 280–296 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Croxson, M.S.; Hall, T.D. and Nicoloff, J.T.: Combination drug therapy for treatment of hyperthyroid Graves’ disease. Journal of Clinical Endocrinology and Metabolism 45: 623–630 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Dahlberg, P.A.; Karlsson, F.A.; Lindström, B. and Wide, L.: Studies of thyroid hormone and methimazole levels in patients with Graves’ disease on a standardized drug regimen. Clinical Endocrinology 14: 555–562 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Dam, M.; Christiansen, J.; Munck, O. and Mygind, K.I.: Anti-epileptic drugs: Metabolism in pregnancy. Clinical Pharmacokinetics 4: 53–62 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Davidson, B.; Soodak, M.; Neary, J.T.; Strout, H.V.; Kieffer, J.D.; Mover, H. and Maloof, F.: The irreversible inactivation of thyroid peroxidase by methylmercaptoimidazole, thiouracil, and propylthiouracil in vitro and its relationship to in vivo findings. Endocrinology 103: 871–882 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Editorial: Beta-blockers in thyrotoxicosis. Lancet 1: 184–186 (1980).

  • Eichelbaum, M.: Drug metabolism in thyroid disease. Clinical Pharmacokinetics 1: 339–350 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Eickstedt, K.-W.: Thyroid and antithyroid drugs; in Dukes (Ed) Meyler’s Side Effects of Drugs, 9th ed., pp.695–704 (Excerpta Medica, Amsterdam 1980).

    Google Scholar 

  • Fearon, W.R.: The detection and estimation of uric acid by 2:6-dichloroquinone-chloroimide. Biochemical Journal 38: 399–402 (1944).

    PubMed  CAS  Google Scholar 

  • Floberg, S.; Lanbeck, K. and Lindström, B.: Determination of methimazole in plasma using gas chromatography-mass spectrometry after extractive alkylation. Journal of Chromatography 182: 63–70 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Francis, G.L. and Rennert, O.M.: Correlation of plasma propylthiouracil levels with inhibition of thyroid hormone synthesis in the rat. Metabolism 29: 410–414 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Freiesleben, E. and Kjerulf-Jensen, K.: Effect of 6-methyl-2-thiouracil on rat foetuses and infantile rats. Acta Pharmacologica 2: 307–316 (1946).

    Article  CAS  Google Scholar 

  • Gardner, D.F.; Rothman, J. and Utiger, R.D.: Serum thyroglobulin in normal subjects and patients with hyperthyroidism due to Graves’ disease: Effects of T3, iodide, 131I and antithyroid drugs. Clinical Endocrinology 11: 585–596 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Geffner, D.L.; Azukiazawa, M. and Hershman, J.M.: Propylthiouracil blocks extrathyroidal conversion of thyroxine to triiodothyronine and augments thyrotropin secretion in man. Journal of Clinical Investigation 55: 224–229 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Giles, H.G.; Miller, R. and Sellers, E.M.: High-performance liquid Chromatographic determination of plasma propylthiouracil. Journal of Pharmaceutical Sciences 68: 1459–1460 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Greer, M.A.; Meihoff, W.C. and Studer, H.: Treatment of hyperthyroidism with a single daily dose of propylthiouracil. New England Journal of Medicine 272: 888–891 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Greer, M.A.; Kammer, H. and Bouma, D.J.: Short-term antithyroid drug therapy for the thyrotoxicosis of Graves’ disease. New England Journal of Medicine 297: 173–176 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Grote, I.W.: A new colour reaction for soluble organic sulfur compounds. Journal of Biological Chemistry 93: 25–30 (1931).

    CAS  Google Scholar 

  • Gwinup, G.: Prospective randomized comparison of propylthiouracil. Journal of the American Medical Association 239: 2457–2459 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Hallengren, B.; Forsgren, A. and Melander, A.: Effects of anti-thyroid drugs on lymphocyte function in vitro. Journal of Clinical Endocrinology and Metabolism 51: 298–301 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Havard, C.W.H.: The management of thyrotoxicosis. British Journal of Hospital Medicine 11: 893–908 (1974).

    Google Scholar 

  • Hays, M.T.: Kinetics of the human thyroid trap: Effects of iodide, thyrotropin, and propylthiouracil. Journal of Nuclear Medicine 20: 944–949 (1979).

    PubMed  CAS  Google Scholar 

  • Ibbertson, H.K.; Seddon, R.J. and Croxson, M.S.: Fetal hypo-thyroidism complicating medical treatment of thyrotoxicosis in pregnancy. Clinical Endocrinology 4: 521–523 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Irvine, W.J. and Toft, A.D.: The diagnosis and treatment of thyrotoxicosis. Clinical Endocrinology 5: 687–707 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Jackson, G.L.; Flickinger, F.W. and Wells, L.W.: Massive over-dosage of propylthiouracil. Annals of Internal Medicine 91: 418–419 (1979).

    PubMed  CAS  Google Scholar 

  • Jenkins, P.F. and Knapp, M.S.: Carbimazole in respiratory failure. British Medical Journal 1: 719–720 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Johansen, K.; Nyboe Andersen, A.; Kampmann, J.P.; Mølholm Hansen, J.E. and Mortensen, H.B.: Excretion of methimazole in human milk. European Journal of Clinical Investigations. Submitted for publication (1981).

  • Jørgensen, P.H.; Kampmann, J.P. and M\/olholm Hansen, J.E.: The influence of propylthiouracil on iodine contaminated patients with Graves’ disease. Ugeskrift für Laeger. Submitted for publication (1981).

  • Kammer, H. and Srinivasan, K.: The use of antithyroid drugs in a single daily dose. Journal of the American Medical Association 209: 1325–1327 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Kampmann, J.P.: Pharmacokinetics of propylthiouracil in man after intravenous infusion. Journal of Pharmacokinetics and Biopharmaceutics 5: 435–443 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Kampmann, J.P. and Mølholm Hansen, J.E.: Correlation between antithyroid effect and serum concentrations of propylthiouracil in patients with hyperthyroidism. British Journal of Clinical Pharmacology 12: In press (1981).

  • Kampmann, J. and Skovsted, L.: The pharmacokinetics of propylthiouracil. Acta Pharmacologica et Toxicologica 35: 361–369 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Kampmann, J. and Skovsted, L.: The kinetics of propylthiouracil in hyperthyroidism. Acta Pharmacologica et Toxicologica 37: 201–210 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Kampmann, J.; Skovsted, L. and Lund, B.: The kinetics of propylthiouracil in euthyroid and hyperthyroid subjects (abstr.). Endocrinologia Experimentalis 8: 215–216 (1974).

    Google Scholar 

  • Kampmann, J.P.; Mortensen, H.B.; Bach, B.; Waldorff, S.; Kristensen, M.B. and Mølholm Hansen, J.E.: Kinetics of propylthiouracil in the elderly. Acta Medica Scandinavica 624 (Suppl.): 93–98 (1979).

    PubMed  CAS  Google Scholar 

  • Kampmann, J.P.; Johansen, K.; Mølholm Hansen, J.E. and Helweg, J.: Propylthiouracil in human milk — revision of adogma. Lancet 1: 736–738 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Kuzuya, N.; Chiu, S.C.; Ikeda, H.; Uchimura, H.; Ito, K. and Nagataki, S.: Correlation between thyroid stimulation and 3,5,3′-triiodothyronine suppressibility in patients during treatment for hyperthyroidism with thionamide drugs: Comparison of assays by thyroid-stimulating and thyrotropin-displacing activities. Journal of Clinical Endocrinology and Metabolism 48: 706–711 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Lam, D.C. and Lindsay, R.H.: Accumulation of 2-(14C) propylthiouracil in human polymorphonuclear leucocytes. Biochemical Pharmacology 28: 2289–2296 (1979a).

    Article  PubMed  CAS  Google Scholar 

  • Lam, D.C.G. and Lindsay, R.H.: Oxidation and binding of (2-14C) propylthiouracil in human polymorphonuclear leucocytes. Drug Metabolism and Disposition 7: 285–289 (1979b).

    PubMed  CAS  Google Scholar 

  • Lamberg, B.A.; Ikonen, E.; Teramo, K.; Osterlund, K.; Mäkinen, T. and Pekonen, F.: Treatment of maternal hyperthyroidism with antithyroid agents and changes in the newborn. Acta Endocrinologica 97: 186–195 (1981).

    PubMed  CAS  Google Scholar 

  • Langer, P. and Greer, M.A.: Antithyroid Substances and Naturally Occurring Goitrogens (Karger, Basel 1977).

    Google Scholar 

  • Laurberg, P. and Weeke, J.: Opposite variations in serum T3 and reverse T3 during propylthiouracil treatment of thyrotoxicosis. Acta Endocrinologica 87: 88–94 (1978).

    PubMed  CAS  Google Scholar 

  • Laurberg, P. and Weeke, J.: Dynamics of inhibition of iodothyronine deiodination during propylthiouracil treatment of thyrotoxicosis. Hormone and Metabolic Research 13: 289–292 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Lawson, A.C.; Rimington, A.C. and Searle, C.E.: Antithyroid activity of 2-carbethoxythio-1-methylglyoxaline. Lancet 2: 619–621 (1951).

    Article  PubMed  CAS  Google Scholar 

  • Lazarus, J.H.; Marchant, B.; Alexander, W.D. and Clark, D.H.: Metabolism of S35-labelled antithyroid drugs in thyrotoxic, adenomatous, neoplastic and normal human thyroid (abstr). Israel Journal of Medical Sciences 8: 43 (1972).

    Google Scholar 

  • Lazarus, J.H.; Marchant, B.; Alexander, W.D. and Clark, D.H.: 35S-antithyroid drug concentration and organic binding of iodine in the human thyroid. Clinical Endocrinology 4: 609–615 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Lee, P.W. and Neal, R.A.: Metabolism of methimazole by rat liver cytochrome P-450-containing monoxygenases. Drug Metabolism and Disposition 6: 591–600 (1978).

    PubMed  CAS  Google Scholar 

  • Lees, J.F.H. and Alexander, W.D.: The effect of phenobarbital on the metabolism of methimazole in the rat. Endocrinology 95: 875–881 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Lees, J.F.H. and Alexander, W.D.: Effects of chronic treatment of intact and hypophysectomized rats with thyroid-stimulating hormone on the metabolism of (35S) methimazole and (35S) propylthiouracil. Endocrinology 103: 1394–1400 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Lees, J.F.H.; Alexander, W.D.; Lewis, M. and Evered, D.C.: Role of TSH in the changes in thyroidal metabolism of 35S-methimazole in phenobarbital and thyroxine treated rats. Endocrinology 100: 765–769 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Liberti, P. and Stanbury, J.B.: The pharmacology of substrates affecting the thyroid gland. Annual Review of Pharmacology 11: 113–142 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Lindsay, R.H.; Hulsey, B.S. and Aboul-Enein, H.Y.: Enzymatic S-methylation of 6-n-propyl-2-thiouracil and other antithyroid drugs. Biochemical Pharmacology 24: 463–468 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Lindsay, R.H.; Kelly, K. and Hill, J.B.: Oxidative metabolites of (2-14C) propylthiouracil in rat thyroid. Endocrinology 104: 1686–1697 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Lindstedt, G.; Nilsson, L.A.; Walinder, J.; Skott, A. and Ohman, R.: On the prevalence, diagnosis and management of lithium-induced hypothyroidism in psychiatric patients. British Journal of Psychiatry 130: 452–460 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Low, L.; Lang, J. and Alexander, W.D.: Antithyroid drugs in human milk. Annales d’Endocrinologie 40: 52A (1979).

    Google Scholar 

  • Lumholtz, I.B.; Loldrup Poulsen, D.; Siersbaek-Nielsen, K.; Friis, Th.; Rogowski, P.; Kirkegaard, C. and Mølholm Hansen, J.: Outcome of long term antithyroid treatment of Graves’ disease in relation to iodine intake. Acta Endocrinologica 84: 538–541 (1977).

    PubMed  CAS  Google Scholar 

  • McAllister, R.A.: A new colour reaction for methylthiouracil. Nature 766: 789 (1950).

    Article  Google Scholar 

  • McAllister, R.A.: Colour reaction for certain mercaptoimidazoles. Nature 167: 803 (1951a).

    Article  Google Scholar 

  • McAllister, R.A.: A colorimetric method for the determination of 1-methyl-2-mercaptoimidazole. Journal of Pharmacy and Pharmacology 3: 506–510 (1951b).

    Article  PubMed  CAS  Google Scholar 

  • McAllister, R.A.: The determination of propylthiouracil in urine with 2:6-dichloro-quinone-chlorimide. Journal of Clinical Pathology 4: 432–438 (1952).

    Article  Google Scholar 

  • Maddrey, W.C.: Propylthiouracil treatment of alcoholic hepatitis. Gastroenterology 76: 218–219 (1979).

    PubMed  CAS  Google Scholar 

  • Maloof, F. and Soodak, M.: Intermediary metabolism of thyroid tissue and the action of drugs. Pharmacological Review 15: 43–95 (1963).

    CAS  Google Scholar 

  • Marchant, B.: The metabolism of 35S-labelled antithyroid drugs (Ph.D. Thesis, University of Glasgow); cited in Hershman and Bray (Eds) The Thyroid (Pergamon, Oxford 1979).

    Google Scholar 

  • Marchant, B.; Alexander, W.D.; Lazarus, J.H.; Lees, J. and Clark, D.H.: The accumulation of 35S-antithyroid drugs by the thyroid gland. Journal of Clinical Endocrinology 34: 847–851 (1972).

    Article  CAS  Google Scholar 

  • Marchant, B.; Alexander, W.D.; Robertson, J.W.K. and Lazarus, J.H.: Concentration of 35S-propylthiouracil by the thyroid gland and its relationship to anion trapping mechanism. Metabolism 20: 989–999 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Marchant, B.; Brownlie, B.E.W.; McKay Hart, D.; Horton, P.W. and Alexander, W.D.: The placental transfer of propylthiouracil, methimazole and carbimazole. Journal of Clinical Endocrinology and Metabolism 45: 1187–1193 (1977).

    Article  PubMed  CAS  Google Scholar 

  • McGinty, D.A.; Sharp, E.A.; Dill, W.A. and Rawson, R.W.: Excretion studies on thiouracil and its 6-benzyl, 6-n-propyl and 6-methyl-derivatives in man. Journal of Clinical Endocrinology and Metabolism 8: 1043–1050 (1948).

    Article  PubMed  CAS  Google Scholar 

  • McGregor, A.M.; Petersen, M.M.; McLachlan, S.M.; Rooke, P.; Rees Smith, B. and Hall, R.: Carbimazole and the autoimmune response in Graves’ disease. New England Journal of Medicine 303: 302–307 (1980a).

    Article  PubMed  CAS  Google Scholar 

  • McGregor, A.M.; Rees Smith, B.; Hall, R.; Petersen, M.M.; Miller, M. and Dewar, P.J.: Prediction of relapse in hyper-thyroid Graves’ disease. Lancet 1: 1101–1103 (1980b).

    Article  PubMed  CAS  Google Scholar 

  • McKenzie, C.G. and McKenzie, J.B.: Effect of sulfonamides and thioureas on the thyroid gland and basal metabolism. Endocrinology 32: 185–209 (1943).

    Article  Google Scholar 

  • McKenzie, J.B.; McKenzie, C.G. and McCollum, E.V.: The effect of sulfanilylguanidine on the thyroid of the rat. Science 94: 518–519 (1941).

    Article  Google Scholar 

  • McMurry, J.F.; Gilliland, P.F.; Ratliff, R. and Bourland, P.D.: Pharmacodynamics of propylthiouracil in normal and hyperthyroid subjects after a single oral dose. Journal of Clinical Endocrinology and Metabolism 41: 362–364 (1975).

    Article  PubMed  Google Scholar 

  • Melander, A.; Wåhlin, E.; Danielson, K. and Hanson, A.: Bioavailability of propylthiouracil: Interindividual variation and influence of food intake. Acta Medica Scandinavica 201: 41–44 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Melander, A.; Hallengren, B.; Rosendal-Helgesen, S.; Sjöberg, A.K. and Wåhlin-Boll, E.: Comparative in vitro effects and in vivo kinetics of antithyroid drugs. European Journal of Clinical Pharmacology 17: 295–299 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Meulengracht, E. and Schmidt, K.: Treatment of thyrotoxicosis with methylthiouracil. Acta Medica Scandinavica 122: 294–314 (1945).

    Article  PubMed  CAS  Google Scholar 

  • Mølholm Hansen, J.; Skovsted, L.; Birk Lauridsen, U.; Kirkegaard, C. and Siersbaek-Nielsen, K.: The effects of diphenylhydantoin on thyroid function. Journal of Clinical Endocrinology and Metabolism 39: 785–789 (1974).

    Article  Google Scholar 

  • Mølholm Hansen, J.; Skovsted, L.; Kampmann, J.P.; Lumholtz, B.I. and Siersbaek-Nielsen, K.: Unaltered metabolism of phenytoin in thyroid disorders. Acta Pharmacologica et Toxicologica 42: 343–346 (1978).

    Article  PubMed  Google Scholar 

  • Momotani, N.; Ito, K.; Ban, Y.; Mori, H.; Mimura, T. and Nishikawa, Y.: Maternal hyperthyroidism and fetal growth. Abstract 99, 8th International Thyroid Congress, February 3–8: 1980, Sydney, Australia (Australian Academy of Science, Canberra 1980).

    Google Scholar 

  • Monaco, F.; Santolamazza, C.; De Ros, I. and Andreoli, A.: Effects of propylthiouracil and methylmercaptoimidazole on thyroglobulin synthesis. Acta Endocrinol. 93: 32–36 (1980).

    PubMed  CAS  Google Scholar 

  • Morreale de Escobar, G. and Escobar del Rey, F.: Extrathyroid effects of some antithyroid drugs and their metabolic consequences. Recent Progress in Hormone Research 21: 87–137 (1967).

    Google Scholar 

  • Nakashima, T. and Taurog, A.: Rapid conversion of carbimazole to methimazole in serum: Evidence for an enzymatic mechanism. Clinical Endocrinology 10: 637–648 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Nakashima, T.; Taurog, A. and Riesco, G.: Mechanism of action of thioureylene antithyroid drugs: Factors affecting intra-thyroidal metabolism of propylthiouracil and methimazole in rats. Endocrinology 103: 2187–2197 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Oppenheimer, J.H.; Schwartz, H.L. and Surks, M.I.: Propylthiouracil inhibits the conversion of L-thyroxine to L-triiodothyronine. Journal of Clinical Investigation 51: 2493–2497 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Orrego, H.; Carmichael, F.J.; Phillips, M.J.; Kalant, H.; Khanna, J. and Israel, Y.: Protection by propylthiouracil against carbon tetrachloride induced liver damage. Gastroenterology 71: 821–826 (1976).

    PubMed  CAS  Google Scholar 

  • Orrego, H.; Kalant, H.; Israel, Y.; Blake, J.; Medline, A.; Rankin, J.G.; Armstrong, A. and Kapur, B.: Effect of short-term therapy with propylthiouracil in patients with alcoholic liver disease. Gastroenterology 76: 105–115 (1979).

    PubMed  CAS  Google Scholar 

  • Papapetrou, P.D.; Mothon, S. and Alexander, W.D.: Binding of the 35S of 35S-propylthiouracil by follicular thyroglobulin in vivo and in vitro. Acta Endocrinologica 79: 248–258 (1975).

    PubMed  CAS  Google Scholar 

  • Paschkis, K.E.; Cantarow, A.; Rakoff, A.E. and Tillson, E.K.: Thiouracil levels in serum and urine. Journal of Pharmacology and Experimental Therapeutics 83: 270–274 (1945).

    CAS  Google Scholar 

  • Pittman, J.A.; Beschi, R.J. and Smitherman, T.C.: Methimazole: Its absorption and excretion in man and tissue distribution in rate. Journal of Clinical Endocrinology 33: 182–185 (1971).

    Article  CAS  Google Scholar 

  • Ratliff, C.R.; Gilliland, P.F. and Hall, F.F.: Serum propylthiouracil determinations by a direct colorimetric procedure. Clinical Chemistry 18: 1373–1375 (1972).

    PubMed  CAS  Google Scholar 

  • Richter, C.P. and Clisby, K.H.: Toxic effects of bitter-tasting phenylthiocarbamide. Archives of Pathology 33: 46–57 (1942).

    CAS  Google Scholar 

  • Ringhand, H.P.: Bioavailability of propylthiouracil — in vitro, animal and human studies. Thesis, University of Cincinnati, USA (1978).

    Google Scholar 

  • Ringhand, H.P. and Ritschel, W.A.: High-pressure liquid Chromatographic determination of propylthiouracil in human plasma. Journal of Pharmaceutical Science 68: 1461–1463 (1979).

    Article  CAS  Google Scholar 

  • Ringhand, H.P.; Rischel, W.A.; Meyer, M.C.; Straughn, A.B. and Hardt, T.: Pharmacokinetics of propylthiouracil upon po administration in man. International Journal of Clinical Pharmacology 18: 488–493 (1980a).

    CAS  Google Scholar 

  • Ringhand, P.; Maxon, H.R.; Ritschel, W.A.; Chen, I.W. and Bauman, D.H.: Effects of thyroid status and choice of USP preparation on the pharmacokinetics of propylthiouracil in the beagle dog. J. Clin. Pharmacol. 20: 91–97 (1980b).

    PubMed  CAS  Google Scholar 

  • Saberi, M.; Sterling, F.H. and Utiger, R.D.: Reduction in the extrathyroidal triiodothyronine production by propylthiouracil in man. Journal of Clinical Investigation 55: 218–223 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Schimmel, M. and Utiger, R.D.: Thyroidal and peripheral production of thyroid hormones. Review of recent findings and their clinical implications. Annals of Internal Medicine 87: 760–768 (1977).

    PubMed  CAS  Google Scholar 

  • Schuppan, D.; Riegelman, S.; von Lehmann, B.; Pilbrandt, A. and Becker, C.: Preliminary pharmacokinetic studies of propylthiouracil in humans. Journal of Pharmacokinetics and Biopharmaceutics 1: 307–318 (1973).

    Article  CAS  Google Scholar 

  • Searle, C.E.; Lawson, A. and Harley, H.V.: Antithyroid substances. 2. Some mercaptoglyoxalines, mercaptothiazoles and thiohydantoins. Biochemical Journal 49: 125–128 (1951).

    PubMed  CAS  Google Scholar 

  • Serup, J.: Maternal propylthiouracil to manage fetal hyperthyroidism. Lancet 2: 896 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Shimmins, J.; Gillespie, F.C.; Orr, J.S.; Smith, D.A. and Alexander, W.D.: The measurement of enteric absorption rate using a double tracer technique. Advances in the Biosciences 5: 157–167 (1969).

    CAS  Google Scholar 

  • Siersbaek-Nielsen, K.; Kirkegaard, C.; Rogowsky, P.; Faber, J.; Lumholtz, B. and Friis, Th.: Extrathyroidal effects of propylthiouracil and carbimazole on serum T4, T3 and reverse T3 and TRH-induced TSH-release in man. Acta Endocrinologica 87: 80–87 (1978).

    PubMed  CAS  Google Scholar 

  • Sitar, D.S. and Hunninghake, D.E.: Pharmacokinetics of propylthiouracil in man after a single oral dose. Journal of Clinical Endocrinology and Metabolism 40: 26–29 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Sitar, D.S.; Abu-Bakare, A.; Gardiner, R.J. and Ogilvie, R.I.: Effect of chronic therapy with propylthiouracil on its disposition in hyperthyroid patiente. Clinical and Investigative Medicine 2: 93–97 (1979).

    PubMed  CAS  Google Scholar 

  • Skellern, G.G.; Stenlake, J.B.; Williams, W.D. and McLarty, D.G.: Plasma concentrations of methimazole, a metabolite of carbimazole in hyperthyroid patiente. British Journal of Clinical Pharmacology 1: 265–269 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Skellern, G.G.; Knight, B.I. and Stenlake, J.B.: Improved method for the determination of methimazole in plasma by high-performance liquid chromatography. Journal of Chromatography 124: 405–410 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Skellern, G.G.; Knight, B.I.; Luman, F.M.; Stenlake, J.B.; McLarty, D.G. and Hooper, M.J.: Identification of 3-methyl-2-thiohydantoin, a metabolite of carbimazole, in man. Xenobiotica 7: 247–253 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Skellern, G.G.; Knight, B.I.; Low, C.K.L.; Alexander, W.D.; McLarty, D.G. and Kalk, W.J.: The pharmacokinetics of methimazole after oral administration of carbimazole and methimazole in hyperthyroid patiente. British Journal of Clinical Pharmacology 9: 137–143 (1980a).

    Article  PubMed  CAS  Google Scholar 

  • Skellern, G.G., Knight, B.I.; Otter, M.; Low, C.K.L. and Alexander, W.D.: The pharmacokinetics of methimazole in pregnant patiente after oral administration of carbimazole. British Journal of Clinical Pharmacology 9: 145–147 (1980b).

    Article  PubMed  CAS  Google Scholar 

  • Slattery, J.T.; Gibaldi, M. and Koup, J.R.: Prediction of maintenance dose required to attain a desired drug concentration at steady-state from a single determination of concentration after an initial dose. Clinical Pharmacokinetics 5: 377–385 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Slingerland, D.W. and Burrows, B.A.: Long-term antithyroid treatment in hyperthyroidism. Journal of the American Medical Association 242: 2408–2410 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Stanley, M.M. and Astwood, E.B.: 1-methyl-2-mercaptoimidazole: An antithyroid compound highly active in man. Endocrinology 44: 588–589 (1949).

    Article  PubMed  CAS  Google Scholar 

  • Stenlake, J.B.; Williams, W.D. and Skellern, G.G.: Development and comparison of thin-layer Chromatographic and gas-liquid Chromatographic methods for measurements of methimazole in rat urine. Journal of Chromatography 53: 285–291 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Tamai, H.; Nakagawa, T.; Fukino, O.; Ohsako, N.; Shinzato, R.; Suematsu, H.; Kuma, K.; Matsuzuka, F. and Nagataki, S.: Thionamide therapy in Graves’ disease: Relation of relapse rate to duration of therapy. Annals of Internal Medicine 92: 488–490 (1980).

    PubMed  CAS  Google Scholar 

  • Taurog, A.: The mechanism of action of the thioureylene antithyroid drugs. Endocrinology 98: 1031–1046 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Tegler, L. and Lindström, B.: Antithyroid drugs in milk. Lancet 2: 591 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Trotter, W.R.: The relative toxicity of antithyroid drugs. Journal of New Drugs 2: 333–343 (1962).

    PubMed  CAS  Google Scholar 

  • Uller, R.P. and van Herle, A.J.: Effect of therapy on serum thyroglobulin levels in patients with Graves’ disease. Journal of Clinical Endocrinology and Metabolism 46: 747–755 (1978).

    Article  PubMed  CAS  Google Scholar 

  • VanderLaan, W.P. and Storrie, V.M.: A survey of the factors controlling thyroid function, with especial reference to newer views on antithyroid substances. Pharmacological Reviews 7: 301–334 (1955).

    Google Scholar 

  • Vesell, E.S.; Shapiro, J.R.; Passananti, G.T.; Jorgensen, H. and Shively, C.A.: Altered plasma half-lives of antipyrine, propylthiouracil and methimazole in thyroid dysfunction. Clinical Pharmacology and Therapeutics 17: 48–56 (1975).

    PubMed  CAS  Google Scholar 

  • Visser, T.J.; Van der Does-Tobé, I.; Docter, R. and Hennemann, G.: Conversion of thyroxine into triiodothyronine by rat liver homogenate. Biochemical Journal 150: 489–493 (1975).

    CAS  Google Scholar 

  • Volpé, R.: The pathogenesis of Graves’ disease. Clinical Endocrinology and Metabolism 7: 3–29 (1978).

    Article  Google Scholar 

  • Wall, J.R.; Manwar, G.L.; Greenwood, D.M. and Walters, B.A.: The in vitro suppression of lectin-induced 3H-thymidine incorporation into DNA of peripheral blood lymphocytes after the addition of propylthiouracil. Journal of Clinical Endocrinology and Metabolism 43: 1406–1409 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Westgren, U.; Melander, A.; Ingemansson, S.; Burger, A.; Tibblin, S. and Wåhlin, E.: Secretion of thyroxine, 3,5,3′-triiodothyronine and 3,3,5′-triiodothyronine in euthyroid man. Acta Endocrinologica 84: 281–289 (1977).

    PubMed  CAS  Google Scholar 

  • Wiberg, J.J. and Nuttall, F.Q.: Methimazole toxicity from high doses. Annals of Internal Medicine 77: 414–416 (1972).

    PubMed  CAS  Google Scholar 

  • Wilkin, T.J.; Isies, T.E.; Crooks, J.; Gunn, A. and Swanson Beck, J.: Patterns of change in the early (20-minute) radioiodine uptake during carbimazole treatment for Graves’ disease and their relationship to outcome. Journal of Clinical Endocrinology and Metabolism 52: 1067–1072 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Williams, R.H. and Kay, G.A.: Thiouracils and thiourea. Archives of Internal Medicine 80: 37–52 (1947).

    Article  PubMed  CAS  Google Scholar 

  • Williams, R.H.; Kay, G.A. and Jandorf, B.J.: Thiouracil. Its absorption, distribution and excretion. Journal of Clinical Investigation 23: 613–627 (1944a).

    Article  PubMed  CAS  Google Scholar 

  • Williams, R.H.; Jandorf, B.J. and Kay, G.A.: Methods for the determination of thiouracil in tissues and body fluids. Journal of Laboratory and Clinical Medicine 29: 329–336 (1944b).

    CAS  Google Scholar 

  • Williams, R.H.; Clute, H.M.; Anglern, T.J. and Kenney, F.R.: Thiouracil treatment of thyrotoxicosis: Toxic reactions. Journal of Clinical Endocrinology 6: 23–51 (1946).

    Article  CAS  Google Scholar 

  • Yamada, T.; Ludwig, S.; Kuhlenkamp, J. and Kaplowitz, N.: Direct protection against acetaminophen hepatotoxicity by propylthiouracil. Journal of Clinical Investigation 67: 688–695 (1981).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kampmann, J.P., Hansen, J.M. Clinical Pharmacokinetics of Antithyroid Drugs. Clin Pharmacokinet 6, 401–428 (1981). https://doi.org/10.2165/00003088-198106060-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-198106060-00001

Keywords

Navigation