Skip to main content

Advertisement

Log in

Clinical Pharmacokinetics in Organ Transplant Patients

  • Review Article
  • Clinical Pharmacokinetics and Disease Processes
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Diseases of the liver, kidney and heart influence the pharmacokinetics of several drugs. Organ transplantation is an accepted therapeutic option for the treatment of several disease states associated with these organs. Recently, there has been an increase in both graft and patient survival after transplantation of the liver, heart, kidney and bone marrow. Such patients normally receive a wide range of drugs, and optimisation of drug therapy requires a thorough understanding of the pharmacokinetics and pharmacodynamics of these drugs in transplant patients. However, only limited studies have been carried out to characterise drug kinetics in these situations. Available information indicates that drug kinetics cannot be considered normal in transplant patients. Drug absorption generally appears to be similar to that in healthy subjects. The plasma protein binding of drugs that primarily bind to albumin increases after transplantation, but remains lower than that observed in healthy subjects. While the binding of certain basic drugs may increase after transplantation due to an increase in the concentration of α1-acid glycoprotein, a lower albumin concentration may mask this effect. Oxidative and conjugative metabolism as measured by the kinetics of antipyrine (phenazone) and paracetamol (acetaminophen) is normal, while the metabolism of steroids may be impaired. Serum creatinine does not appear to be a good indicator of the Junctional status of the kidney in transplant patients. It is also important to realise that there will be time-dependent changes in several kinetic parameters of drugs due to improvement in the physiological function from that associated with the disease state to that of the normal state. Individualisation and close monitoring of drug therapy is necessary in transplant patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal RP, McPherson RA, Threatte GA. Assessment of cyclosporin A in whole blood and plasma in five patients with different hematocrits. Therapeutic Drug Monitoring 7: 61–65, 1985

    Article  PubMed  CAS  Google Scholar 

  • Agarwal RP, McPherson RA, Threatte GA. Evidence of a cyclosporine binding protein in human erythrocytes. Transplantation 42: 627–632, 1986

    Article  PubMed  CAS  Google Scholar 

  • Agarwal RP, Threatte GA, McPherson RA. Temperature dependent binding of cyclosporine to an erythrocyte protein. Clinical Chemistry 23: 481–485, 1987

    Google Scholar 

  • Alexander DF, Horning L, Bowers LD. Cyclosporine metabolic disposition after oral administration in pretransplant end stage renal disease patients. Transplantation Proceedings 20: 499–508, 1988

    PubMed  CAS  Google Scholar 

  • Anderson KV, Brettell HR, Alkawa JK. C14-labelled hydrochlorothiazide in human beings. Archives of Internal Medicine 107: 736–742, 1961

    Article  PubMed  CAS  Google Scholar 

  • Arunsen KF, Ekelund G, Kindmark W, Laurell CB. Sequential changes of plasma proteins after surgical trauma. Scandinavian Journal of Clinical Laboratory Investigation 29 (Suppl. 124): 127–136, 1972

    Article  Google Scholar 

  • Atkinson K, Biggs JC, Britton E, Short R, Mrongovius R, et al. Oral administration of cyclosporine A for recipients of allogenic marrow transplants: implications of clinical gut dysfunction. British Journal of Haematology 56: 223–231, 1984

    Article  PubMed  CAS  Google Scholar 

  • Atkinson K, Boland J, Britton K, Biggs J. Blood and tissue distribution of cyclosporine in humans and mice. Transplantation Proceedings 15: 2430–2449, 1983

    CAS  Google Scholar 

  • Augustine JA, Zemaitis MA. The effect of cyclosporine A on hepatic microsomal drug metabolism in rat. Drug Metabolism and Disposition 14: 73–78, 1986

    PubMed  CAS  Google Scholar 

  • Bach JF, Dardenne M. Serum immunosuppressive activity of azathioprine in normal subjects and patients with liver disease. Proceedings of the Royal Society of Medicine 64: 260–263, 1972

    Google Scholar 

  • Benet LZ, Frey BM, Frey FJ, Ding TL, Tsang S, et al. Immunopharmacokinetics. In Breimer & Speiser (Eds) Topics in pharmaceutical sciences, pp. 19–32, Elsevier, North Holland, 1981

    Google Scholar 

  • Benet LZ, Frey FJ, Amend WJC, Lozada F, Frey BM. Endogenous and exogenous glucocorticoids in Cushingoid patients. Drug Intelligence and Clinical Pharmacy 16: 863–868, 1982

    PubMed  CAS  Google Scholar 

  • Benowitz NL. Effect of cardiac disease on pharmacokinetics. In Benet et al. (Eds) Pharmacokinetic basis for drug treatment, pp. 89–103, Raven Press, New York, 1984

    Google Scholar 

  • Benowitz NL, Meister W. Pharmacokinetics in patients with cardiac failure. Clinical Pharmacokinetics 1: 389–405, 1976

    Article  PubMed  CAS  Google Scholar 

  • Berkowitz ID, Croll MN, Likoff W. Malabsorption as a complication of congestive heart failure. American Journal of Cardiology 11: 43–47, 1963

    Article  PubMed  CAS  Google Scholar 

  • Bertault-Peres P, Maraninchi D, Carcassunne Y, Cano JP, Barbet J. Clinical pharmacokinetics of Ciclosporin A in bone marrow transplant patients. Cancer Chemotherapy and Pharmacology 15: 76–81, 1985

    Article  PubMed  CAS  Google Scholar 

  • Blaschke TF. Protein binding and kinetics of drugs in liver disease. Clinical Pharmacokinetics 2: 32–44, 1977

    Article  PubMed  CAS  Google Scholar 

  • Boekenoogen SJ, Szefler SJ, Jusko WJ. Prednisolone disposition and protein binding in oral contraceptive users. Journal of Clinical Endocrinology and Metabolism 56: 702–709, 1983

    Article  PubMed  CAS  Google Scholar 

  • Bourbigot B, Guiserix J, Airiau J, Bressollette L, Morin JF, et al. Nicardipine increases cyclosporin blood levels. Lancet 1: 1447, 1986

    Article  PubMed  CAS  Google Scholar 

  • Buffington GA, Dominguez JH, Piering WF, Hebert LA, Kauffman HM, et al. Interaction of rifampin and glucocorticoids — adverse effect on renal allograft function. Journal of the American Medical Association 236: 1958–1960, 1976

    Article  PubMed  CAS  Google Scholar 

  • Burckart GJ, Ptachcinski RJ, Jones DH, Howrie DL, Venkataramanan R, et al. Impaired clearance of ceftizoxime and cefotaxime after orthotopic liver transplantation. Antimicrobial Agents and Chemotherapy 31: 323–324, 1987

    Article  PubMed  CAS  Google Scholar 

  • Burckart GJ, Starzl TE, Venkataramanan R, Hashim H, Wong L, et al. Excretion of cyclosporine and its metabolites in human bile. Transplantation Proceedings 18: 46–49, 1986b

    PubMed  CAS  Google Scholar 

  • Burckart G, Starzl T, Williams L, Sanghvi A, Gartner C, et al. Cyclosporine monitoring and pharmacokinetics in pediatric liver transplant patients. Transplantation Proceedings 17: 1172–1175, 1985

    PubMed  Google Scholar 

  • Burckart GJ, Venkataramanan R, Ptachcinski RJ. Cyclosporine. In Taylor et al. (Eds) A textbook for the clinical application of therapeutic drug monitoring, pp. 339–352, Abbott Laboratories, Texas, 1986d

    Google Scholar 

  • Burckart GJ, Venkataramanan R, Ptachcinski RJ, Starzl TE, Gartner CJ, et al. Cyclosporine absorption following orthotopic liver transplantation. Journal of Clinical Pharmacology 26: 647–651, 1986a

    PubMed  CAS  Google Scholar 

  • Burckart GJ, Venkataramanan R, Ptachcinski RJ, Starzl TE, Griffith BP, et al. Cyclosporine pharmacokinetic profiles in liver, heart and kidney transplant patients as determined by high performance liquid chromatography. Transplantation Proceedings 18: 129–136, 1986c

    PubMed  CAS  Google Scholar 

  • Canafax DM, Cipolle RJ, Hrushesky WJM, Rabatin JT, Graves NM, et al. The chronopharmacokinetics of cyclosporine and its metabolites in recipients of pancreas allografts. Transplantation Proceedings 20: 471–477, 1988

    PubMed  CAS  Google Scholar 

  • Carstensen H, Jacobsen N, Dreperink H. Interaction between cyclosporine A and phenobarbital. British Journal of Clinical Pharmacology 21: 550, 1986

    Article  PubMed  CAS  Google Scholar 

  • Cassidy MJD, Van Zyl-Smit R, Pascoe MD, Swanepoel CR, Jacobson JE. Effect of rifampicin on cyclosporin A. Blood levels in a renal transplant recipient. Nephron 41: 207–208, 1985

    Article  PubMed  CAS  Google Scholar 

  • Chan GLC, Canafax PM, Johnson CA. The therapeutic use of azathioprine in renal transplantation. Pharmacotherapy 7: 165–177, 1987

    PubMed  CAS  Google Scholar 

  • Chang TW, Kung PC, Gingran SP, Goldstein G. Does OKT3 monoclonal antibody react with an antigen recognition structure on human T cells. Proceedings of the National Academy of Sciences 78: 1805, 1981

    Article  CAS  Google Scholar 

  • Chaun P, Weiss YA, Safar ME, Lavene DE, Georges DR. Pindolol availability in hypertensive patients with normal and impaired renal function. Clinical Pharmacology and Therapeutics 22: 505–510, 1977

    Google Scholar 

  • Craig RM, Murphy P, Gibson TP, Quintanilla A, Chao GC. Kinetic analysis of d-xylose absorption in normal subjects and in patients with chronic renal failure. Journal of Laboratory Clinical Medicine 101: 496–506, 1983

    CAS  Google Scholar 

  • Crouthamul WG. The effect of congestive heart failure on quinidine pharmacokinetics. American Heart Journal 90: 335–339, 1975

    Article  Google Scholar 

  • Deray G, LeHoang P, Cacoub P, Assogba U, Grippon P, et al. Oral contraceptive interaction with cyclosporin. Lancet 1: 158–159, 1987

    Article  PubMed  CAS  Google Scholar 

  • DeRiberolles C, Franco D, Lecompte Y, Blondeau B, Chauvaud S, et al. Early recovery of albumin synthesis after liver transplantation. European Surgical Research 7: 164–169, 1975

    Article  CAS  Google Scholar 

  • Ding TL, Gambertoglio JG, Amend WJC, Birnbaum J, Benet LZ. Azathioprine (AZA) bioavailability and pharmacokinetics in kidney transplant patients. Clinical Pharmacology and Therapeutics 27: 250, 1980

    Google Scholar 

  • Dorian P, Strauss M, Ogilvie RI, David T, Cardella CJ. Cyclosporine induced digoxin toxicity — a new drug interaction. XI International Congress on Transplantation, Helsinki, pp. 32–45, 1986

  • Drayer DE. Active drug metabolites and renal failure. American Journal of Medicine 62: 486–489, 1977

    Article  PubMed  CAS  Google Scholar 

  • Dromgoole SH. The effect of uremia and kidney transplantation on the binding capacity of albumin. Clinica Chimica Acta 52: 301–303, 1974

    Article  CAS  Google Scholar 

  • East C, Alivizatos PA, Grundy SM, Jones PH, Farmer JA. Rhabdomyolysis in patients receiving lovastatin after cardiac transplantation. New England Journal of Medicine 318: 47–48, 1988

    Article  PubMed  CAS  Google Scholar 

  • Ebling WF, Milsap RL, Szefler SJ, Jusko WJ. 6α methylprednisolone and 6α methylprednisone plasma protein binding in humans and rabbits. Journal of Pharmaceutical Sciences 75: 760–763, 1986

    Article  PubMed  CAS  Google Scholar 

  • Elion GB, Callahan S, Nathan H, Bieber S, Rundles BW, et al. Potentiation by inhibition of drug degradation: 6 substituted purines and xanthine oxidase. Biochemical Pharmacology 12: 85–93, 1963

    Article  CAS  Google Scholar 

  • Elion GB, Hitchings GH. Azathioprine. In Eichler et al. (Eds) Handbook of experimental pharmacology, Vol. 38, pp. 404–425, Springer-Verlag, New York, 1975

    Google Scholar 

  • English J, Chakraborty J, Marks V, Trigger DJ, Thomson AG. Prednisolone levels in the plasma and urine. A study of two preparations in man. British Journal of Clinical Pharmacology 2: 327–332, 1975

    Article  PubMed  CAS  Google Scholar 

  • English J, Dunne M, Marks V. Diurnal variation in prednisolone kinetics. Clinical Pharmacology and Therapeutics 33: 381–385, 1983

    Article  PubMed  CAS  Google Scholar 

  • Eradiri O, Jamili F, Thomson A. Interaction of metronidazole with phenobarbital, Cimetidine, prednisone and sulfasalazine in Crohn’s disease. Biopharmaceutics and Drug Disposition 9: 219–227, 1988

    Article  CAS  Google Scholar 

  • Erickson BG, Todo S, Lynch S, Kam I, Ptachcinski RJ, et al. Role of bile and bile salts on cyclosporine absorption in dogs. Transplantation Proceedings 19: 1248–1249, 1987

    Google Scholar 

  • Ferguson RM, Sutherland DER, Simmons RL, Najarian JS. Ketoconazole, cyclosporin metabolism and renal transplantation. Lancet 2: 882–883, 1982

    Article  PubMed  CAS  Google Scholar 

  • Fletcher SM, Katz AR, Rogers AJ, Van Buren C, Kahan BD. The presence of cyclosporine in body tissues and fluids during pregnancy. American Journal of Kidney Diseases 1: 60–65, 1985

    Google Scholar 

  • Follath F, Wenk M, Vozeh S, Thiel G, Brunner F, et al. Intravenous cyclosporine kinetics in renal failure. Clinical Pharmacology and Therapeutics 34: 638–643, 1983

    Article  PubMed  CAS  Google Scholar 

  • Freeman DJ, Laupacis A, Keown PA, Stiller CR, Carruthers SG. Evaluation of cyclosporin-phenytoin interaction with observation on cyclosporin metabolites. British Journal of Clinical Pharmacology 18: 887, 1984

    Article  PubMed  CAS  Google Scholar 

  • Frey BM, Frey FJ. Estimation of transcortin concentration by measurements of plasma protein binding of prednisolone and by electroimmunodiffusion. British Journal of Clinical Pharmacology 13: 245–248, 1982

    Article  PubMed  CAS  Google Scholar 

  • Frey BM, Frey FJ, Wegmuller E, Holder J. Proteinurie nach Nierentransplantation. Schwiezerische Medizinische Wochenschrift 107: 1181–1190, 1977

    CAS  Google Scholar 

  • Frey BM, Seeberger M, Frey FJ. Pharmacokinetics of 3 prednisolone prodrugs — evidence of therapeutic inequivalence in renal transplant patients with rejection. Transplantation 39: 270–274, 1985

    Article  PubMed  CAS  Google Scholar 

  • Frey FJ. Kinetics and dynamics of prednisolone. Endocrine Reviews 8: 453–473, 1987

    Article  PubMed  CAS  Google Scholar 

  • Frey FJ, Amend WJC, Lozada F, Frey BM, Holford NHG, et al. Pharmacokinetics of prednisolone and endogenous hydrocortisone levels in Cushingoid and non-Cushingoid patients. European Journal of Clinical Pharmacology 21: 235–242, 1981

    Article  PubMed  CAS  Google Scholar 

  • Frey FJ, Horber FF, Frey BM. Trough levels and concentration time curve of cyclosporine in patients undergoing renal transplantation. Clinical Pharmacology and Therapeutics 43: 55–62, 1988

    Article  PubMed  CAS  Google Scholar 

  • Frey FJ, Schnetzer A, Horber FF, Frey BM. Evidence that cyclosporine does not affect the metabolism of prednisolone after renal transplantation. Transplantation 43: 494–498, 1987

    Article  PubMed  CAS  Google Scholar 

  • Gambertoglio JG. Effects of renal disease: altered pharmacokinetics. In Benet et al. (Eds) Pharmacokinetic basis for drug treatment, pp. 149–172, Raven Press, New York, 1984

    Google Scholar 

  • Gambertoglio JG, Amend WJC, Benet LZ. Pharmacokinetics and bioavailability of prednisone and prednisolone in healthy volunteers and patients: a review. Journal of Pharmacokinetics and Bioipharmaceutics 8: 1–52, 1980a

    Article  CAS  Google Scholar 

  • Gambertoglio JG, Frey FJ, Holford NH, Birnbaum JL, Lizak PS, et al. Prednisone and prednisolone bioavailability in renal transplant patients. Kidney International 21: 621–626, 1982

    Article  PubMed  CAS  Google Scholar 

  • Gambertoglio JG, Vincenti F, Feduska NJ, Birbaum J, Salvetierra O, et al. Prednisolone disposition in Cushingoid and non-Cushingoid kidney transplant patients. Journal of Clinical Endocrinology and Metabolism 51: 561–565, 1980b

    Article  PubMed  CAS  Google Scholar 

  • Gibaldi M, Perrier D. Pharmacokinetics, 2nd ed., pp. 319–354, Marcel Dekker, Inc., New York, 1982

    Google Scholar 

  • Gibson GG, Giacomini KM, Briggs WA, Whitman W, Levy G. Propoxyphene and norpropoxyphene plasma concentrations in the anephric patients. Clinical Pharmacology and Therapeutics 27: 665–670, 1980

    Article  PubMed  CAS  Google Scholar 

  • Goldstein G, Fucello AJ, Norman DJ, Shield CF, Colvin RB, et al. OKT3 monoclonal antibody plasma levels during therapy and the subsequent development of host antibodies to OKT3. Transplantation 42: 507–511, 1986

    Article  PubMed  CAS  Google Scholar 

  • Graham GG, Champion CD, Day RO, Paull PD. Patterns of plasma concentrations and urinary excretion of salicylate in rheumatoid arthritis. Clinical Pharmacology and Therapeutics 22: 410–420, 1977

    PubMed  CAS  Google Scholar 

  • Grevel J. Absorption of cyclosporine A after oral dosing. Transplantation Proceedings 18 (Suppl. 5): 9–15, 1986

    PubMed  CAS  Google Scholar 

  • Grevel J, Neusch E, Abische E, Kutz K. Pharmacokinetics of oral cyclosporin A (Sandimmune) in healthy subjects. European Journal of Clinical Pharmacology 31: 211–216, 1986

    Article  PubMed  CAS  Google Scholar 

  • Grossman SH, Davis D, Kitchell BB, Shand DG, Routledge RA. Diazepam and lidocaine plasma protein binding in renal disease. Clinical Pharmacology and Therapeutics 31: 350–357, 1982

    Article  PubMed  CAS  Google Scholar 

  • Groth CG, Kashiwagi W, Torisu M, Schroter G, Gustafsson A, et al. Protein metabolism in human liver transplant recipients. Erstes Internationales Bonner Leber Transplantations-Symposium, Bonn 23–25 June, 1972

  • Gupta SK, Bakran A, Johnson WG, Rowland M. Erythromycin enhances the absorption of cyclosporin. British Journal of Clinical Pharmacology 25: 401–402, 1988

    Article  PubMed  CAS  Google Scholar 

  • Gupta SK, Legg B, Solomon LR, Johnsson RWG, Rowland M. Pharmacokinetics of cyclosporin: influence of rate of constant intravenous infusion in renal transplant patients. British Journal of Clinical Pharmacology 24: 519–526, 1987

    Article  PubMed  CAS  Google Scholar 

  • Hartman NR, Trimble LA, Vederas JC, Jardine I. An acid metabolite of cyclosporine. Biochemical Biophysical Research Communication 133: 964–971, 1985

    Article  CAS  Google Scholar 

  • Hassan MMA, Al-Yahya MA. Cyclosporine. In Florey (Ed.) Analytical Profiles of Drug Substances, pp. 147–206, Academic Press, Inc., New York, 1987

    Google Scholar 

  • Henderson RG, Wheatley T, English J, Chakraborty J, Marks V. Variation in plasma prednisolone concentrations in renal transplant recipients given enteric coated prednisolone. British Medical Journal 1: 1534–1536, 1979

    Article  PubMed  CAS  Google Scholar 

  • Henricsson S, Lindholm A. Inhibition of cyclosporine metabolism by other drugs in vitro. Transplantation Proceedings 20: 569–571, 1988

    PubMed  CAS  Google Scholar 

  • Hepner GW, Veseue S, Tantum KR. Reduced drug elimination in congestive heart failure. Studies using aminopyrine and model drug. American Journal of Medicine 65: 271–276, 1978

    Article  CAS  Google Scholar 

  • Hoffman AF. A physicochemical approach to the intraluminal phase of fat absorption. Gastroenterology 50: 56–64, 1966

    Google Scholar 

  • Homeida M, Jackson L, Roberts CJC. Decreased first pass metabolizing of labetalol in chronic liver disease. British Journal of Medicine 2: 1048–1050, 1978

    Article  CAS  Google Scholar 

  • Hows JM, Chipping PM, Fairhead S, Smith J, Baughan A, et al. Nephrotoxicity in bone marrow transplant recipients treated with cyclosporin A. British Journal of Haematology 54: 69–78, 1983

    Article  PubMed  CAS  Google Scholar 

  • Huang ML. Drug disposition in liver transplant patients. A dissertation submitted to the University of Pittsburgh in partial fulfillment of the degree of Doctor of Philosophy, 1987

    Google Scholar 

  • Huang ML, Burckart GJ, Venkataramanan R. Sensitive high performance liquid chromatographic analysis of vitamin E and vitamin A using ampherometric and ultraviolet detection. Journal of Chromatography 380: 321–338, 1986

    Article  Google Scholar 

  • Huang ML, Venkataramanan R, Burckart GJ, Ptachcinski RJ, Van Thiel DH, et al. Drug binding proteins in liver transplant patients. Journal of Clinical Pharmacology, in press, 1988

    Google Scholar 

  • Huet PM, Villeneuve JP. Determinants of drug disposition in patients with cirrhosis. Hepatology 3: 913–918, 1983

    Article  PubMed  CAS  Google Scholar 

  • Jarowenko MV, Van Buren CT, Kramer WG, Lorber MI, Fletchner SM, et al. Ranitidine, Cimetidine and the cyclosporine treated patient. Transplantation 42: 311, 1986

    Article  PubMed  CAS  Google Scholar 

  • Johnston A, Marsden JT, Hla K, Henry JA, Holz DW. The effect of vehicle on the oral absorption of cyclosporine. British Journal of Clinical Pharmacology 21: 331–333, 1986

    Article  PubMed  CAS  Google Scholar 

  • Jubiz W, Meikle AW. Alterations of glucocorticoid actions by other drugs and disease states. Drugs 12: 113–121, 1979

    Article  Google Scholar 

  • Jusko WJ, Rose JQ. Monitoring prednisone and prednisolone. Therapeutic Drug Monitoring 2: 169–176, 1980

    Article  PubMed  CAS  Google Scholar 

  • Kahan BD. Individualization of cyclosporine therapy — using pharmacokinetic and pharmacodynamic parameters. Transplantation 5: 457–476, 1985

    Article  Google Scholar 

  • Kahan BD, Reid M, Newburger J. Pharmacokinetics of cyclosporine in human renal transplantation. Transplantation Proceedings 15: 446–453, 1983

    Google Scholar 

  • Kahan B, Kramer WG, Wideman C, Flechner SM, Lorber MI, et al. Demographic factors affecting the pharmacokinetics of cyclosporine estimated by radioimmunoassay. Transplantation 41: 459–463, 1986a

    Article  PubMed  CAS  Google Scholar 

  • Kahan B, Kramer WG, Wideman CA, Frazier OH, Lorber MI, et al. Analysis of pharmacokinetic profile in 232 renal and 87 cardiac allograft recipients treated with cyclosporine. Transplantation Proceedings 18: 115–119, 1986b

    PubMed  CAS  Google Scholar 

  • Kasiske BL, Awni WM, Duthoy-Heim KL, Rose M, Rao VK, et al. Alterations in cyclosporine pharmacokinetics after renal transplantation are linked to rapid increases in hematocrit, lipoproteins and serum protein. Transplantation Proceedings 20: 485–486, 1988

    PubMed  CAS  Google Scholar 

  • Kehrer BH, Whitington PF, Black AD. The effect of roux-en-y biliary enterostomy on the absorption of cyclosporine: relevance to poor drug bioavailability in children after orthotopic liver transplantation. Transplantation Proceedings 20: 523–528, 1988

    PubMed  CAS  Google Scholar 

  • Kennedy MS, Deeg HJ, Siegel M, Crowley JJ, Storb R, et al. Acute renal toxicity with combined use of amphotericin B and cyclosporine after marrow transplantation. Transplantation 35: 211–215, 1983

    Article  PubMed  CAS  Google Scholar 

  • Keogh A, Day R, Critchley L, Duggin G, Baron D. The effect of food and cholestyramine on the absorption of cyclosporin in cardiac transplant recipients. Transplantation Proceedings 20: 27–30, 1988

    PubMed  CAS  Google Scholar 

  • Keown PA, Laupacis A, Carruthers G, Stawecki M, Koegler J. Interaction between Phenytoin and cyclosporine following organ transplantation. Transplantation 38: 304–306, 1984

    PubMed  CAS  Google Scholar 

  • Klintmalm G, Sawe J, Ringden O. Cyclosporine plasma levels in renal transplant patients. Transplantation 39: 132–137, 1985

    Article  PubMed  CAS  Google Scholar 

  • Klotz U, Avant GR, Hoyumpa A, et al. The effect of age and liver disease on the disposition and elimination of diazepam in adult man. Journal of Clinical Investigation 55: 347–359, 1975

    Article  PubMed  CAS  Google Scholar 

  • Koch-Weser J. Pharmacokinetics of procainamide in man. Annals of the New York Academy of Science 179: 370–382, 1971

    Article  CAS  Google Scholar 

  • Koneru B, Hartner C, Iwatsuki S, Starzl TE. Effect of danazol on cyclosporine pharmacokinetics. Transplantation 45: 1001, 1988

    Article  PubMed  CAS  Google Scholar 

  • Koopman BJ, van der Molen JC, Haagsma EB, Huizenga JR, Krom RAF, et al. Measurement of prednisolone and some of its metabolites in urine of patients after orthotopic liver transplantation as a means of monitoring prednisolone absorption. Journal of Clinical Chemistry and Clinical Biochemistry 28: 831–839, 1986

    Google Scholar 

  • Kozower M, Veatch L, Kaplan MM. Decreased clearance of prednisolone, a factor in the development of corticosteroid side effects. Journal of Clinical Endocrinology and Metabolism 38: 407–412, 1974

    Article  PubMed  CAS  Google Scholar 

  • Laflin MJ. Interaction of pancuronium and corticosteroids. Anesthesiology 47: 471–472, 1977

    Article  PubMed  CAS  Google Scholar 

  • Landgraf R, Landgraf-Leurs MMC, Nusser J, Hillebrand G, Iiiner WD, et al. Effect of somatostatin analog (SM5201-995) on cyclosporine levels. Transplantation 44: 724–725, 1987

    Article  PubMed  CAS  Google Scholar 

  • Langhoff E, Madsen S. Rapid metabolism of cyclosporin and prednisone in kidney transplant patient receiving tuberculostatic treatment. Lancet 2: 1031, 1983

    Article  PubMed  CAS  Google Scholar 

  • Langhoff E, Madsen S, Flachs H, Olgaard K, Ladefoged J, et al. Inhibition of prednisolone metabolism by cyclosporine in kidney transplanted patients. Transplantation 39: 107–109, 1985

    Article  PubMed  CAS  Google Scholar 

  • Legg B, Rowland M. Cyclosporin: measurement of fraction unbound in plasma. Journal of Pharmacy and Pharmacology 39: 599–603, 1987

    Article  PubMed  CAS  Google Scholar 

  • Legg B, Rowland M. Saturable binding of cyclosporine A to erythrocyte. Estimation of binding parameters in renal transplant patients and implications for bioavailability assessment. Pharmaceutical Research 5: 80–85, 1988

    Article  PubMed  CAS  Google Scholar 

  • Legier UF, Frey FJ, Benet LZ. Prednisolone clearance at steady state in man. Journal of Clinical Endocrinology and Metabolism 55: 762–767, 1982

    Article  Google Scholar 

  • Lele P, Peterson P, Yang S, Jarrell B, Burke JF. Cyclosporine and tegretol — another drug interaction. Kidney International 27: 541, 1985

    Google Scholar 

  • Lemaire M, Pardridge WM, Chaudhuri G. Influence of blood components on the tissue uptake indices of cyclosporine in rats. Journal of Pharmacology and Experimental Therapeutics 244: 740–744, 1988

    PubMed  CAS  Google Scholar 

  • Lemaire M, Tillement JP. Role of lipoproteins and erythrocytes in the in vitro binding and distribution of cyclosporine A in the blood. Journal of Pharmacy and Pharmacology 34: 715–718, 1982

    Article  PubMed  CAS  Google Scholar 

  • Lennard L, Braun CB, Fox M, Maddocks JL. Azathioprine metabolism in kidney transplant recipients. British Journal of Clinical Pharmacology 18: 673–700, 1984

    Article  Google Scholar 

  • Lensmeyer GL, Wiebe DA, Carlson IH. Deposition of nine metabolites of cyclosporine in human tissues, bile, urine and whole blood. Transplantation Proceedings 20: 614–622, 1988

    PubMed  CAS  Google Scholar 

  • Levy G, Baliah T, Procknal JA. Effect of renal transplantation on protein binding of drugs in serum of donor and recipient. Clinical Pharmacology and Therapeutics 20: 512–516, 1976

    PubMed  CAS  Google Scholar 

  • Lin SN, Jessup K, Floyd M, Wang TF, Van Buren CT, et al. Quantitation of plasma azathioprine and 6-mercaptopurine levels in renal transplant patients. Transplantation 29: 290–294, 1980

    Article  PubMed  CAS  Google Scholar 

  • Lindberg A, Odlind B, Tufveson G, Lindstrum B, Gabrielsson J. The pharmacokinetics of cyclosporine A in uremic patients. Transplantation Proceedings 18: 146–152, 1986

    Google Scholar 

  • Lindholm A, Henricsson S. Verapamil inhibits cyclosporin metabolism. Lancet 1: 1262–1263, 1987

    Article  PubMed  CAS  Google Scholar 

  • Lindholm A, Henricsson S, Gang P. The free fraction of cyclosporine in plasma. Clinical findings with a new method. Transplantation Proceedings 20: 377–381, 1988

    PubMed  CAS  Google Scholar 

  • Lockiec F, Devergie A, Poirier O, Gluckman E. Pharmacologic monitoring and the clinical use of cyclosporine. Transplantation Proceedings 15: 2442–2445, 1983

    Google Scholar 

  • Lockiec F, Fischer A, Gluckman E. A safer approach to the clinical use of cyclosporine. The predose calculation. Transplantation Proceedings 18: 194–199, 1986

    Google Scholar 

  • Maddocks JL. Clinical pharmacological observations on azathioprine in kidney transplant patients. Clinical Science and Molecular Medicine 55: 20P, 1978

    Google Scholar 

  • Maurer G. Metabolism of cyclosporine. Transplantation Proceedings 17 (Suppl.): 19–26, 1985

    PubMed  CAS  Google Scholar 

  • Maurer G, Loosli HR, Schreier E, Keller B. Disposition of cyclosporine in several animal species and man. Drug Metabolism and Disposition 12: 120–126, 1984

    PubMed  CAS  Google Scholar 

  • McAllister WAC, Thompson PJ, Al-Habet SM, Rogers HJ. Rifampin reduces effectiveness and bioavailability of prednisolone. British Medical Journal 286: 923–925, 1983

    Article  PubMed  CAS  Google Scholar 

  • Mehta MU, Venkataramanan R, Burckart GJ, Ptachcinski RJ, Delamos B, et al. Effect of bile on cyclosporine absorption in transplant patients. British Journal of Clinical Pharmacology 25: 579–584, 1988

    Article  PubMed  CAS  Google Scholar 

  • Mehta MU, Vankataramanan R, Burckart GJ, Ptachcinski RJ, Yang SL, et al. Antipyrine kinetics in liver disease and transplantation. Clinical Pharmacology and Therapeutics 39: 372–377, 1986

    Article  PubMed  CAS  Google Scholar 

  • Meikle AW, Tyler FH. Potency and duration of action of glucocorticoids — effects of hydrocortisone, prednisone and dexamethasone on human pituitary-adrenal function. American Journal of Medicine 63: 200–207, 1977

    Article  PubMed  CAS  Google Scholar 

  • Moller BB, Ekelund B. Toxicity of cyclosporine during treatment with androgens. New England Journal of Medicine 312: 1416, 1985

    Google Scholar 

  • Mueller HE, Lie TS. The metabolism of 28 serum proteins in a human liver transplantation. Zeitschrift für Immunitätsforschung, Experimentelle und Klinische Immunologie 145: 250–274, 1973

    Google Scholar 

  • Murray BM, Edwards L, Morse GD, Kohli PR, Venuto RC. Clinically important interaction of cyclosporine and erythromycin. Transplantation 43: 602–604, 1987

    Article  PubMed  CAS  Google Scholar 

  • Murray-Lyon IM, Williams R, Freeman T, Clarke HGM. Serum proteins after a liver transplant. Nature 231: 45–46, 1971

    Article  PubMed  CAS  Google Scholar 

  • Myre SA, Schroeder TJ, Melvin DB, Clardy CW, Pesce AJ, et al. Use of cyclosporine by constant rate infusion immediately after heart transplantation. Transplantation Proceedings 20: 316–322, 1988

    PubMed  CAS  Google Scholar 

  • Neal EA, Meffin PJ, Gregory PB, Blaschke TF. Enhanced bioavailability and decreased clearance of analgesics in patients with cirrhosis. Gastroenterology 77: 96–102, 1979

    PubMed  CAS  Google Scholar 

  • Newberger J, Kahan BD. Cyclosporine pharmacokinetics in man. Transplantation Proceedings 15: 2413–2415, 1983

    Google Scholar 

  • Niederberger W, Lemaire M, Maurer G, Nussbaumer K, Wagner O. Distribution and binding of cyclosporine in blood and tissues. Transplantation Proceedings 15: 2419–2421, 1983

    CAS  Google Scholar 

  • Norman DJ, Illingworth DR, Munson J, Hosenpud J. Myolysis and acute renal failure in a heart transplant recipient receiving lovastatin. New England Journal of Medicine 318: 46–47, 1988

    Article  PubMed  CAS  Google Scholar 

  • Odar-Cederlof I. Plasma protein binding of Phenytoin and warfarin in patients undergoing renal transplantation. Clinical Pharmacokinetics 2: 147–153, 1977

    Article  PubMed  CAS  Google Scholar 

  • Odlind B, Hartvig P, Lindstrom B, Lonnerholm G, Tufveson G, et al. Serum azathioprine and 6-mercaptopurine levels and immunosuppressive activity after azathioprine in uremic patients. International Journal of Immunopharmacology 8: 1–11, 1986

    Article  PubMed  CAS  Google Scholar 

  • Ohnhaus EE, Vozeh S, Neusch E. Absolute bioavailability of digoxin in chronic renal failure. Clinical Nephrology 11: 302–306, 1979

    PubMed  CAS  Google Scholar 

  • Olsen GD, Bennett WM, Porter GA. Morphine and Phenytoin binding to plasma proteins in renal and hepatic failure. Clinical Pharmacology and Therapeutics 17: 677–684, 1975

    PubMed  CAS  Google Scholar 

  • Ost L, Bjorkhem I, van Bahr C. Clinical value of assessing prednisolone pharmacokinetics before and after renal transplantation. European Journal of Clinical Pharmacology 26: 363–369, 1984

    Article  PubMed  CAS  Google Scholar 

  • Pentikainen PJ, Neuvonen PJ, Jostell KG. Pharmacokinetics of chlormethiazole in healthy volunteers and patients with cirrhosis of the liver. European Journal of Clinical Pharmacology 17: 225–284, 1980

    Article  Google Scholar 

  • Pickup ME. Clinical pharmacokinetics of prednisone and prednisolone. Clinical Pharmacokinetics 4: 111–128, 1979

    Article  PubMed  CAS  Google Scholar 

  • Pochet JM, Pirson Y. Cyclosporin-diltiazem interaction. Lancet 2: 979, 1986

    Article  Google Scholar 

  • Powell LW, Axelsen E. Corticosteroids in liver disease: studies on the biological conversion of prednisone to prednisolone and plasma protein binding. Gut 13: 690–696, 1972

    Article  PubMed  CAS  Google Scholar 

  • Ptachcinski RJ, Burckart GJ, Rosenthal JT, Venkataramanan R, Howrie D, et al. Cyclosporine pharmacokinetics in children following cadaveric renal transplantation. Transplantation Proceedings 18: 766–767, 1986c

    Google Scholar 

  • Ptachcinski RJ, Burckart GJ, Venkataramanan R. Cyclosporine concentration determinations for monitoring and pharmacokinetic studies. Journal of Clinical Pharmacology 26: 358–366, 1986b

    PubMed  CAS  Google Scholar 

  • Ptachcinski RJ, Venkataramanan R, Burckart GJ. Clinical pharmacokinetics of cyclosporine. Clinical Pharmacokinetics 11: 107–132, 1986a

    Article  PubMed  CAS  Google Scholar 

  • Ptachcinski RJ, Venkataramanan R, Burckart GJ, Gray JA, Van Thiel DH, et al. Cyclosporine kinetics in healthy volunteers. Journal of Clinical Pharmacology 27: 243–248, 1987a

    PubMed  CAS  Google Scholar 

  • Ptachcinski RJ, Venkataramanan R, Burckart GJ, Hakala TR, Rosenthal JT, et al. Cyclosporine-high dose steroid interaction in renal transplant recipients: assessment by HPLC. Transplantation Proceedings 19: 1728–1729, 1987b

    PubMed  CAS  Google Scholar 

  • Ptachcinski RJ, Venkataramanan R, Rosenthal JT, Burckart GJ, Taylor RJ. Cyclosporine kinetics in renal transplantation. Clinical Pharmacology and Therapeutics 38: 296–300, 1985b

    Article  PubMed  CAS  Google Scholar 

  • Ptachcinski RJ, Venkataramanan R, Rosenthal JT, Burckart GJ, Taylor RJ, et al. The effect of food on cyclosporine absorption. Transplantation 40: 174–176, 1985a

    Article  PubMed  CAS  Google Scholar 

  • Reidenberg MM. The binding of drugs to plasma proteins from patients with poor renal function. Clinical Pharmacokinetics 1: 121–125, 1976

    Article  PubMed  CAS  Google Scholar 

  • Reynolds KL, Grevel J, Gibbons SY, Welsh MS, Rutzky LP, et al. Cyclosporine pharmacokinetics in uremic patients. Influence of different assay methods. Transplantation Proceedings 20: 462–465, 1988

    PubMed  CAS  Google Scholar 

  • Rodighiero V. Therapeutic drug monitoring of cyclosporin: practical applications and limitations. Clinical Pharmacokinetics 16: 27–37, 1989

    Article  PubMed  CAS  Google Scholar 

  • Ried M, Gibbons S, Kwok D, Van Buren CT, Fletchner S, et al. Cyclosporine levels in human tissues of patients treated for one week to one year. Transplantation Proceedings 15: 2434–2637, 1983

    Google Scholar 

  • Ringden O, Myrenfors P, Klintmalm G, Tyden G, Ost L. Nephrotoxicity by co-trimoxazole and cyclosporin in transplanted patients. Lancet 1: 1016–1017, 1984

    Article  PubMed  CAS  Google Scholar 

  • Roberts DE, Allen E, Routledge PA, Webb DB, Salaman JR. Are clearance pathways impaired in patients with cyclosporine nephrotoxicity. Transplantation Proceedings 18: 631–632, 1986

    Google Scholar 

  • Rocci ML, Tietze KJ, Lee J, Harris H, Danzeisen J, et al. The effect of cyclosporine on the pharmacokinetics of prednisolone in renal transplant patients. Transplantation 45: 656–659, 1988

    Article  PubMed  CAS  Google Scholar 

  • Rosano TG. Effect of hematocrit on cyclosporine (cyclosporin A) in whole blood and plasma of renal transplant patients. Clinical Chemistry 31: 410–412, 1985

    PubMed  CAS  Google Scholar 

  • Rose EA, Wilkinson A, Hawkins RA, Danovitch GM. The plasma creatinine concentration is not an accurate reflection of the glomerular filtration rate in stable renal transplant patients receiving cyclosporine. American Journal of Kidney Diseases 10: 113–117, 1987

    Google Scholar 

  • Rose J, Yurchak A, Jusko W. Dose dependent pharmacokinetics of prednisone and prednisolone in man. Journal of Pharmacokinetics and Biopharmaceutics 9: 389–417, 1981

    PubMed  CAS  Google Scholar 

  • Ross WB, Roberts D, Griffin PJA, Salaman JR. Cyclosporin interaction with danazol and norethiderone. Lancet 2: 330, 1986

    Article  Google Scholar 

  • Routledge PA, Stargel WW, Wagner GS, Shand DG. Increased alpha 1 acid glycoprotein and lidocaine disposition in myocardial infarction. Annals of Internal Medicine 93: 701–704, 1980

    PubMed  CAS  Google Scholar 

  • Rowland M, Benet LZ, Graham GG. Clearance concepts in pharmacokinetics. Journal of Pharmacokinetics and Biopharmaceutics 1: 123–136, 1973

    PubMed  CAS  Google Scholar 

  • Rowland M, Gupta SK. Cyclosporin-phenytoin interaction: reevaluation using metabolite data. British Journal of Clinical Pharmacology 24: 329–334, 1987

    Article  PubMed  CAS  Google Scholar 

  • Sandberg AA, Slaunwhite WR. Differences in metabolism of prednisolone C14 and Cortisol-C14. Journal of Clinical Endocrinology 17: 1040–1050, 1957

    Article  CAS  Google Scholar 

  • Shaw LS, Bowers L, Demers L, Freeman D, Moyer T, et al. Critical issues in cyclosporine monitoring: report to the task force on cyclosporine monitoring. Clinical Chemistry 33: 1269–1288, 1987

    CAS  Google Scholar 

  • Smith DE, Benet LZ. Plasma protein binding of furosemide in kidney transplant patients. Journal of Pharmacokinetics and Biopharmaceutics 10: 663–674, 1982

    PubMed  CAS  Google Scholar 

  • Smith DE, Gambertaglio JG, Vincenti F, Benet LZ. Furosemide kinetics and dynamics after kidney transplant. Clinical Pharmacology and Therapeutics 30: 105–113, 1981

    Article  PubMed  Google Scholar 

  • Stewart LF, Cochran E, Williams SJ. Cyclosporine disposition in patients with liver disease. Drug Intelligence and Clinical Pharmacy 19: 451, 1985

    Google Scholar 

  • Szeto H, Inturrisi C, Houde R, Saal S, Cheigh J. Accumulation of normeperidine (N) an active metabolite of meperidine (M) in patients with renal failure or cancer. Clinical Research 24: 258A, 1976

    Google Scholar 

  • Thompson JF, Chalmers DH, Hunnisett AG, Wood RFM, Morris PJ. Nephrotoxicity of trimethoprim and cotrimoxazole in renal allograft recipients treated with cyclosporine. Transplantation 36: 204–206, 1983

    Article  PubMed  CAS  Google Scholar 

  • Thompson PD, Melmon KL, Richardson JA, et al. Lidocaine pharmacokinetics in advanced heart failure, liver disease and renal failure in humans. Annals of Internal Medicine 78: 499–508, 1973

    Google Scholar 

  • Tilstone WJ, Dargie H, Dargie EN, Morgan HG, Kennedy AC. Pharmacokinetics of metolazone in normal subjects and in patients with cardiac or renal failure. Clinical Pharmacology and Therapeutics 16: 322–329, 1974

    PubMed  CAS  Google Scholar 

  • Tilstone WJ, Fine A. Furosemide kinetics in renal failure. Clinical Pharmacology and Therapeutics 23: 644–650, 1978

    PubMed  CAS  Google Scholar 

  • Townsend RJ, Albert KS, Gibson FM, Sakman E, Wagner JG. Prednisone and prednisolone kinetics — observations after liver transplantation. Clinical Pharmacy 2: 103–104, 1983

    PubMed  CAS  Google Scholar 

  • Tredger JM, Naoumov NV, Steward CM, O’Grady JG, Grevel J, et al. Influence of biliary T-tube clamping on cyclosporine pharmacokinetics in liver transplant recipients. Transplantation Proceedings 20: 512–515, 1988

    PubMed  CAS  Google Scholar 

  • Ueda CT, Lemaire M, Gsell G, Nussbaumer K. Intestinal lymphatic absorption of cyclosporin A following oral administration in an olive oil solution in rats. Biopharmaceutics and Drug Disposition 4: 113–124, 1983

    Article  CAS  Google Scholar 

  • Uribe M, Schalm SW, Summerskill WHJ, Go VLW. Oral prednisone for chronic active liver disease: dose responses and bioavailability studies. Gut 19: 1131–1135, 1978

    Article  PubMed  CAS  Google Scholar 

  • Van Scoik KG, Johnson CA, Porter WA. The pharmacology and metabolism of the thiopurine drugs 6-mercaptopurine and azathioprine. Drug Metabolism and Reviews 16: 157–174, 1985

    Article  Google Scholar 

  • Venkataramanan R, Burckart GJ, Ptachcinski RJ. Pharmacokinetics and monitoring of cyclosporine following orthotopic liver transplantation. Seminars in Liver Disease 5: 357–368, 1985b

    Article  PubMed  CAS  Google Scholar 

  • Venkataramanan R, Burckart GJ, Ptachcinski RJ, Lee A, Hardesty RL, et al. Cyclosporine pharmacokinetics in heart transplant patients. Transplantation Proceedings 18: 768–770, 1986

    Google Scholar 

  • Venkataramanan R, Kalp K, Rabinovitch M, Cuellar R, Ptachcinski RJ, et al. Conjugative drug metabolism in liver transplant patients. Transplantation Proceedings, in press, 1989

    Google Scholar 

  • Venkataramanan R, Koneru B, Wang CP, Burckart GJ, Caritis SN, et al. Cyclosporine and its metabolites in mother and baby. Transplantation 46: 468–469, 1988

    Article  PubMed  CAS  Google Scholar 

  • Venkataramanan R, Ptachcinski RJ, Burckart GJ, et al. Extraction ratio of cyclosporine in a liver transplant patient with organ rejection. Journal of Pharmaceutical Sciences 74: 901–902, 1985d

    Article  PubMed  CAS  Google Scholar 

  • Venkataramanan R, Ptachcinski RJ, Burckart GJ, Gray J, Starzl TE. Cyclosporine bioavailability in liver disease. Drug Intelligence and Clinical Pharmacy 19 (Abstract): 451, 1985a

    Google Scholar 

  • Venkataramanan R, Ptachcinski RJ, Burckart GJ, Yang SL, Starzl TE, et al. The clearance of cyclosporine by hemodialysis. Journal of Clinical Pharmacology 24: 528–531, 1984

    PubMed  CAS  Google Scholar 

  • Venkataramanan R, Ptachcinski RJ, Gray J, Burckart GJ, Van Thiel DH, et al. Cyclosporine kinetics in liver disease. Clinical Pharmacology and Therapeutics 37: 234, 1985e

    Google Scholar 

  • Venkataramanan R, Starzl TE, Yang S, Burckart GJ, Ptachcinski RJ, et al. Biliary excretion of cyclosporine in liver transplant patients. Transplantation Proceedings 17: 286–289, 1985c

    PubMed  Google Scholar 

  • Veremis SA, Maddox MS, Pollak R, Mozes MF. Subtherapeutic cyclosporine concentrations during nafcillin therapy. Transplantation 43: 913–915, 1987

    PubMed  CAS  Google Scholar 

  • Vernillet L, Moulin B, Dadoun C, LeBigot JF, Fillastre JP. Pharmacokinetics of cyclosporine A in patients with nephrotic syndrome. Transplantation Proceedings 20: 529–535, 1988

    PubMed  CAS  Google Scholar 

  • Vine W, Bowers L. Cyclosporine: structure, pharmacokinetics, therapeutic drug monitoring. Critical Reviews in Clinical Laboratory Science 25: 275–311, 1987

    Article  CAS  Google Scholar 

  • Wadhwa NK, Schroeder TJ, O’Flaherty E, Pesce AJ, Myre SA, et al. The effect of oral metoclopramide on the absorption of cyclosporine. Transplantation 43: 211, 1987a

    Article  PubMed  CAS  Google Scholar 

  • Wadhwa NK, Schroeder TJ, O’Flaherty E, Pesce AJ, Myre SA, et al. Interaction between erythromycin and cyclosporine in a kidney and pancreas allograft recipient. Therapeutic Drug Monitoring 9: 123–125, 1987b

    Article  PubMed  CAS  Google Scholar 

  • Wagner K, Henkel M, Heinemeyer G, Neumayer HH. Interaction of calcium blockers and cyclosporine. Transplantation Proceedings 20(2): 561–568, 1988

    PubMed  CAS  Google Scholar 

  • Wang CP, Burckart GJ, Ptachcinski RJ, Venkataramanan R, Schwinghammer T, et al. Cyclosporine metabolite concentrations in blood of liver, heart, kidney and bone marrow transplant patients. Transplantation Proceedings 20: 571–596, 1988

    Google Scholar 

  • Wassner SJ, Pennisi AJ, Malekz MH, Fine RN. The adverse effect of anticonvulsant therapy on renal allograft survival. Journal of Pediatrics 88: 134–137, 1976

    Article  PubMed  CAS  Google Scholar 

  • Weeke B, Weeke E, Bendiner G. The variation in twenty one serum proteins before and after renal transplantation. Acta Medica Scandinavica 189: 113–118, 1971a

    Article  PubMed  CAS  Google Scholar 

  • Weeke B, Weeke E, Bendiner G. The variation in twenty one serum proteins before and after renal transplantation. II. Changes during acute rejection. Acta Medica Scandinavica 189: 119–123, 1971b

    Article  PubMed  CAS  Google Scholar 

  • Wells JV. Albumin metabolism in patients after renal transplantation. Clinical Science 37: 221–229, 1969

    CAS  Google Scholar 

  • Wenk M, Follath F, Abisch E. Temperature dependency of apparent cyclosporin A concentrations in plasma. Clinical Chemistry 29: 1865, 1983

    PubMed  CAS  Google Scholar 

  • Wilkinson GR. Influence of hepatic disease on pharmacokinetics. In Evans et al. (Eds) Applied pharmacokinetics, pp. 116–138, Raven Press, New York, 1986

    Google Scholar 

  • Williams RL. Drug administration in hepatic disease. New England Journal of Medicine 309: 1616–1622, 1983

    Article  PubMed  CAS  Google Scholar 

  • Wood AJJ, Kornhauser DM, Wilkinson GR, Shand DG, Branch RA. The influence of cirrhosis on steady state blood concentrations of unbound propranolol after oral administration. Clinical Pharmacokinetics 3: 478–487, 1978

    Article  PubMed  CAS  Google Scholar 

  • Wood AJJ, Vestal RE, Spannuth CL, Stone WJ, Wilkinson GR, et al. Propranolol disposition in renal failure. British Journal of Clinical Pharmacology 10: 561–566, 1980

    Article  PubMed  CAS  Google Scholar 

  • Wood AJ, Lemaire M. Pharmacologic aspects of cyclosporine therapy: pharmacokinetics. Transplantation Proceedings 17 (Suppl.): 27–32, 1985

    PubMed  CAS  Google Scholar 

  • Wood AJ, Maurer G, Niederberger W, Beveridge T. Cyclosporine: pharmacokinetics, metabolism and drug interaction. Transplantation Proceedings 15: 2409–2412, 1983

    CAS  Google Scholar 

  • Yee GC, Kennedy MS. Cyclosporine. In Evans et al. (Eds) Applied pharmacokinetics, 2nd edition, pp. 826–851, Applied Therapeutics, Inc., Spokane, Washington, 1986

    Google Scholar 

  • Yee GC, Kennedy MS, Storr R, Thomas ED. Pharmacokinetics of intravenous cyclosporine in bone marrow transplant patients. Transplantation 38: 511–513, 1984

    Article  PubMed  CAS  Google Scholar 

  • Yee GC, Lennon TP, Gmur DJ, Cheney CL, Oeser D. Effect of obesity on cyclosporine disposition. Transplantation 45: 649–651, 1988

    Article  PubMed  CAS  Google Scholar 

  • Yee GC, Lennon TP, Gmar DJ, Kennedy MS, Deeg HJ. Effect of age on cyclosporine kinetics in marrow transplant recipients. Transplantation Proceedings 19: 1704–1705, 1987

    PubMed  CAS  Google Scholar 

  • Zaghloul I, Ptachcinski RJ, Burckart GJ, Van Thiel DH, Starzl TE, et al. Blood protein binding of cyclosporine in transplant patients. Journal of Clinical Pharmacology 27: 240–242, 1987

    PubMed  CAS  Google Scholar 

  • Zazgornik J, Schindler J, Gremmel F, Balcke P, Kopsa H, et al. Ranitidine does not influence the blood cyclosporin levels in renal transplant patients. Kidney International 27: 401, 1985

    Article  Google Scholar 

  • Zeevi A, Eiras G, Burckart G, Makowka L, Venkataramanan R, et al. Immunosuppressive effect of cyclosporine metabolites from human bile on alloreactive T cells. Transplantation Proceedings 20: 115–121, 1988

    PubMed  CAS  Google Scholar 

  • Zimm S, Collins JM, O’Neill D, Chabner BA, Poplock DG. Inhibition of first pass metabolism in cancer chemotherapy: interaction of 6-mercaptopurine and allopurinol. Clinical Pharmacology and Therapeutics 34: 810–816, 1983

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkataramanan, R., Habucky, K., Burckart, G.J. et al. Clinical Pharmacokinetics in Organ Transplant Patients. Clin-Pharmacokinet 16, 134–161 (1989). https://doi.org/10.2165/00003088-198916030-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-198916030-00002

Keywords

Navigation