Skip to main content
Log in

Alteration of Drug-Protein Binding in Renal Disease

  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

The protein binding of acidic drugs but not basic drugs is decreased in serum from patients with poor renal function. This decreased binding is due to the retention of compounds that displace drugs from their binding sites on albumin. Phenytoin and valproic acid are the 2 drugs that require a change in the values for therapeutic levels to allow for this decreased binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Affrime, M.D.; Blecker, D.L.; Lyons, P.J.; Pitone, J.M.; Swartz, C.D. and Lowenthal, D.T.: The effect of renal transplantation on plasma protein binding. Journal of Dialysis 3: 207–218 (1979).

    PubMed  CAS  Google Scholar 

  • Andreasen, F.: Protein binding of drugs in plasma from patients with acute renal failure. Acta Pharmacologica et Toxicologica 32:417–429 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Andreasen, F. and Jakobsen, P.: Determination of furosemide in blood plasma and its binding to proteins in normal plasma and in plasma from patients with acute renal failure. Acta Pharmacologica et Toxicologica 35: 49–57 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Anton, A.H. and Corey, W.T.: Interindividual differences in the protein binding of sulfonamides: The effect of disease and drugs. Acta Pharmacologica et Toxicologica 29 (Suppl. 3): 134–151 (1971).

    PubMed  CAS  Google Scholar 

  • Arango, G.; Mayberry, W.E.; Hockert, T.J. and Elveback, L.R.: Total and free human serum thyroxine in normal and abnormal thyroid states. Mayo Clinic Proceedings 43: 503–516 (1968).

    PubMed  CAS  Google Scholar 

  • Attila, M.; Haatajam, M. and Kasanen, A.: Pharmacokinetics of naproxen in subjects with normal and impaired renal function. European Journal of Clinical Pharmacology 18: 263–268 (1980).

    Article  Google Scholar 

  • Bachmann, K.; Shapiro, R. and Mackiewicz, J.: Influence of renal dysfunction on warfarin plasma protein binding. Journal of Clinical Pharmacology 16: 468–472 (1976).

    PubMed  CAS  Google Scholar 

  • Baker, R.: Serum albumin in uremia: A clinical investigation correlated with reversible uremia in dogs. Journal of Urology 65: 197–209 (1951).

    PubMed  CAS  Google Scholar 

  • Barth, N.; Alvan, G.; Borgå, O. and Sjöqvist, F.: Two-fold interindividual variation in plasma protein binding of phenytoin in patients with epilepsy. Clinical Pharmacokinetics 1: 444–452 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Belpaire, F.M.; Bogaert, M.G. and Mussche, M.M.: Influence of renal failure on the protein binding of drugs in animals and man. European Journal of Clinical Pharmacology 11: 27–32 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Benet, L.Z. and Sheiner, L.B.: Appendix II: Design and optimization of dosage regimens: Pharmacokinetic data; in Gilman et al. (Eds) The Pharmacologic Basis of Therapeutics, 6th edition, pp. 1675–1737 (MacMillan, New York 1980).

    Google Scholar 

  • Blum, M.R. and Riegelman, S.: Altered protein binding of di-phenylhydantoin in uremic plasma. New England Journal of Medicine 286: 109 (1972).

    PubMed  CAS  Google Scholar 

  • Boobis, S.W.: Alteration of plasma albumin in relation to decreased drug binding in uremia. Clinical Pharmacology and Therapeutics 22: 147–153 (1977).

    PubMed  CAS  Google Scholar 

  • Borgå, O.; Azarnoff, D.L.; Forshell, G.P. et al.: Plasma protein binding of tricyclic antidepressants in man. Biochemical Pharmacology 18: 2135–2143 (1969).

    Article  PubMed  Google Scholar 

  • Borgå, O.; Piafsky, K.M. and Nilsen, G.: Plasma protein binding of basic drugs. Clinical Pharmacology and Therapeutics 22: 539–544 (1977).

    PubMed  Google Scholar 

  • Borgå, O.; Odar-Cederlöf, I.; Ringberger, V.A. and Norlin, A.: Protein binding of salicylate in uremic and normal plasma. Clinical Pharmacology and Therapeutics 20: 464–475 (1976).

    PubMed  Google Scholar 

  • Brcwster, D. and Muir, N.C: Valproate plasma protein binding in the uremic condition. Clinical Pharmacology and Therapeutics 27: 76–82 (1980).

    Article  Google Scholar 

  • Breyer, B. and Radcliff, F.J.: The adsorptive capacity of serum proteins in renal insufficiency. Australian Journal of Experimental Biology and Medical Sciences 32: 411–420 (1954).

    Article  CAS  Google Scholar 

  • Bridgman, J.F.; Rosen, S.M. and Throp, J.M.: Complications during clofibrate treatment of nephrotic syndrome hyperlipopro-teinaemia. Lancet 2: 506–509 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Bruni, J.; Wang, L.H.; Marbury, T.C.; Lee, C.S. and Wilder, B.J.: Protein binding of valproic acid in uremic patients. Neurology 30: 557–559 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Buttner, J.; Portwick, R.; Manzke, E. and Staudt, N.: Zur Phar-makokinetik von Sulfonamiden unter pathologischen Bedingungen. Klinische Wochenschrift 42: 103–108 (1969).

    Article  Google Scholar 

  • Calvo, R.; Carlos, R. and Erill, S.: Effects of carbamylation on plasma proteins and competitive displacers on drug binding in uremia. Pharmacology 24: 248–252 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Campion, D.S.: Decreased drug binding by serum albumin during renal failure. Toxicology and Applied Pharmacology 25: 391–397 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Carlos, R.; Calvo, R. and Erill, S.: Plasma protein binding of etomidate in patients with renal failure or hepatic cirrhosis. Clinical Pharmacokinetics 4: 144–148 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Clegg, L.S. and Lindup, W.E.: Drug binding defect of uraemic plasma: Unlikely involvement of carbamoylated albumin. Biochemical Pharmacology 31: 2791–2794 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Cotham, R.H. and Shand, D.: Spuriously low plasma propranolol concentrations resulting from blood collection methods. Clinical Pharmacology and Therapeutics 18: 535–538 (1975).

    PubMed  CAS  Google Scholar 

  • Craig, W.A.; Evenson, M.A.; Sarver, K.P. and Wagnild, J.P.: Correction of protein binding defect in uremic sera by charcoal treatment. Journal of Laboratory and Clinical Medicine 87: 637–647 (1976).

    PubMed  CAS  Google Scholar 

  • Craig, W.A. and Kunin, C.M.: Trimethoprim-sulfamethoxazole: Pharmacodynamic effects of urinary pH and impaired renal function. Annals of Internal Medicine 78: 491–497 (1973).

    PubMed  CAS  Google Scholar 

  • Craig, W. and Wagnild, J.: Correction of protein binding defect in uremic serum by charcoal treatment. Clinical Research 22: 316A (1974).

    Google Scholar 

  • Craig, W.A.; Welling, P.G.; Jackson, T.C. and Kunin, C.M.: Pharmacology of cefazolin and other cephalosporins in patients with renal insufficiency. Journal of Infectious Diseases 128 (Oct. Suppl.):S347-S353 (1973).

  • Dromgoole, S.H.: The effect of hemodialysis on the binding capacity of albumin. Clinica Chimica Acta 46: 469–472 (1973).

    Article  CAS  Google Scholar 

  • Editorial: Drug binding to alpha, acid glycoprotein — clinically important? Lancet 1: 368 (1979).

    Google Scholar 

  • Ehrnebo, M. and Odar-Cederlöf, I.: Binding of amobarbital, pen-tobarbital, and diphenylhydantoin to blood cells and plasma proteins in healthy volunteers and uraemic patients. European Journal of Clinical Pharmacology 8: 445–453 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Ehrstrom, M.C.H.: Das Adsorptionsvermögen der plasma Proteine weitere Untersuchungen. Acta Medica Scandinavica 91: 191–196 (1973).

    Article  Google Scholar 

  • Erill, S.; Calvo, R. and Carlos, R.: Plasma protein carbamylation and decreased acidic drug protein binding in uremia. Clinical Pharmacology and Therapeutics 27: 612–618 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Farrcll, P.C.; Grib, N.L.; Fry, D.L.; Popovich, R.P.; Broviac, J.W. and Babb, A.L.: A comparison of in vitro and in vivo solute protein binding interactions in normal and uremic subjects. Transactions of the American Society for Artificial Internal Organs 18: 268–276 (1972).

    Article  Google Scholar 

  • Ficgel, P. and Becker, K.: Pharmacokinetics of azlocillin in persons with normal and impaired renal function. Antimicrobial Agents and Chemotherapy 14: 288–291 (1978).

    Article  Google Scholar 

  • Fremstad, D.; Bergerud, K.; Haffner, J.F.W. and Lunde, P.K.M.: Increased plasma binding of quinidine after surgery: A preliminary report. European Journal of Clinical Pharmacology 10: 441–444 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Galeazzi, R.L.; Gugger, M. and Weidmann, P.: Beta blockade with pindolol: Differential cardiac and renal effects despite similar plasma kinetics in normal and uremic man. Kidney International 15: 661–668 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Garcia, M.J.; Dominguez, G.I.; Tabernero, J.M. and Sanchez-Tomero, J.A.: Pharmacokinetics of cefoxitin in patients with normal or impaired renal function. European Journal of Clinical Pharmacology 16: 119–124 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Ghoneim, M.M.; Kramer, E. and Bannow, R.: Binding of d-tubocurarine to plasma proteins in normal man and in patients with hepatic or renal disease. Anesthesiology 39: 410–415 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Ghoneim, M.M. and Pandya, H.: Plasma protein binding of thiopcntal in patients with impaired renal or hepatic function. Anesthesiology 42: 545–549 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Giacomini, K.M.; Gibson, T.P. and Levy, G.: Plasma protein binding of d-propoxyphene in normal subjects and anephric patients. Journal of Clinical Pharmacology 18: 106–109 (1978).

    PubMed  CAS  Google Scholar 

  • Gibson, T.P. and Nelson, H.A.: Drug kinetics and artificial kidneys. Clinical Pharmacokinetics 2: 403–426 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Gugler, R. and Azarnoff, D.L.: Drug protein binding and the nephrotic syndrome. Clinical Pharmacokinetics 1: 25–35 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Gugler, R. and Mueller, G.: Plasma protein binding of valproic acid in healthy subjects and in patients with renal disease. British Journal of Clinical Pharmacology 5: 441–446 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Gugler, R.; Kürten, J.W.; Jensen, C.J.; Klehr, U. and Hartlapp, J.: Clofibrate disposition in renal failure and acute and chronic liver disease. European Journal of Clinical Pharmacology 15: 341–347 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Heel, R.C. and Avery, G.S.: Appendix A: Drug data information; in Avery (Ed.) Drug Treatment, 2nd edition, pp. 1211–1222 (Adis Press, Sydney 1980).

    Google Scholar 

  • Hooper, W.D.; Bochner, F.; Eadie, M.J. and Tyrer, J.H.: Plasma protein binding of diphenylhydantoin. Effects of sex hormones, renal and hepatic disease. Clinical Pharmacology and Therapeutics 15: 276–282 (1974).

    PubMed  CAS  Google Scholar 

  • Hooper, W.D.; Dubetz, D.K.; Bochner, F.; Colter, L.M.; Smith, G.A.; Eadie, M.J. and Tyrer, J.H.: Plasma protein binding of carbamazepine. Clinical Pharmacology and Therapeutics 17: 433–440 (1975).

    PubMed  CAS  Google Scholar 

  • Kangas, L; Kanto, J.; Forsstrom, J. and Iisalo, E.: The protein binding of diazepam and N-demethyldiazepam in patients with poor renal function. Clinical Nephrology 5: 114–118 (1976).

    PubMed  CAS  Google Scholar 

  • Kcefe, D.L.; Yee, Y. and Kates, R.E.: Protein binding of verapamil in patients and normal subjects. Clinical Pharmacology and Therapeutics 29: 257 (1981).

    Google Scholar 

  • Kinniburgh, D.W. and Boyd, N.D.: Isolation of peptides from uremic plasma that inhibit phenytoin binding to normal plasma proteins. Clinical Pharmacology and Therapeutics 30: 276–280 (1981a).

    Article  PubMed  CAS  Google Scholar 

  • Kinniburgh, D.W. and Boyd, N.D.: Phenytoin binding to partially purified albumin in renal disease. Clinical Pharmacology and Therapeutics 29: 203–210 (1981b).

    Article  PubMed  CAS  Google Scholar 

  • Kober, A.; Sjoholm, I.; Borgå, O. and Odar-Cederlöf, I.: Protein binding of diazepam and digitoxin in uremic and normal serum. Biochemical Pharmacology 28: 1037–1042 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Ladefoged, O.: Dextran induced hypoalbuminaemia as a model for the study of influences of protein binding on the phar-macokinetics of drugs. Acta Pharmacologica et Toxicologica 43: 174–179 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Levy, G.; Balish, T. and Procknal, J.A.: Effect of renal transplantation on protein binding of drugs in serum of donor and recipient. Clinical Pharmacology and Therapeutics 20: 512–516 (1976).

    PubMed  CAS  Google Scholar 

  • Lowenthal, D.T.: Pharmacokinetics of propranolol, quinidine, procainamide and lidocaine in chronic renal disease. American Journal of Medicine 62: 532–538 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Lowenthal, D.T; Briggs, W.A. and Levy, G.: Kinetics of salicylate elimination by anephric patients. Journal of Clinical Investigation 54: 1221–1226 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Lowenthal, D.T.; Hobbs, D. and Affrime, M.B.: Prazosin kinetics and effectiveness in renal failure. Clinical Pharmacology and Therapeutics 27: 779–783 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Lucas, D.S. and DeMartino, A.G.: Binding of digitoxin and some related cardenolides to human serum proteins. Journal of Clinical Investigation 48: 1041–1053 (1969).

    Article  Google Scholar 

  • Lundc, P.K.M.: Discussion paper. Proceedings of the Fifth International Congress of Pharmacology 3: 201 (1973).

    Google Scholar 

  • Lunde, P.K.M.; Rane, A.; Yaffe, S.J.; Lund, L. and Sjöqvist, F.: Plasma protein binding of diphenylhydantoin in man. Clinical Pharmacology and Therapeutics 11: 846–855 (1970).

    PubMed  CAS  Google Scholar 

  • Lynn, K.; Braithwaite, R.; Dawling, S. and Rosser, R.: Comparison of the serum protein binding of maprotiline and phenytoin in uraemic patients on haemodialysis. European Journal of Clinical Pharmacology 19: 73–77 (1981).

    Article  PubMed  CAS  Google Scholar 

  • McNamara, P.J.; Lalka, D. and Gibaldi, M.: Endogenous accumulation products and serum protein binding in uremia. Journal of Laboratory and Clinical Medicine 98: 730–739 (1981).

    PubMed  CAS  Google Scholar 

  • Mussche, M.M.; Belpaire, F.M. and Bogaert, M.G.: Plasma protein binding of phenylbutazone during recovery from acute renal failure. European Journal of Clinical Pharmacology 9: 69–71 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Odar-Cederlöf, I.; Lunde, P. and Sjöqvist, F.: Abnormal pharmacokinetics of phenytoin in a patient with uraemia. Lancet 2: 831–832 (1970).

    Article  PubMed  Google Scholar 

  • Odar-Cederlöf, I.; Vessman, J.; Alvan, G. and Sjöqvist, F.: Ox-azepam disposition in uremic patients. Acta Pharmacologica et Toxicologica 40 (Suppl. 1): 52–62 (1977).

    PubMed  Google Scholar 

  • Olsen, G.D.: Methadone binding to human plasma albumin. Science 176: 525–526 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Olsen, G.D.; Bennett, W.M. and Porter, G.A.: Morphine and phenytoin binding to plasma proteins in renal and hepatic failure. Clinical Pharmacology and Therapeutics 17: 677–684 (1975).

    PubMed  CAS  Google Scholar 

  • O’Malley, K.; Velasco, M.; Pruitt, A.W. and McNey, J.L.: Decreased plasma protein binding of diazoxide in uremia. Clinical Pharmacology and Therapeutics 18: 53–58 (1975).

    PubMed  Google Scholar 

  • Øie, S.; Lowenthal, D.T. and Levy, G.: Protein binding of bili-rubin in plasma of anephric patients. Journal of Dialysis 4: 91–100 (1980).

    PubMed  Google Scholar 

  • Pearson, R.M. and Breckenridge, A.M.: Renal function, protein binding and pharmacologie response to diazoxide. British Journal of Clinical Pharmacology 3: 169–175 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Perez-Mateo, M. and Erill, S.: Protein binding of salicylate and quinidine in plasma from patients with renal failure, chronic liver disease and chronic respiratory insufficiency. European Journal of Clinical Pharmacology 11: 225–231 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Piafsky, K.M.: Disease-induced changes in the plasma protein binding of basic drugs. Clinical Pharmacokinetics 5: 246–262 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Piafsky, K.M. and Borgå, O.: Inhibitor of drug-protein binding in “Vacutainer”. Lancet 2: 963 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Piafsky, K.; Borgå, O.; Odar-Cederlöf, I.; Johanson, C. and Sjöqvist, F.: Increased plasma protein binding of propranolol and chlorpromazine mediated by disease-induced elevations of plasma alpha, acid glycoprotein. New England Journal of Medicine 299: 1435–1439 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Pierides, A.M.; Alvarez-Ude, F.; Kerr, D.N.S. and Skillen, A.W.: Clofibrate induced muscle damage in patients with chronic renal failure. Lancet 2: 1279–1282 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Rane, A.; Villeneuve, J.P.; Stone, W.J.; Nies, A.S.; Wilkinson, G.R. and Branch, R.A.: Plasma binding and disposition of furosemide in the nephrotic syndrome and in uremia. Clinical Pharmacology and Therapeutics 24: 199–207 (1978).

    PubMed  CAS  Google Scholar 

  • Reidenberg, M.M.: The binding of drugs to plasma proteins from patients with poor renal function. Clinical Pharmacokinetics 1: 121–125 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Reidenberg, M.M.: The binding of drugs to plasma proteins and the interpretation of plasma concentrations of drugs in patients with poor renal function. American Journal of Medicine 62: 466–470 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Reidenberg, M.M. and Affrime, M.: Influence of disease on binding of drugs to plasma proteins. Annals of the New York Academy of Sciences 226: 115–126 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Rcidenberg, M.M.; Lowenthal, D.T.; Briggs, W. and Gasparo, M.: Pentobarbital elimination in patients with poor renal function. Clinical Pharmacology and Therapeutics 20: 67–71 (1976).

    Google Scholar 

  • Reidenberg, M.M.; Odar-Cederlöf, I.; von Bahr, G; Borgå, O. and Sjöqvist, F.: Protein binding of diphenylhydantoin and des-methylimipramine in plasma from patients with poor renal function. New England Journal of Medicine 285: 264–267 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Reidenberg, M.M. and Restivo, K..: The binding of theophylline to serum proteins of hemodialysis patients. Journal of Dialysis 3: 375–381 (1979).

    PubMed  CAS  Google Scholar 

  • Routledge, P.A.; Barchowsky, A.; Bjornsson, T.D.; Kitchall, B.B. and Shand, D.G.: Lidocaine plasma protein binding. Clinical Pharmacology and Therapeutics 27: 347–351 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Rubin, P. and Blaschke, T.: Prazosin protein binding in health and disease. British Journal of Clinical Pharmacology 9: 177–182 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Scholtan, W.: Die Binding der Langzeit-Sulfonamide und die Ei-weisskörper des Serums. 2. Mitteilung. Arzneimittel-Forschung 11: 707–720 (1961).

    PubMed  CAS  Google Scholar 

  • Sellers, E.: Plasma protein displacement interactions are rarely of clinical significance. Pharmacology 18: 225–227 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Seppan, J.; Viranta, M.; Julkunen, R. and Wilen, G.: Pharmaco-kinetics of low dose sulfadiazine in patients with renal failure. Annals of Clinical Research 12 (Suppl. 25): 31–37 (1980).

    Google Scholar 

  • Shoeman, D.W. and Azamoff, D.L.: The alterations of plasma proteins in uremia as reflected by their ability to bind digitoxin and diphenylhydantoin. Pharmacology 7: 169–177 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Sjoholm, I.: Binding of drugs to human serum albumin. Proceedings of the 11th FEBS Meeting 50: 71–78 (1977).

    CAS  Google Scholar 

  • Sjoholm, I.; Kober, A.; Odar-Cederlöf, I. and Borgå, O.: Protein binding of drugs in uremic and normal serum. The role of endogenous binding inhibitors. Biochemical Pharmacology 25: 1205–1213 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Sjöqvist, F.; Hammer, W.; Borgå, O. et al.: Pharmacological significance of the plasma level of monomethylated tricyclic antidepressants; in Cerletti and Bove (Eds) The Present Status of Psychotropic Drugs: Pharmacological and Clinical Aspects, pp. 128–136 (Excerpta Medica, Amsterdam 1969).

    Google Scholar 

  • Storstein, L.: Studies on Digitalis V. The influence of impaired renal function, hemodialysis, and drug interactions on serum protein binding of digitoxin and digoxin. Clinical Pharmacology and Therapeutics 20: 6–14 (1976).

    PubMed  CAS  Google Scholar 

  • Torrente, A.; Glazer, G.B. and Gulyassy, P.: Reduced in vitro binding of tryptophane by plasma in uremia. Kidney International 6: 222–229 (1974).

    Article  PubMed  Google Scholar 

  • Verbeeck, R.K. and De Schepper, P.J.: Influence of chronic renal failure and hemodialysis on diflunisal protein binding. Clinical Pharmacology and Therapeutics 27: 628–635 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Wardell, W.M.: Redistributional drug interactions; in Morselli et al. (Eds) Drug Interactions, pp. 123–134 (Raven Press, New York 1974).

    Google Scholar 

  • Wood, A.J.; Vestal, R.E.; Spannuth, C.L.; Stone, W.J.; Wilkinson, G.R. and Shand D.G.: Propranolol disposition in renal failure. British Journal of Clinical Pharmacology 10: 561–566 (1980).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reidenberg, M.M., Drayer, D.E. Alteration of Drug-Protein Binding in Renal Disease. Clin Pharmacokinet 9 (Suppl 1), 18–26 (1984). https://doi.org/10.2165/00003088-198400091-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-198400091-00003

Keywords

Navigation