Skip to main content
Log in

The Significance of Plasma Protein Binding on the Fetal/Maternal Distribution of Drugs at Steady-State

  • Research Review Article
  • Research Review
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Maternal and fetal plasma differ in their concentrations of the important drug binding plasma proteins, albumin and α1acid glycoprotein, with albumin being slightly more concentrated in fetal plasma, and α1-acid glycoprotein being only 37% of the maternal concentration at term. In general, these differences relate linearly to the bound to free concentration ratio of drugs associated with these proteins. Although only the free concentration is generally considered to be the pharmacologically active form, these differences can dramatically affect the total concentration and relative distribution of drugs between maternal and fetal plasma.

In order to test our hypothesis that plasma protein binding is the major determinant of fetal/maternal drug distribution at steady-state, we examined whether fetal binding could be predicted from adult binding information. Data from studies of maternal, plasma protein binding were used to predict fetal plasma protein binding based solely on the differences in protein concentrations. These predictions were compared with observed fetal binding data. This analysis showed a slope near unity and a high correlation (r2 = 0.900) which implies that there are no significant differences between the binding affinities of these proteins. A similar analysis performed using data on drug binding in non-pregnant adults gave an r2 or 0.971.

Having established that fetal plasma proteins bind drugs similarly to their maternal counterparts, fetal/maternal plasma drug concentration ratios (F/M) were predicted for various drugs using information from literature on the drug’s adult plasma protein binding, the protein to which it binds, and the fetal and maternal plasma concentrations of that binding protein. This information was compared with data from studies which observed the fetal/maternal plasma concentration ratio of these drugs at steady-state. The observed F/M ratio was correlated with the predicted F/M values for the 35 drugs (r2 = 0.473, p < 10−5. When considering only studies done at term the correlation coefficient increased to 0.558. This analysis was subject to the limitations of comparing mean data from different studies.

The fact that nearly half or more of the variability of the transplacental drug concentration ratios at steady-state is explainable by the plasma protein concentration gradient, despite between-study variability, leads us to conclude that it is the most significant factor in establishing the F/M ratio at steady-state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allonen H, Kanto J, Iisalo E. The foetal-maternal distribution of digoxin in early human pregnancy. Acta Pharmacologica et Toxicologica 39: 477–480, 1976

    Article  PubMed  CAS  Google Scholar 

  • Anderson DF, Phernetton TM, Rankin JHG. Prediction of fetal drug concentrations. American Journal of Obstetrics and Gynecology 137: 735–738, 1980

    PubMed  CAS  Google Scholar 

  • Asali LA, Brown KF. Naloxone protein binding in adult and foetal plasma. European Journal of Clinical Pharmacology 27: 459–463, 1984

    Article  PubMed  CAS  Google Scholar 

  • Ballard PL, Granberg P, Ballard A. Glucocorticoid levels in maternal and cord serum after prenatal betamethasone therapy to prevent respiratory distress syndrome. Journal of Clinical Investigation 56: 1548–1554, 1975

    Article  PubMed  CAS  Google Scholar 

  • Belpaire FM, Bogaert MG, Rosseneu M. Binding of β-adrenoceptor blocking drugs to human serum albumin, α1-acid glycoprotein and to human serum. European Journal of Clinical Pharmacology 22: 253–256, 1982

    Article  PubMed  CAS  Google Scholar 

  • Bergogne-Berezin E, Bryskier A, Berthelot G, Ravina JH, Vernant D. Placental transfer of cefmenoxime in late pregnancy. Chemotherapy 31: 1–5, 1985

    Article  PubMed  CAS  Google Scholar 

  • Bredesen JE, Pike E, Lunde PKM. Plasma binding of disopyramide and mono-N-dealkyldisopyramide. British Journal of Clinical Pharmacology 14: 673–676, 1982

    Article  PubMed  CAS  Google Scholar 

  • Brers O, Nilsen OG, Sager G, Sandnes D, Jacobsen S. Influence of pH and buffer type on drug binding in human serum. Clinical Pharmacokinetics 9 (Suppl. l): 85–86, 1984

    Article  Google Scholar 

  • Chen S-S, Perucca E, Lee JN, Richens A. Serum protein binding and free concentration of phenytoin and phenobarbital in pregnancy. British Journal of Clinical Pharmacology 13: 547–554, 1982

    PubMed  CAS  Google Scholar 

  • Chu CY-T, Singla VP, Wang H-P, Sweet B, Lai LT-Y. Plasma alpha1-acid glycoprotein levels in pregnancy. Clinica Chimica Acta 112: 235–240, 1981

    Article  CAS  Google Scholar 

  • Crawford JS, Hooi HWY. Binding of bromsulphthalein by serum albumin from pregnant women, neonates, and subjects taking oral contraceptives. British Journal of Anaesthesia 40: 723–729, 1968a

    Article  PubMed  CAS  Google Scholar 

  • Crawford JS, Hooi HWY. Binding of salicylic acid and sulphanilimide in serum from pregnant patients, cord blood, and subjects taking oral contraceptives. British Journal of Anaesthesia 40: 825–833, 1968b

    Article  PubMed  CAS  Google Scholar 

  • Ehrnebo M, Agurell S, Jalling B, Boreus LO. Age differences in drug binding to plasma proteins: studies on human foetuses, neonates, and adults. European Journal of Clinical Pharmacology 3: 189–193, 1971

    Article  PubMed  CAS  Google Scholar 

  • Feely GR, Wilkinson CB, McAllister CB, Wood AJJ. Increased toxicity and reduced clearance of lidocaine by cimetidine. Annals of Internal Medicine 96: 592–594, 1982

    PubMed  CAS  Google Scholar 

  • Gamble JAS, Moore J, Lamki H, Howard PJ. A study of plasma diazepam levels in mother and infant. British Journal of Obstetrics and Gynaecology 84: 588–591, 1977

    Article  PubMed  CAS  Google Scholar 

  • Ghonheim MM, Kortilla K. Pharmacokinetics of intravenous anaesthetics. Clinical Pharmacokinetics 2: 344–372, 1977

    Article  Google Scholar 

  • Gilman AG, Goodman LS, Rail TW, Murad F (Eds). Goodman and Gilman’s The pharmacological basis of therapeutics, 7th ed., Macmillan Publishing Company, 1985

  • Gordon HR. Fetal bradycardia after paracervical block. Correlation with fetal and maternal blood levels of local anesthetic (mepivacaine). New England Journal of Medicine 279: 910–914, 1968

    Article  PubMed  CAS  Google Scholar 

  • Gorodischev R, Krasner J, Yaffe SJ. Serum protein binding of digoxin in newborn infants. Research Communications in Chemical Pathology and Pharmacology 9: 387–390, 1974

    Google Scholar 

  • Greenblatt DJ. Clinical pharmacokinetics of oxazepam and lorazepam. Clinical Pharmacokinetics 6: 89–105, 1981

    Article  PubMed  CAS  Google Scholar 

  • Hamar C, Levy G. Serum protein binding of drugs and bilirubin in newborn infants and their mothers. Clinical Pharmacology and Therapeutics 28: 58–63, 1980

    Article  PubMed  CAS  Google Scholar 

  • Haram K, Augensen K, Elsayed S. Serum protein pattern in normal pregnancy with special reference to acute phase reactants. British Journal of Obstetrics and Gynaecology 90: 139–145, 1983

    Article  PubMed  CAS  Google Scholar 

  • Heimann G. Drug disposition during the perinatal period. Biological Research in Pregnancy and Perinatology 2: 1–14, 1981

    CAS  Google Scholar 

  • Henry JA, Mitchell SN. Effect of pH on human plasma protein binding of a series of β-adrenoceptor antagonists. British Journal of Clinical Pharmacology 11: 119P–120P, 1981

    CAS  Google Scholar 

  • Herngren L, Ehrnebo M, Boréus LO. Drug binding to plasma proteins during human pregnancy and in the perinatal period: studies on cloxacillin and alprenolol. Developmental Pharmacology and Therapeutics 6: 110–124, 1983

    PubMed  CAS  Google Scholar 

  • Howe JP, McGowan WAW, Moore J, McCaughey W, Dundee JW. The placental transfer of cimetidine. Anaesthesia 36: 371–375, 1981

    Article  PubMed  CAS  Google Scholar 

  • Kangas L, Breimer DD. Clinical pharmacokinetics of nitrazepam. Clinical Pharmacokinetics 6: 346–366, 1981

    Article  PubMed  CAS  Google Scholar 

  • Kangas L, Erkkola R, Kanto J, Eronen M. Transfer of free and conjugated oxazepam across the human placenta. European Journal of Clinical Pharmacology 17: 301–304, 1980

    Article  PubMed  CAS  Google Scholar 

  • Kangas L, Kanto J, Erkkola R. Transfer of nitrazepam across the human placenta. European Journal of Clinical Pharmacology 12: 355–357, 1977

    Article  PubMed  CAS  Google Scholar 

  • Kanto J. Obstetric analgesia. Clinical pharmacokinetic considerations. Clinical Pharmacokinetics 11: 283–298, 1986

    Article  PubMed  CAS  Google Scholar 

  • Kanto J, Aaltonen L, Liukko P, Mäenpää K. Transfer of lorazepam and its conjugate across the human placenta. Acta Pharmacologica et Toxicologica 47: 130–134, 1980

    Article  PubMed  CAS  Google Scholar 

  • Kivalo I, Saarikoski S. Placental transmission of atropine at full-term pregnancy. British Journal of Anaesthesia 49: 1017–1021, 1971

    Article  Google Scholar 

  • Kornguth ML, Hutchins LG, Eichelman BS. Binding of psychotropic drugs to isolated α1-acid glycoprotein. Biochemical Pharmacology 30: 2435–2441, 1981

    Article  PubMed  CAS  Google Scholar 

  • Kouchenour NK, Emilky MG, Sawchuk RJ. Phenytoin metabolism in pregnancy. Obstetrics and Gynecology 56: 577–582, 1980

    Google Scholar 

  • Kragh-Hansen U. Molecular aspects of ligand binding to serum albumin. Pharmacological Reviews 33: 17–53, 1981

    PubMed  CAS  Google Scholar 

  • Krasner J, Giacoia GP, Yaffe SJ. Drug-protein binding in the newborn infant. Annals of the New York Academy of Sciences 226: 101–114, 1973

    Article  PubMed  CAS  Google Scholar 

  • Krauer B, Dayer P, Anner R. Changes in serum albumin and α1-acid glycoprotein concentrations during pregnancy: an analysis of fetal-maternal pairs. British Journal of Obstetrics and Gynaecology 91: 875–881, 1984

    Article  PubMed  CAS  Google Scholar 

  • Krauer B, Krauer F, Hytten FE. Drug disposition and pharmacokinetics in the maternal-placental-fetal unit. Pharmacology and Therapeutics 10: 301–328, 1980

    Article  PubMed  CAS  Google Scholar 

  • Krauer B, Nau H, Dayer P, Bischof P, Anner R. Serum protein binding of diazepam and propranolol in the feto-maternal unit from early to late pregnancy. British Journal of Obstetrics and Gynaecology 93: 322–328, 1986

    PubMed  CAS  Google Scholar 

  • Kuhnz W, Koch S, Jakob S, Hartmann A, Helge H, et al. Ethosuximide in epileptic women during pregnancy and lactation period: placental transfer, serum concentrations in nursed infants and clinical status. British Journal of Clinical Pharmacology 18: 671–677, 1984

    Article  PubMed  CAS  Google Scholar 

  • Kwong TC. Free drug measurements: methodology and clinical significance. Clinica Chimica Acta 151: 193–216, 1985

    Article  CAS  Google Scholar 

  • Levy G, Hayton WL. Pharmacokinetic aspects of placental drug transfer. In Boréus L (Ed.) Fetal pharmacology, pp. 29–39, Raven Press, New York, 1973

    Google Scholar 

  • Martinez G, Snyder RD. Transplacental passage of primidone. Neurology 23: 381–383, 1973

    Article  PubMed  CAS  Google Scholar 

  • Meuldermans W, Woestenborghs R, Noordiun H, Camu F, van Steenberge A, et al. Protein binding of the analgesics alfentanil and sufentanil in maternal and neonatal plasma. European Journal of Clinical Pharmacology 30: 217–219, 1986

    Article  PubMed  CAS  Google Scholar 

  • Mirkin BL. Perinatal pharmacology: placental transfer, fetal localization, and neonatal disposition of drugs. Anesthesiology 43: 156–170, 1975

    Article  PubMed  CAS  Google Scholar 

  • Morgan DJ, Blackman GL, Pauli JD, Wolf JL. Pharmacokinetics and plasma binding of thiopental, II: studies at caesarean section. Anesthesiology 54: 474–480, 1981

    Article  PubMed  CAS  Google Scholar 

  • Morishima HO, Daniel SS, Finster M, Poppers PJ, James LS. Transmission of mepivacaine hydrochloride (Carbocaine) across the human placenta. Anesthesiology 27: 147–154, 1966

    Article  PubMed  CAS  Google Scholar 

  • Nation RL. Meperidine binding in maternal and fetal plasma. Clinical Pharmacology and Therapeutics 29: 472–479, 1980

    Google Scholar 

  • Nau H. Clinical pharmacokinetics in pregnancy and perinatology. I. Placental transfer and fetal side effects of local anaesthetic agents. Developmental Pharmacology and Therapeutics 8: 149–181, 1985

    PubMed  CAS  Google Scholar 

  • Nau H, Krauer B. Serum protein binding of valproic acid in fetus-mother pairs throughout pregnancy: correlation with oxytocin administration and albumin and free fatty acid concentrations. Journal of Clinical Pharmacology 26: 215–221, 1986

    PubMed  CAS  Google Scholar 

  • Nau H, Kuhnz W, Egger H-J, Rating DA, Helge H. Anticonvulsants during pregnancy and lactation: transplacental, maternal and neonatal pharmacokinetics. Clinical Pharmacokinetics 7: 508–543, 1982

    Article  PubMed  CAS  Google Scholar 

  • Nau H, Luck W, Kuhnz W. Decreased serum protein binding of diazepam and its major metabolite in the neonate during the first postnatal week relate to increased free fatty acid levels. British Journal of Clinical Pharmacology 17: 92–98, 1984

    Article  PubMed  CAS  Google Scholar 

  • Nau H, Luck W, Kuhnz W, Wegener S. Serum protein binding of diazepam, desmethyldiazepam, furosemide, indomethacin, warfarin, and phenobarbital in human fetus, mother, and newborn infant. Pediatric Pharmacology 3: 219–227, 1983

    PubMed  CAS  Google Scholar 

  • Nau H, Rating D, Hä user I, Jäeger E, Koch S, et al. Placental transfer and pharmacokinetics of primidone and its metabolites phenobarbital, PEMA, hydroxyphenobarbital in neonates and infants of epileptic mothers. European Journal of Clinical Pharmacology 18: 31–42, 1980

    Article  PubMed  CAS  Google Scholar 

  • Nau H, Rating D, Koch S, Hä user I, Helge H. Valproic acid and its metabolites: placental transfer, neonatal pharmacokinetics, transfer via mother’s milk and clinical status in neonates of epileptic mothers. Journal of Pharmacology and Experimental Therapeutics 219: 768–777, 1981

    PubMed  CAS  Google Scholar 

  • Needs CJ, Brooks PM. Clinical pharmacokinetics of the salicylates. Clinical Pharmacokinetics 10: 164–177, 1985

    Article  PubMed  CAS  Google Scholar 

  • Notarianni LJ. Placental transfer of pethidine and bupivacaine. Neuropharmacology 20: 1253–1258, 1981

    PubMed  CAS  Google Scholar 

  • Olsen GD, Chan EM, Riker WK. Binding of d-tubocurarine di [methyl-14C] ether iodide and other amines to cartilage, chondritin sulfate, and human plasma proteins. Journal of Pharmacology and Experimental Therapeutics 195: 242–250, 1975

    PubMed  CAS  Google Scholar 

  • Onnen I, Barrier G, d’Athis Ph, Sureau C, Olive G. Placental transfer of atropine at the end of pregnancy. European Journal of Clinical Pharmacology 15: 443–446, 1979

    Article  PubMed  CAS  Google Scholar 

  • Osathomondh R, Tulchinsky D, Kamali H, Fencl MD, Taeusch HW. Dexamethasone levels in pregnant women and newborn infants. Journal of Pediatrics 90: 617–620, 1977

    Article  Google Scholar 

  • Pacifici GM, Cuoci L, Guarneri M, Fornaro P, Arcidiacno G, et al. Placental transfer of pinazepam and its metabolite n-des-methyldiazepam in women at term. European Journal of Clinical Pharmacology 27: 307–310, 1984a

    Article  PubMed  CAS  Google Scholar 

  • Pacifici GM, Tadeucci-Brunelli G, Rane A. Clonazepam serum protein binding during development. Clinical Pharmacology and Therapeutics 35: 354–359, 1984b

    Article  PubMed  CAS  Google Scholar 

  • Paxton JW. Alpha1-acid glycoprotein and binding of basic drugs. Methods and Findings in Experimental and Clinical Pharmacology 5: 635–648, 1983

    PubMed  CAS  Google Scholar 

  • Paxton JW, Calder RL. Propranolol binding in serum: comparison of methods and investigation of effects of drug concentration, pH, and temperature. Journal of Pharmacological Methods 10: 1–11, 1983

    Article  PubMed  CAS  Google Scholar 

  • Peck CC, Sheiner LB, Nichols AI. The problem of choosing weights in nonlinear regression analysis of pharmacokinetic data. Drug Metabolism Reviews 15: 133–148, 1984

    Article  PubMed  CAS  Google Scholar 

  • Peets EA, Staub M, Symchowicz S. Plasma binding of betamethasone-3H, dexamethasone-3H, and cortisol-l4C: a comparative study. Biochemical Pharmacology 18: 1655–1663, 1969

    Article  PubMed  CAS  Google Scholar 

  • Peiker G, Traeger A. Placental passage of nalidixic acid (Negram) and pharmacokinetic studies in the newborn infant. Pharmazie 38: 613–615, 1983

    PubMed  CAS  Google Scholar 

  • Perucca E, Crema A. Plasma protein binding of drugs in pregnancy. Clinical Pharmacokinetics 7: 336–352, 1982

    Article  PubMed  CAS  Google Scholar 

  • Petersdorf RG, Adams RD, Braunwald E, Isselbacher KJ, Martin JB, et al. (Eds). Harrison’s principles of internal medicine, 10th ed., p. 1781, McGraw-Hill, Inc., 1983

    Google Scholar 

  • Petersen MC, Collier CB, Ashley JJ, McBride WG, Nation RL. Disposition of betamethasone in parturient women after intravenous administration. European Journal of Clinical Pharmacology 25: 803–810, 1983

    Article  PubMed  CAS  Google Scholar 

  • Petersen MC, Moore RG, Nation RL. Relationship between the transplacental gradients of bupivacaine and c1-acid glycoprotein. British Journal of Clinical Pharmacology 12: 859–862, 1981

    Article  PubMed  CAS  Google Scholar 

  • Petersen MC, Nation RL, Ashley JJ, McBride WG. The placental transfer of betamethasone. European Journal of Clinical Pharmacology 18: 245–247, 1980

    Article  PubMed  CAS  Google Scholar 

  • Philip AGS, Hewitt JR. α1-Acid glycoprotein in the neonate with and without infection. Biology of the Neonate 43: 118–124, 1983

    Article  PubMed  CAS  Google Scholar 

  • Philipson A. Pharmacokinetics of antibiotics in pregnancy and labour. Clinical Pharmacokinetics 4: 297–309, 1979

    Article  PubMed  CAS  Google Scholar 

  • Piafsky KM, Borgå O. Plasma protein binding of basic drugs, II: importance of α1-acid glycoprotein for interindividual variation. Clinical Pharmacology and Therapeutics 22: 545–548, 1977

    PubMed  CAS  Google Scholar 

  • Piafsky KM, Woolner EA. The binding of basic drugs to α1-acid glycoprotein in cord serum. Journal of Pediatrics 100: 820–822, 1982

    Article  PubMed  CAS  Google Scholar 

  • Pike E, Skuterud B, Kierulf P, Bredesen JE, Lunde PKM. The relative importance of albumin, lipoproteins, and orosomucoid for drug serum binding. Clinical Pharmacokinetics 9 (Suppl. 1): 84–85, 1984

    Article  CAS  Google Scholar 

  • Pruitt AW, Dayton PG. A comparison of the binding of drugs to adult and cord plasma. European Journal of Clinical Pharmacology 4: 59–62, 1971

    Article  PubMed  CAS  Google Scholar 

  • Pynnönen S, Kanto J, Sillanpää M, Erkkola R. Carbamazepine: placental transport, tissue concentrations in the foetus and newborn, and level in milk. Acta Pharmacologica et Toxicologica 41: 244–253, 1977

    Article  PubMed  Google Scholar 

  • Rane A, Lunde PKM, Jalling B, Yaffe SJ, Sjöqvist F. Plasma protein binding of diphenylhydantoin in normal and hyperbilirubinemic infants. Journal of Pediatrics 78: 877–882, 1971

    Article  PubMed  CAS  Google Scholar 

  • Reboud P, Goulade J, Groslambert P, Colomb M. The influence of normal pregnancy and the postpartum state on plasma proteins and lipids. American Journal of Obstetrics and Gynecology 86: 820–828, 1963

    PubMed  CAS  Google Scholar 

  • Ridd MJ, Brown KF, Nation RL, Collier CB. Differential transplacental binding of diazepam: causes and implications. European Journal of Clinical Pharmacology 24: 595–601, 1983

    Article  PubMed  CAS  Google Scholar 

  • Shnider SM, Way EL. The kinetics of transfer of lidocaine (Xylocaine) across the human placenta. Anesthesiology 29: 944–950, 1968

    PubMed  CAS  Google Scholar 

  • Simon C, Still W, Wilkinson PJ. (Eds). Antibiotic Therapy in Clinical Practice, FK Schattauer Verlag, Stuttgart, 1981

    Google Scholar 

  • Somogyi A, Gugler R. Clinical pharmacokinetics of cimetidine. Clinical Pharmacokinetics 8: 463–495, 1983

    Article  PubMed  CAS  Google Scholar 

  • Song CS, Merkatz IR, Rifkind AB, Gillete PN, Kappas A. The influence of pregnancy and oral contraceptive steroids on the concentration of plasma proteins. American Journal of Obstetrics and Gynecology 108: 227–231, 1970

    PubMed  CAS  Google Scholar 

  • Svensson CK, Woodruff MN, Baxter JG, Lalka D. Free drug concentration monitoring in clinical practice: rationale and current status. Clinical Pharmacokinetics 11: 450–469, 1986

    Article  PubMed  CAS  Google Scholar 

  • Thomas J, Long G, Morgan D. Plasma protein binding and placental transfer of bupivacaine. Clinical Pharmacology and Therapeutics 19: 426–434, 1976

    PubMed  CAS  Google Scholar 

  • Thompson GA, Myers JA, Turner PA, Denson DA, Coyle DE, et al. Influence of cimetidine on bupivacaine disposition in rat and monkey. Drug Metabolism and Disposition 12: 625–630, 1984

    PubMed  CAS  Google Scholar 

  • Tomson G, Garle M, Thalme B, Nisell H, Nylund L, et al. Maternal kinetics and transplacental passage of pethidine during labour. British Journal of Clinical Pharmacology 13: 653–659, 1982

    Article  PubMed  CAS  Google Scholar 

  • Tsuei SE, Petersen MC, Ashley JJ, McBride WG, Moore RG. Disposition of synthetic glucocorticoids, II: dexamethasone in parturient women. Clinical Pharmacology and Therapeutics 28: 88–98, 1980

    Article  PubMed  CAS  Google Scholar 

  • Tucker GT, Boyes RN, Bridenbaugh PO, Moore DC. Binding of anilide-type local anaesthetics in human plasma, II: implications in vivo, with special reference to transplacental distribution. Anesthesiology 33: 304–314, 1970

    Article  PubMed  CAS  Google Scholar 

  • Virtanen R, Kanto J, Iisalo E, Iisalo EUM, Salo M, et al. Pharmacokinetic studies with atropine with special reference to age. Acta Anaesthesiologica Scandinavica 26: 297–300, 1982

    Article  PubMed  CAS  Google Scholar 

  • Waddell WJ, Marlowe C. Transfer of drugs across the placenta. Pharmacology and Therapeutics 14: 375–390, 1981

    Article  PubMed  CAS  Google Scholar 

  • Wallace S. Altered plasma albumin in the newborn infant. British Journal of Clinical Pharmacology 14: 82–85, 1977

    Article  Google Scholar 

  • Wood M, Wood AJJ. Changes in plasma drug binding and α1 acid glycoprotein in mother and newborn infant. Clinical Pharmacology and Therapeutics 29: 522–526, 1981

    Article  PubMed  CAS  Google Scholar 

  • Yerby MS, Friel PN, Miller DQ. Carbamazepine protein binding and disposition in pregnancy. Therapeutic Drug Monitoring 7: 269–273, 1985

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, M.D., Abramson, F.P. The Significance of Plasma Protein Binding on the Fetal/Maternal Distribution of Drugs at Steady-State. Clin-Pharmacokinet 14, 156–170 (1988). https://doi.org/10.2165/00003088-198814030-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-198814030-00004

Keywords

Navigation