Skip to main content
Log in

Methods of Determining Plasma and Tissue Binding of Drugs

Pharmacokinetic Consequences

  • Review Article
  • Clinical Pharmacokinetic Concepts
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

The available techniques for the investigation of drug binding to plasma and tissues protein are reviewed and the advantages and disadvantages of the various techniques stated. A comparison of different plasma protein binding techniques is made which shows that the size of the unbound fraction of drug may be influenced by the method used. Protein binding may be assayed by methods including equilibrium dialysis, ultrafiltration, ultracentrifugation, gel filtration, binding to albumin microspheres and circular dichroism. Tissue binding techniques can involve testing binding to isolated organs, tissue slices, homogenates and isolated subcellular particles. Details of the available methods to compute pharmacokinetic constants are given. Stereoselective binding has been investigated for a limited number of drugs and the difference in the binding of 2 enantiomers is usually modest. The measurement of the binding constants is often required to characterise the drug-protein interaction. Mathematical and graphical methods to compute the pharmacokinetic parameters are discussed. The implications of binding on the volume of distribution and clearance of drugs are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarons L, Grennan DM, Siddiqui M. The binding of ibuprofen to plasma proteins. European Journal of Clinical Pharmacology 25: 815–818, 1983

    Article  PubMed  CAS  Google Scholar 

  • Albani F, Riva R, Contini M, Baruzzi A. Stereoselective binding of propranolol enantiomers to human alpha-acid glycoprotein and human plasma. British Journal of Clinical Pharmacology 18: 244–246, 1984

    Article  PubMed  CAS  Google Scholar 

  • Anderson JH, Anderson RC, Iben LS. Hepatic uptake of propranolol. Journal of Pharmacology and Experimental Therapeutics 206: 172–180, 1978

    PubMed  CAS  Google Scholar 

  • Anderson MW, Orton TC, Pickett RD, Eling TE. Accumulation of amines in the isolated perfused rabbit lung. Journal of Pharmacology and Experimental Therapeutics 189: 456–466, 1974

    PubMed  CAS  Google Scholar 

  • Anderson NG. Analytical techniques for all cell fractions. Analytical Biochemistry 23: 72–83, 1968

    Article  PubMed  CAS  Google Scholar 

  • Andreasen F. Protein binding of drugs in plasma from patients with acute renal failure. Acta Pharmacologica et Toxicologica 32: 417–429, 1973

    Article  PubMed  CAS  Google Scholar 

  • Andreasen F, Christiansen EH. The influence of protein binding on vasoactivity. In Belpaire et al. (Eds) Plasma binding of drugs and its consequences, pp. 191–205, Academia Press, Ghent, 1990

    Google Scholar 

  • Angevine LS, Mehendale HM. Chlorphentermine uptake by isolated perfused rabbit lung. Toxicology and Applied Pharmacology 52: 336–346, 1980

    Article  PubMed  CAS  Google Scholar 

  • Anon. Graph Pad InPlot version 3.1 Graph PAD Software. San Diego USA 1990

  • Bachmann KA. Rapid determination of the concentration of unbound warfarin in human plasma. Research Communications in Chemical Pathology and Pharmacology 9: 379–382, 1974

    PubMed  CAS  Google Scholar 

  • Bahr C, Borga O. Uptake, metabolism and excretion of desmethylimipramine and its metabolites in the isolated perfused rat liver. Acta Pharmacologica et Toxicologica 29: 359–374, 1971

    Article  Google Scholar 

  • Balk L, Maner S, Bergstrand A, Birberg W, Pilotti A, De Pierre JW. Preparation and characterisation of subcellular fractions from the head kidney of the northern pike (esox lucius), with particular emphasis on xenobiotic-metabolising enzymes. Biochemical Pharmacology 34: 789–802, 1985

    Article  PubMed  CAS  Google Scholar 

  • Barr J, Weier AJ, Brendel K, Sipes IG. Liver slices in dynamic organ culture II: an in vitro cellular technique for the study of integrated drug metabolism using human tissue. Xenobiotica 21: 341–50, 1991

    Article  PubMed  CAS  Google Scholar 

  • Barry M, Keeling PWN, Weir D, Feely J. Severity of cirrhosis and the relationship of alpha-1-acid glycoprotein concentration to plasma protein binding of lidocaine. Clinical Pharmacology and Therapeutics 47: 366–370, 1990

    Article  PubMed  CAS  Google Scholar 

  • Beeler TJ, Schibeci A, Martonosi A. The binding of arsenazo III to cell components. Biochimica et Biophisica Acta 629: 317–327, 1980

    Article  CAS  Google Scholar 

  • Berezney R, Macaulay LK, Crane FL. The purification and biochemical characterisation of bovine liver nuclear membranes. Journal of Biological Chemistry 247: 5549–5561, 1972

    PubMed  CAS  Google Scholar 

  • Bergstrand A, Dallner G. Isolation of rough and smooth microsomes from rat liver by means of a commercially available centrifuge. Analytical Biochemistry 29: 351–356, 1969

    Article  PubMed  CAS  Google Scholar 

  • Bertilsson L, Braithwaite R, Tybring G, Garle M, Borga O. Techniques for plasma protein binding of demethylchlorimipramine. Clinical Pharmacology and Therapeutics 26: 265–271, 1979

    PubMed  CAS  Google Scholar 

  • Bickel MH, Gigon PL. Intracellular binding and metabolism of imipramine and imipramine-N-oxide. Chemico-Biological Interactions 3: 245–246, 1971

    Article  PubMed  CAS  Google Scholar 

  • Bickel MH, Raaflaub RM, Hellmuller M, Stauffer EJ. Characterization of drug distribution and binding competition by two-chamber and multi-chamber distribution dialysis. Journal of Pharmaceutical Sciences 76: 68–74, 1987

    Article  PubMed  CAS  Google Scholar 

  • Blanck TJJ, Gillis CN. β-Adrenergic receptor ligand binding by rabbit lung. Biochemical Pharmacology 28: 1903–1909, 1979

    Article  PubMed  CAS  Google Scholar 

  • Blaschke TF. Protein binding and kinetics of drugs in liver diseases. Clinical Pharmacokinetics 2: 32–44, 1977

    Article  PubMed  CAS  Google Scholar 

  • Borga O, Odar-Cedelof I, Ringberger VA, Norlin A. Protein binding of salicylate in uremic and normal plasma. Clinical Pharmacology and Therapeutics 20: 464–475, 1976

    PubMed  CAS  Google Scholar 

  • Branch RA, Jones J, Read AE. A study of factors influencing drug disposition in chronic liver disease, using the model drug (+)-propranolol. British Journal of Clinical Pharmacology 3: 243–249, 1976

    Article  PubMed  CAS  Google Scholar 

  • Breeding M. Scatchard analysis program by Biosoft, Cambridge UK 1987

  • Brodersen R, Sjodin T, Sjoholm I. Independent binding of ligands to human serum albumin. Journal of Biological Chemistry 252: 5067–5072, 1977

    PubMed  CAS  Google Scholar 

  • Brors O, Sager G, Sandnes D, Jacobsen S. Binding of theophylline in human serum determined by ultrafiltration and equilibrium dialysis. British Journal of Clinical Pharmacology 15: 393–397, 1983

    Article  PubMed  CAS  Google Scholar 

  • Buch H, Knabe J, Buzello W, Rummel W. Stereospecificity of anesthetic activity distribution, inactivation and protein binding of the optical antipodes of two N-methylated barbiturates. Journal of Pharmacology and Experimental Therapeutics 175: 709–716, 1970

    PubMed  CAS  Google Scholar 

  • Cerletti C, Coccia P, Manara L, Mennini T. Subcellular distribution of etorphine in rat brain and evidence for in vivo stereospecific binding. British Journal of Pharmacology 62: 31–38, 1978

    Article  PubMed  CAS  Google Scholar 

  • Chau KH, Yang JT. Comparison of circular dichrometers: normal and difference circular dichroism measurements. Analytical Biochemistry 46: 616–623, 1972

    Article  PubMed  CAS  Google Scholar 

  • Chignell CF. Circular dichroism studies of drug-protein complexes. Life Sciences 7: 1181–1186, 1968

    Article  PubMed  CAS  Google Scholar 

  • Chignell CF. Optical studies of drug-protein complexes III: interaction of flufenamic acid and other N-arylanthranilates with serum albumin. Molecular Pharmacology 5: 455–462, 1969

    PubMed  CAS  Google Scholar 

  • Chignell CF. Optical studies of drug-protein complexes IV: the interaction of warfarin and dicoumarol with human serum albumin. Molecular Pharmacology 6: 1–12, 1970

    PubMed  CAS  Google Scholar 

  • Choie DD, Del Campo AA, Guarino AM. Subcellular localization of cis-dichlorodiammineplatinum (II) in rat kidney and liver. Toxicology and Applied Pharmacology 55: 245–252, 1980

    Article  PubMed  CAS  Google Scholar 

  • Christensen JH, Andreasen F, Jensen EB. The binding of thiopental to serum proteins determined by ultrafiltration and equilibrium dialysis. Acta Pharmacologica et toxicologica 47: 24–32, 1980

    Article  PubMed  CAS  Google Scholar 

  • Colangelo P, Chandler M, Blouin R, McNamara P. Stereoselective binding of propranolol in the elderly. British Journal of Clinical Pharmacology 27: 519–522, 1989

    Article  PubMed  CAS  Google Scholar 

  • Colburn RW, Ng LKY, Lemberger L, Kopin I. Subcellular distribution of delta9-tetrahydrocannabinol in rat brain. Biochemical Pharmacology 23: 873–877, 1974

    Article  PubMed  CAS  Google Scholar 

  • Colowick SP, Womack FC. Binding of diffusible molecules by macromolecules: rapid measurement by rate of dialysis. Journal of Biological Chemistry 244: 774–777, 1969

    PubMed  CAS  Google Scholar 

  • Conway P, Valentovic M, Bachmann K. Tissue binding of warfarin. Research Communications in Chemical Pathology and Pharmacology 26: 309–315, 1979

    PubMed  CAS  Google Scholar 

  • Cotman C, Brown DH, Harrell BW, Anderson NG. Analytical differential centrifugation: an analysis of the sedimentation properties of synaptosomes, mitochondria and lysosomes from rat brain homogenates. Archives of Biochemistry and Biophysics 136: 436–447, 1970

    Article  PubMed  CAS  Google Scholar 

  • Damm KH, Erttmann RR, Hoene R. Species differences in plasma binding and tissue uptake of 3H-digitoxin. Naunyn-Schmiedebergs Archives of Pharmacology 291: 371–383, 1975

    Article  CAS  Google Scholar 

  • Danon A, Chen Z. Binding of imipramine to plasma proteins: effect of hyperlipoproteinemia. Clinical Pharmacology and Therapeutics 25: 316–321, 1979

    PubMed  CAS  Google Scholar 

  • D’Arcy PF, McElnay JC. Drug interactions involving the displacement of drugs from plasma protein and tissue binding site. Pharmacology and Therapeutics 17: 211–220, 1982

    Article  PubMed  Google Scholar 

  • Davis ME, Mehendale HM. Absence of metabolism of morphine during accumulation by isolated perfused rabbit lung. Drug Metabolism and Disposition 7: 425–428, 1979

    PubMed  CAS  Google Scholar 

  • Davison C. Protein binding. In La Du, et al. (Eds) Fundamentals of drug metabolism and disposition, Williams & Wilkins Company, Baltimore (1971)

    Google Scholar 

  • Di Salle E, Pacifici GM, Morselli PL. Studies on plasma protein binding of carbamazepine. Pharmacological Research Communications 6: 193–202, 1974

    Article  PubMed  Google Scholar 

  • Dollery CT, Junod AF. Concentration of (±)-propranolol in isolated, perfused lungs of rat. British Journal of Pharmacology 57: 67–71, 1976

    Article  PubMed  CAS  Google Scholar 

  • Drew G, Nicholls PJ. The concentration of basic and acidic compounds in guinea-pig lung. Journal of Pharmacy and Pharmacology 28: 84P, 1976

    PubMed  Google Scholar 

  • Dromgoole SH. The effect of haemodialysis on the binding capacity of albumin. Clinica Chimica Acta 46: 469–472, 1973

    Article  CAS  Google Scholar 

  • Dutta S, Goswami S, Lindower JO, Marks BH. Subcellular distribution of digoxin-H3 in isolated guinea-pig and rat hearts. Journal of Pharmacology and Experimental Therapeutics 159: 324–334, 1968

    PubMed  CAS  Google Scholar 

  • Dutta S, Marks BH, Stephen PM. The uptake and subcellular distribution of radio-labelled metabolites of digitoxin in the guinea-pig isolated perfused heart. British Journal of Pharmacology 56: 437–441, 1976

    Article  PubMed  CAS  Google Scholar 

  • Eap CB, Cuendet C, Baumann P. Binding of D-methadone, L-methadone, and DL-methadone to proteins in plasma of healthy volunteers: role of the variants of alpha-1-acid glycoprotein. Clinical Pharmacology and Therapeutics 47: 338–346, 1990

    Article  PubMed  CAS  Google Scholar 

  • Ehrnebo M, Agurell S, Jailing B, Boreus LO. Age differences in drug binding by plasma proteins: studies on human foetuses, neonates and adults. European Journal of Clinical Pharmacology 3: 189–193, 1971

    Article  PubMed  CAS  Google Scholar 

  • Ekman B, Sjoholm I. Improved stability of proteins immobilized in microparticles prepared by a modified emulsion polymerization technique. Journal of Pharmaceutical Sciences 67: 693–696, 1978

    Article  PubMed  CAS  Google Scholar 

  • Evans AM, Nation RL, Sansom LN, Bochner F, Somogyi AA. Stereoselective plasma protein binding of ibuprofen enantiomers. European Journal of Clinical Pharmacology 36: 283–290, 1989

    Article  PubMed  CAS  Google Scholar 

  • Evans G, Wilkinson GR, Shand DG. The disposition of propranolol. IV. A dominant role for tissue uptake in the dose-dependent extraction of propranolol by the perfused rat liver. Journal of Pharmacology and Experimental Therapeutics 186: 447–454, 1973

    PubMed  CAS  Google Scholar 

  • Feely J, Stevenson IH, Crooks J. Altered plasma protein binding of drugs in thyroid disease. Clinical Pharmacokinetics 6: 298–305, 1981

    Article  PubMed  CAS  Google Scholar 

  • Feldman HA. Mathematical theory of complex ligand-binding system at equilibrium. Analytical Biochemistry 48: 317–338, 1972

    Article  PubMed  CAS  Google Scholar 

  • Fichtl B, Bondy B, Kurz H. Binding of drugs to muscle tissue: dependence on drug concentration and lipid content of tissue. Journal of Pharmacology and Experimental Therapeutics 215: 248–253, 1980

    PubMed  CAS  Google Scholar 

  • Fichtl B, Kurz H. Binding of drugs to human muscle. European Journal of Clinical Pharmacology 14: 335–340, 1978

    Article  PubMed  CAS  Google Scholar 

  • Fichtl B, Nieciecki AV, Walter K. Tissue binding versus plasma binding of drugs: general principles and pharmacokinetic consequences. Advances in Drug Research 20: 117–166, 1991

    CAS  Google Scholar 

  • Fremstad D, Jacobsen S. Binding of quinidine in serum and heart from normal and anuric rats, and the significance for distribution. Biochemical Pharmacology 28: 2611–2616, 1979

    Article  PubMed  CAS  Google Scholar 

  • Furlong CE, Morris RG, Kandrach M, Rosen BP. A multichamber equilibrium dialysis apparatus. Analytical Biochemistry 47: 514–526, 1972

    Article  PubMed  CAS  Google Scholar 

  • Gardiner TH, Lewis JM, Shore PA. Distribution of clozapine in the rat: localization in lung. Journal of Pharmacology and Therapeutics 206: 151–157, 1978

    CAS  Google Scholar 

  • Gibaldi M, McNamara PJ. Tissue binding of drugs. Journal of Pharmaceutical Sciences 66: 1211–1212, 1977

    Article  PubMed  CAS  Google Scholar 

  • Gillette JR. The importance of tissue distribution in pharmacokinetics. Journal of Pharmacokinetics and Biopharmaceutics 1: 497–520, 1973

    CAS  Google Scholar 

  • Goldbaum LR, Smith PK. The interaction of barbiturates with serum albumin and its possible relation to their disposition and pharmacological actions. Journal of Pharmacology and Experimental Therapeutics 111: 197–209, 1954

    PubMed  CAS  Google Scholar 

  • Goldberg MA, Todoroff T. Enhancement of diphenylhydantoin binding by lipid extraction. Journal of Pharmacology and Experimental Therapeutics 196: 579–585, 1976

    PubMed  CAS  Google Scholar 

  • Gross AS, Heuer B, Eichelbaum M. Stereoselective protein binding of verapamil enantiomers. Biochemical Pharmacology 37: 4623–4627, 1988

    Article  PubMed  CAS  Google Scholar 

  • Gugler R, Azarnoff DL. Drug protein binding and the nephrotic syndrome. Clinical Pharmacokinetics 1: 25–35, 1976

    Article  PubMed  CAS  Google Scholar 

  • Hamar C, Levy G. Serum protein binding of drugs and bilirubin in newborn infants and their mother. Clinical Pharmacology and Therapeutics 28: 58–63, 1980

    Article  PubMed  CAS  Google Scholar 

  • Harashima H, Sugiyama Y, Sawada Y, Iga T, Hanano M. Comparison between in-vivo and in-vitro tissue-to-plasma unbound concentration ratios (Kp,f) of quinidine in rats. Journal of Pharmacy and Pharmacology 36: 340–342, 1984

    Article  PubMed  CAS  Google Scholar 

  • Henderson SJ, Lindup WE. Interaction of 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid, an inhibitor of plasma protein binding of uraemia, with human albumin. Biochemical Pharmacology 40: 2543–2548, 1990

    Article  PubMed  CAS  Google Scholar 

  • Hesketh TR, Doré CF. A technique for miniature dialysis. Analytical Biochemistry 49: 298–300, 1972

    Article  PubMed  CAS  Google Scholar 

  • Hill MD, Abramson FP. The significance of plasma protein binding on the fetal/maternal distribution of drugs at steady-state. Clinical Pharmacokinetics 14: 156–170, 1988

    Article  PubMed  CAS  Google Scholar 

  • Hollt V, Teschemacher HJ. Hydrophobic interactions responsible for unspecific binding of morphine-like drugs. Naunyn-Schmiedebergs Archives of Pharmacology 288: 163–177, 1975

    Article  CAS  Google Scholar 

  • Holmgren A, Luthman M. Tissue distribution and subcellular localization of bovine thioredoxin determined by radioimmunoassay. Biochemistry 17: 4071–4077, 1978

    Article  PubMed  CAS  Google Scholar 

  • Hooper WD, Bochner F, Mervyn JE, Tyrer JH. Plasma protein binding of diphenylhydantoin — effects of sex hormones, renal and hepatic disease. Clinical Pharmacology and Therapeutics 15: 276–282, 1973

    Google Scholar 

  • Hori R, Okumura K, Yoshida H. Binding of basic drugs to rat lung mitochondria. Pharmacological Research 4: 142–146, 1987

    Article  CAS  Google Scholar 

  • Hummel JP, Dreyer WJ. Measurement of protein binding phenomena by gel filtration. Biochimica et Biophysica Acta 63: 530–532, 1962

    Article  PubMed  CAS  Google Scholar 

  • Igari Y, Sugiyama Y, Awazu S, Hanano M. Comparative physiologically based pharmacokinetics of hexobarbital, phenobarbital and thiopental in the rat. Journal of Pharmacokinetics and Biopharmaceutics 10: 53–75, 1982

    PubMed  CAS  Google Scholar 

  • Jung D, Mayersohn M, Perrier D. The ‘ultra-free’ ultrafiltration technique compare with equilibrium dialysis for determination of unbound thiopental concentrations in serum. Clinical Chemistry 27: 166–168, 1981

    PubMed  CAS  Google Scholar 

  • Junod AF. Accumulation of 14C-imipramine in isolated perfused rat lungs. Journal of Pharmacology and Therapeutics 183: 182–187, 1972

    CAS  Google Scholar 

  • Jusko WJ, Chiang ST. Distribution volume related to body weight and protein binding. American Pharmaceutical Association 71: 469–470, 1982

    Article  CAS  Google Scholar 

  • Jusko WJ, Gretch M. Plasma and tissue protein binding of drugs in pharmacokinetics. Drug Metabolism Reviews 5: 43–140, 1976

    Article  CAS  Google Scholar 

  • Kallav Z, Trnovec T, Kettner M, Macickova T, Navarova J, et al. Kinetics of gentamicin accumulation in subcellular structures of the mouse kidney. Journal of Pharmacy and Pharmacology 34: 276–277, 1982

    Article  Google Scholar 

  • Kasper CB. Isolation and properties of the nuclear envelope. In Fleischer et al. (Eds) Methods in enzymology 31 biomembranes, pp. 279–292, Academic Press, Network, San Francisco, London 1974

    Google Scholar 

  • Kay RR, Johnston IR. Rapid isolation of nuclear envelopes from rat liver. In Prescott (Ed) Methods in cell biology, Vol. 15 pp. 277–287, Academic Press, New York, San Francisco, London, 1977

    Google Scholar 

  • Keresztes-Nagy S, Mais RF, Oester YT, Zaroslinski JF. Protein binding methodology: comparison of equilibrium dialysis and frontal analysis chromatography in the study of salicylate binding. Analytical Biochemistry 48: 80–89, 1972

    Article  PubMed  CAS  Google Scholar 

  • Khalafallah N, Jusko WJ. Determination and prediction of tissue binding of prednisolone in the rabbit. Journal of Pharmaceutical Sciences 73: 362–365, 1984

    Article  PubMed  CAS  Google Scholar 

  • Klotz IM, Hunston DL. Properties of graphical representations of multiple class of binding sites. Biochemistry 10: 3065–3069, 1971

    Article  PubMed  CAS  Google Scholar 

  • Klotz IM, Walker M, Pivan RB. The binding of organic ions by proteins. Journal of the American Chemical Society 68: 1486–1490, 1946

    Article  PubMed  CAS  Google Scholar 

  • Kober A, Ekman B, Sjoholm I. Direct and indirect determination of binding constants of drug-protein complexes with micro-particles. Journal of Pharmaceutical Sciences 67: 107–109, 1978

    Article  PubMed  CAS  Google Scholar 

  • Kober A, Olsson Y, Sjoholm I. Binding of drugs to human serum albumin XIV: the theoretical basis for the interaction between phenytoin and valproate. Molecular Pharmacology 18: 237–242, 1980

    PubMed  CAS  Google Scholar 

  • Kornhauser DM, Vestal RE, Shand DG. Uptake of propranolol by the lung and its displacement by other drugs: involvement of the alveolar macrophage. Pharmacology 20: 275–283, 1980

    Article  PubMed  CAS  Google Scholar 

  • Krasner J, Yaffe SJ. Drug-protein binding in the neonate. In Morselli et al. (Eds) Basic and therapeutic aspects of perinatal pharmacology, Raven Press, New York, 1975

    Google Scholar 

  • Kunin CM. Binding of antibiotics to tissue homogenates. Journal of Infectious Diseases 121: 55–64, 1970

    Article  PubMed  CAS  Google Scholar 

  • Kuntzman R, Tsai I, Burns JJ. Importance of tissue and plasma binding in determining the retention of norchlorcyclizine and norcyclizine in man dog and rat. Journal of Pharmacology and Experimental Therapeutics 158: 332–339, 1967

    PubMed  CAS  Google Scholar 

  • Kurz H, Fichtl B. Binding of drugs to tissues. Drug Metabolism Reviews 14: 467–510, 1983

    Article  PubMed  CAS  Google Scholar 

  • Laduron P. Tissue fractionation in neurobiochemistry: an analytical tool or a source of artifacts. International Review of Neurobiology 20: 251–281, 1977

    Article  PubMed  CAS  Google Scholar 

  • Laduron P, Leysen J. Specific in vivo binding of neuroleptic drugs in rat brain. Biochemical Pharmacology 26: 1003–1007, 1977

    Article  PubMed  CAS  Google Scholar 

  • Lawson KJ, Danpure CJ, Fyfe DA. The uptake and subcellular distribution of gold in rat liver cells after in vivo administration of sodium aurothiomalate. Biochemical Pharmacology 26: 2417–2426, 1977

    Article  PubMed  CAS  Google Scholar 

  • Levy G, Procknal JA, Garrettson LK. Distribution of salicylate between neonatal and maternal serum at diffusion equilibrium. Clinical Pharmacology and Therapeutics 18: 210–214, 1975

    PubMed  CAS  Google Scholar 

  • Lin JH, Sugiyama Y, Awazu S, Hanano M. In vitro and in vivo evaluation of the tissue-to-blood partition coefficient for physiological pharmacokinetic models. Journal of Pharmacokinetics and Biopharmaceutics 10: 637–647, 1982

    PubMed  CAS  Google Scholar 

  • Lindup WE. Methods for the measurement of drug binding to plasma proteins. In Rietbrock et al. (Eds) Methods in clinical pharmacology, chapter 9, pp. 267–273, Braunschweig, Wiesbaden, 1980

    Google Scholar 

  • Lindup WE. Plasma protein binding of drugs some basic and clinical aspects. In Bridges et al. (Eds) Progress in drug metabolism, Vol. 10, pp. 141–185, Taylor & Francis Ltd, London, 1987

    Google Scholar 

  • Lindup WE, Bishop KA, Collier R. Drug binding defect of uraemic plasma: contribution of endogenous binding inhibitors. In Tillement & Lindenlaub (Eds) Protein binding and drug transport, pp. 397–414, FK Schattauer Verlag, Stuttgart, New York, 1986

    Google Scholar 

  • Lindup WE, Henderson SJ, Barker CE. Drug binding in renal disease. In Belpaire et al. (Eds) Plasma binding of drugs and its consequences, pp. 103–120, Academia Press, Ghent, 1991

    Google Scholar 

  • Lima JJ, Jungbluth GL, Devine T, Robertson LW. Stereoselective binding of disopyramide to human plasma protein. Life Sciences 35: 835–839, 1984

    Article  PubMed  CAS  Google Scholar 

  • Ludden TM, Schanker LS, Lanman RC. Binding of organic compounds to rat liver and lung. Drug Metabolism and Disposition 4: 8–16, 1976

    PubMed  CAS  Google Scholar 

  • Lunde KM, Rane A, Yaffe SJ, Lund L, Sjoqvist F. Plasma protein binding of diphenylhydantoin. Clinical Pharmacology and Therapeutics 11: 846–855, 1970

    PubMed  CAS  Google Scholar 

  • MacKichan JJ. Pharmacokinetic consequences of drug displacement from blood and tissue proteins. Clinical Pharmacokinetics 9 (Suppl. 1): 32–41, 1984

    Article  PubMed  CAS  Google Scholar 

  • Manara L. Brain cellular distribution of in vivo administered drugs. In Tillement (Ed) Advances in pharmacology and therapeutics, biochemical clinical pharmacology Vol. 7, pp. 187–199, Pergamon Press, Oxford, New York, 1978

    Google Scholar 

  • Manara L, Mennini T, Cerletti C. [3H]-Reserpine persistently bound ‘in vivo’ to rat brain subcellular components: limited removal by peanut oil extraction. Life Sciences 14: 2267–2276, 1974

    Article  PubMed  CAS  Google Scholar 

  • Manara L, Serra G. Drug distribution in the brain. In Deniker et al. (Eds) Neuro-psychopharmacology, pp. 831–840, Pergamon Press, Oxford, New York, 1978

    Google Scholar 

  • Martin BK. Potential effects of the plasma proteins on drug distribution. Nature 207: 274–276, 1965

    Article  PubMed  CAS  Google Scholar 

  • Marzo A, Ghirardi P, Preti A, Lombardo A, Longhini C, et al. Subcellular distribution of deslanatoside C, ouabain and digitoxin in the heart and liver of conscious guinea pigs. Biochemical Pharmacology 26: 2427–2443, 1972

    Article  Google Scholar 

  • McArthur JN, Dawkins PD, Smith MJH. The relation between circulating and tissue concentrations of salicylate in the mouse in vivo. Journal of Pharmacy and Pharmacology 22: 801–805, 1970

    Article  PubMed  CAS  Google Scholar 

  • McTigue JJ, Henderson SJ, Lindup WE. Excretion of the uraemic metabolite 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid in human urine. Nephron 55: 214–215, 1990

    Article  PubMed  CAS  Google Scholar 

  • Minchin RF, Ilett KF. Comparative uptake of quinine and quinidine in rat lung. Journal of Pharmacy and Pharmacology 33: 464–466, 1981

    Article  PubMed  CAS  Google Scholar 

  • Morselli PL, Franco-Morselli R, Bossi L. Clinical Pharmacokinetics in newborns and infants: age-related differences and therapeutic implications. Clinical Pharmacokinetics 5: 485–527, 1980

    Article  PubMed  CAS  Google Scholar 

  • Muller W, Wollert U. Characterization of the binding of benzodiazepines to human serum albumin. Naunyn-Schmiedebergs Archives of Pharmacology 280: 229–237, 1973a

    Article  CAS  Google Scholar 

  • Muller W, Wollert U. Influence of pH on the benzodiazepinehuman serum albumin complex. Naunyn-Schmiedebergs Archives of Pharmacology 283: 67–82, 1974

    Article  CAS  Google Scholar 

  • Muller W, Wollert U. Interactions of benzodiazepines with human serum albumin. Naunyn-Schmiedebergs Archives of Pharmacology 278: 301–312, 1973b

    Article  CAS  Google Scholar 

  • Muller WE, Wollert U. Interaction of benzodiazepine derivatives with bovine serum albumin-1. Biochemical Pharmacology 25: 141–145, 1976a

    Article  PubMed  CAS  Google Scholar 

  • Muller WE, Wollert U. Interaction of benzodiazepine derivatives with bovine serum albumin-II. Biochemical Pharmacology 25: 147–152, 1976b

    Article  Google Scholar 

  • Nau H, Luck W, Kuhnz W. Decreased serum protein binding of diazepam and its major metabolite in the neonate during the first postnatal week relate to increased free fatty acid levels. British Journal of Clinical Pharmacology 17: 92–98, 1984

    Article  PubMed  CAS  Google Scholar 

  • Ng DS, Maickel RP, Borowitz JL. Subcellular distribution of weak acids and bases in adrenal medulla. General Pharmacology 13: 15–20, 1982

    PubMed  CAS  Google Scholar 

  • Nilsson KB, Andersson RGG, Enestrom S, Mackerlova L, Mohme-Lundholm E. Biochemical and morphological characterization of subcellular fractions isolated from rabbit colon muscle. Acta Pharmacologica et Toxicologica 42: 194–205, 1978

    Article  PubMed  CAS  Google Scholar 

  • Noack E, Cawello W, Bonn R. Kinetic studies of the tissue binding tendency of the new vasodilator pildralazine. Arzneimittel-Forschung 37: 407–409, 1987

    PubMed  CAS  Google Scholar 

  • Notarianni LJ. Plasma protein binding of drugs in pregnancy and in neonates. Clinical Pharmacokinetics 18: 20–36, 1990

    Article  PubMed  CAS  Google Scholar 

  • Ofori-Adjei D, Ericsson O, Lindstrom B, Sjoqvist F. Protein binding of chloroquine enantiomers and desethylchloroquine. British Journal of Clinical Pharmacology 22: 356–358, 1986

    Article  PubMed  CAS  Google Scholar 

  • Ohmiya Y, Mehendale HM. Uptake and metabolism of chlorpromazine by rat and rabbit lungs. Drug Metabolism and Disposition 8: 313–318, 1980

    PubMed  CAS  Google Scholar 

  • Oie S, Tozer TN. Effect of altered plasma protein binding on apparent volume of distribution. American Pharmaceutical Association 68: 1203–1205, 1979

    Article  CAS  Google Scholar 

  • Okudaira K, Sawada Y, Sugiyama Y, Iga T, Hanano M. Effect of quinidine on the tissue binding of digoxin in guinea-pigs. Journal of Pharmacy and Pharmacology 38: 137–140, 1986

    Article  PubMed  CAS  Google Scholar 

  • Oravcova J, Bystricky S, Trnovec T. Different binding of propranolol enantiomers to human alpha-1-acid glycoprotein. Biochemical Pharmacology 38: 2575–2579, 1989

    Article  PubMed  CAS  Google Scholar 

  • Oravcova J, Lindner W, Szalay P, Bohacik L, Trnovec T. Interaction of propafenone enantiomers with human alpha-1-acid glycoprotein. Chirality 3: 30–34, 1991a

    Article  PubMed  CAS  Google Scholar 

  • Oravcova J, Mlynarik V, Bystricky S, Soltes L, Szalay P, et al. Interaction of pirprofen enantiomers with human serum albumin. Chirality 3: 412–417, 1991b

    Article  PubMed  CAS  Google Scholar 

  • Orton TC, Anderson MW, Pickett RD, Eling TE, Fouts JR. Xenobiotic accumulation and metabolism by isolated perfused rabbit lungs. Journal of Pharmacology and Experimental Therapeutics 186: 482–497, 1973

    PubMed  CAS  Google Scholar 

  • Pacifici GM, Colizzi C, Giuliani L, Rane A. Nuclear epoxide hydrolase in the human fetal and adult liver. Pharmacology 28: 321–328, 1984b

    Article  PubMed  CAS  Google Scholar 

  • Pacifici GM, Cuoci L, Placidi GF. Subcellular distribution of pinazepam and its metabolite N-desmethyldiazepam in rat liver. General Pharmacology 15: 353–355, 1984c

    PubMed  CAS  Google Scholar 

  • Pacifici GM, Cuoci L, Rane A. Subcellular distribution of styrene oxide in rat liver. Toxicologic Pathology 12: 69–73, 1984d

    Article  PubMed  CAS  Google Scholar 

  • Pacifici GM, Taddeucci-Brunelli G, Rane A. Clonazepam serum protein binding during development. Clinical Pharmacology Therapeutics 3: 354–359, 1984a

    Article  Google Scholar 

  • Pacifici GM, Viani A, Schulz H-U, Frercks H-J. Plasma protein binding of furosemide in the elderly. European Journal of Clinical Pharmacology 32: 199–202, 1987c

    Article  PubMed  CAS  Google Scholar 

  • Pacifici GM, Viani A, Taddeucci-Brunelli. Serum protein binding of furosemide in new born infants and children. Development of Pharmacology and Therapeutics 10: 413–421, 1987a

    CAS  Google Scholar 

  • Pacifici GM, Viani A, Taddeucci-Brunelli G, Rizzo G, Carrai M, et al. Effects of development, aging, and renal and hepatic insufficiency as well as hemodialysis on the plasma concentrations of albumin and alfa-1-acid glycoprotein: implications for binding of drugs. Therapeutic Drug Monitoring 8: 259–263, 1986

    Article  PubMed  CAS  Google Scholar 

  • Pacifici GM, Viani A, Taddeucci-Brunelli G, Rizzo G, Carrai M. Plasma protein binding of dicloxocillin: effects of age and diseases. International Journal of Clinical Pharmacology Therapy and Toxicology 25: 622–626, 1987b

    CAS  Google Scholar 

  • Paulus H. A rapid and sensitive method for measuring the binding of radioactive ligands to proteins. Analytical Biochemistry 32: 91–100, 1969

    Article  PubMed  CAS  Google Scholar 

  • Pawlak JW, Konopa J. In vitro binding of metabolically activated [14C]-ledakrin, or 1-nitro-9-14C-(3′) acridine, a new antitumor and DNA cross-linking agent, to macromolecules of subcellular fractions isolated from rat liver and HeLa cells. Biochemical Pharmacology 28: 3391–3402, 1979

    Article  PubMed  CAS  Google Scholar 

  • Pedersen LE, Bonde J, Graudal NA, Backer NV, Hansen JES. Quantitative and qualitative binding characteristics of disopyramide in serum from patients with decreased renal and hepatic function. British Journal of Clinical Pharmacology 23: 41–46, 1987

    Article  PubMed  CAS  Google Scholar 

  • Perucca E, Crema A. Plasma protein binding of drugs in pregnancy. Clinical Pharmacokinetics 7: 336–352, 1982

    Article  PubMed  CAS  Google Scholar 

  • Peterson LR, Gerding DN, McLinn D, Hall WH. Prediction of peak penicillin and cephalosporin concentrations in canine serum as derived from in vitro serum and tissue quantitative protein binding. Journal of Antimicrobial Chemotherapy 5: 219–227, 1979

    Article  PubMed  CAS  Google Scholar 

  • Piafsky KM. Disease-induced changes in the plasma binding of basic drugs. Clinical Pharmacokinetics 5: 246–262, 1980

    Article  PubMed  CAS  Google Scholar 

  • Piafsky KM, Borga O, Odar-CederIof I, Johansson C, Sjoqvist F. Increased plasma protein binding of propranolol and chlor-promazine mediated by disease induced elevation of plasma alpha-1-acid glycoprotein. New England Journal of Medicine 299: 1435–1439, 1978

    Article  PubMed  CAS  Google Scholar 

  • Post C. Studies on the pharmacokinetic function of the lung with special reference to lidocaine. Acta Pharmacologica et Toxicologica 44 (Suppl. 1): 7–53, 1979

    Google Scholar 

  • Powis G, Melder DC, Wilke TJ. Human and dog, but not rat, isolated hepatocytes have decreased foreign compound-metabolizing activity compared to liver slices. Drug Metabolism and Disposition 17: 526–531, 1989

    PubMed  CAS  Google Scholar 

  • Powis G, Moore DJ, Wilke TJ, Santone KS. A high-performance liquid chromatography assay for measuring integrated biphenyl metabolism by intact cells: its use with rat liver and human liver and kidney. Analytical Biochemistry 167: 191–198, 1987

    Article  PubMed  CAS  Google Scholar 

  • Prandota J, Pruitt AW. Furosemide binding to human albumin and plasma of nephrotic children. Clinical Pharmacology and Therapeutics 17: 159–166, 1975

    PubMed  CAS  Google Scholar 

  • Rane A, Wilson JT. Clinical pharmacokinetics in infants and children. Clinical Pharmacokinetics 1: 2–24, 1976

    Article  PubMed  CAS  Google Scholar 

  • Rehavi M, Skolnick P, Paul SM. Subcellular distribution of high affinity [3H]serotonin uptake in rat brain. European Journal of Pharmacology 87: 335–339, 1983

    Article  PubMed  CAS  Google Scholar 

  • Rehberg PB. A centrifugation method of ultrafiltration using cellophane tubes. Acta Physiologica Scandinavica 5: 115–126, 1943

    Google Scholar 

  • Reidenberg MM. Effect of disease states on plasma protein binding of drugs. Medical Clinics of North America 58: 1103–1109, 1974

    PubMed  CAS  Google Scholar 

  • Reidenberg MM. The binding of drugs to plasma proteins from patients with poor renal function. Clinical Pharmacokinetics 1: 121–125, 1976

    Article  PubMed  CAS  Google Scholar 

  • Reidenberg MM, Drayer DE. Alteration of drug-protein binding in renal disease. Clinical Pharmacokinetics 9 (Suppl. 1): 18–26, 1984

    Article  PubMed  Google Scholar 

  • Rolinson GN, Sutherland R. The binding of antibiotics to serum proteins. British Journal of Pharmacology 25: 638–650, 1965

    CAS  Google Scholar 

  • Rolleri E, Hegesippe M. Use of serum albumin michrospheres as a reversible adsorbent for studying protein-small molecule interactions. Bichimica et Biophysica Acta 295: 429–437, 1973

    Article  CAS  Google Scholar 

  • Roosdorp N, Wann B, Sjoholm I. Correlation between arginyl residue modification and benzodiazepine binding to human serum albumin. Journal of Biological Chemistry 252: 3876–3880, 1977

    PubMed  CAS  Google Scholar 

  • Rosenthal AE. A graphic method for the determination and presentation of binding parameters in a complex system. Analytical Biochemistry 20: 525–532, 1967

    Article  PubMed  CAS  Google Scholar 

  • Routledge PA, Barchowsky A, Bjorsson TD, Kitchell BB, Shand DG. Lidocaine plasma protein binding. Clinical Pharmacology and Therapeutics 27: 347–351, 1980

    Article  PubMed  CAS  Google Scholar 

  • Rowland M. Protein binding and drug clearance. Clinical Pharmacokinetics 9 (Suppl. 1): 10–17, 1984

    Article  PubMed  CAS  Google Scholar 

  • Rowland M, Tozer TN. Clinical pharmacokinetics: concepts and applications, Lea & Febiger, Philadelphia, 1980

    Google Scholar 

  • Salzman NP, Brodie BB. Physiological disposition and fate of chlorpromazine and a method for its estimation in biological material. Journal of Pharmacology and Experimental Therapeutics 118: 46–54, 1956

    PubMed  CAS  Google Scholar 

  • Scatchard G. The attractions of proteins for small molecules and ions. New York Academy of Science 51: 660–692, 1949

    Article  CAS  Google Scholar 

  • Schanker LS, Morrison AS. Physiological disposition of guanethidine in the rat and its uptake by heart slices. Journal of Neuropharmacology 4: 27–39, 1965

    Article  CAS  Google Scholar 

  • Schiff D, Chan G, Stern L. Sephadex G-25 quantitative estimation of free bilirubin potential in jaundiced newborn infants’ sera: a guide to the prevention of kernicterus. Journal of Laboratory and Clinical Medicine 80: 455–462, 1972

    PubMed  CAS  Google Scholar 

  • Schmidt W, Jahnchen E. Interaction of phenylbutazone with racemic phenprocoumon and its enantiomers in rats. Journal of Pharmacokinetics and Biopharmaceutics 7: 643–663, 1979

    PubMed  CAS  Google Scholar 

  • Schneck DW, Pritchard JF, Hayes AH. Studies on the uptake and binding of propranolol by rat tissues. Journal of Pharmacology and Experimental Therapeutics 203: 621–629, 1977

    PubMed  CAS  Google Scholar 

  • Shand DG, Branch RA, Evans GH, Nies AS, Wilkinson GR. The disposition of propranolol VII: the effects of saturable hepatic tissue uptake on drug clearance by the perfused rat liver. Drug Metabolism and Disposition 1: 679–686, 1973

    PubMed  CAS  Google Scholar 

  • Shum L, Jusko WJ. Theophylline tissue partitioning and volume of distribution in normal and dietary-induced obese rats. Bio-pharmaceutics and Drug Disposition 8: 353–364, 1987

    Article  CAS  Google Scholar 

  • Siddik ZH, Drew R, Gram TE. The effect of chlorpromazine on the uptake and efflux of paraquat in rat lung slices. Toxicology and Applied Pharmacology 50: 443–450, 1979

    Article  PubMed  CAS  Google Scholar 

  • Sjodin T, Roosdorp N, Sjoholm I. Studies on the binding of benzodiazepines to human serum albumin by circular dichroism measurements. Biochemical Pharmacology 25: 2131–2140, 1976

    Article  PubMed  CAS  Google Scholar 

  • Sjoholm I, Ekman B, Kober A, Ljungstedt-Pahlman I, Seiving B, et al. Binding of drugs to human serum albumin XI. Molecular Pharmacology 16: 767–777, 1979

    PubMed  CAS  Google Scholar 

  • Sjoqvist F. Therapeutic drug monitoring — twenty years’ experience. In Lemberger & Reidenberg (Eds) Proceedings of the Second World Conference on Clinical Pharmacology and Therapeutics, pp. 38–63, American Society for Pharmacology and Experimental Therapeutics, Bethesda, 1984

    Google Scholar 

  • Storstein L. Protein binding of cardiac glycosides in disease states. Clinical Pharmacokinetics 2: 220–233, 1977

    Article  PubMed  CAS  Google Scholar 

  • Street JA, Gonda I, Parkinson H, Hemsworth BA. Lung accumulation of some β-adrenoceptor antagonists. Journal of Pharmacy and Pharmacology 30: 56P, 1978

    Article  PubMed  CAS  Google Scholar 

  • Tesseromatis C, Fichtl B, Kurz H. Binding of non-steroid antiinflammatory drugs and warfarin to liver tissue of rabbits in vitro. European Journal of Drug Metabolism and Pharmacokinetics 12: 161–167, 1987

    Article  PubMed  CAS  Google Scholar 

  • Tillement JP, Houin G, Zini R, Urien S, Albengres E, et al. The binding of drugs to blood plasma macromolecules: recent advances and therapeutic significance. In Advances in drug research, pp. 59–94, Academic Press, London, 1984

    Google Scholar 

  • Tillement JP, Lhoste F, Giudicelli JF. Diseases and drug protein binding. Clinical Pharmacokinetics 3: 144–154, 1978

    Article  PubMed  CAS  Google Scholar 

  • Tiula E. A pressure ultrafiltration method for serum free drug determination: comparison with equilibrium dialysis using normal and uraemic sera. Methods and Findings in Experimental and Clinical Pharmacology 6: 51–55, 1984

    PubMed  CAS  Google Scholar 

  • Trenk D, Jahnchen E. Effect of serum protein binding on pharmacokinetics and anticoagulant activity of phenprocoumon in rats. Journal of Pharmacokinetics and Biopharmaceutics 8: 177–191, 1980

    PubMed  CAS  Google Scholar 

  • Van Peer AP, Belpaire FM, Bogaert MG. Binding of drugs in serum, blood cells and tissues of rabbits with experimental acute renal failure. Pharmacology 22: 146–152, 1981

    Article  PubMed  Google Scholar 

  • Veering BTH, Burm AGL, Souverijn JHM, Serree JMP, Spierdijk JOH. The effect of age on serum concentrations of albumin and alfa-1-acid glycoprotein. British Journal of Clinical Pharmacology 29: 201–206, 1990

    Article  PubMed  CAS  Google Scholar 

  • Verbeeck RK, Cardinal J-A. Plasma protein binding of salicylic acid, phenytoin, chlorpromazine, propranolol and pethidine using equilibrium dialysis and ultracentrifugation. Arzneimittel-Forschung 35: 903–906, 1985

    PubMed  CAS  Google Scholar 

  • Verbeeck RK, Cardinal JA, Wallace SM. Effects of age and sex on the plasma binding of acidic and basic drugs. European Journal of Clinical Pharmacology 27: 91–94, 1984

    PubMed  CAS  Google Scholar 

  • Viani A, Cappiello M, Pacifici GM. Binding of diazepam salicylic acid and digitoxin to albumin isolated from fetal and adult serum. Developmental Pharmacology and Therapeutics 17: 100–108, 1991b

    PubMed  CAS  Google Scholar 

  • Viani A, Cappiello M, Silvestri D, Pacifici GM. Binding of furosemide to albumin isolated from human fetal and adult serum. Developmental Pharmacology and Therapeutics 16: 33–40, 1991a

    PubMed  CAS  Google Scholar 

  • Viani A, Pacifici GM. Bilirubin displaces furosemide from serum protein: the effect is greater in newborn infants than adult subjects Developmental Pharmacology Therapeutics 14: 90–95, 1990

    CAS  Google Scholar 

  • Viani A, Rizzo G, Carrai M, Pacifici GM. Interindividual variability in the concentrations of albumin and alpha-1-acid glycoprotein in newborns, healthy subjects and patients with renal or liver disease: implications for binding of drugs. International Journal Clinical Pharmacology Therapeutic and Toxicology, 30: 128–133, 1992a

    CAS  Google Scholar 

  • Viani A, Rizzo G, Carrai M, Pacifici GM. The effect of ageing on plasma albumin and plasma protein binding of diazepam, salicylic acid and digitoxin in healthy subjects and patients with renal impairment. British Journal of Clinical Pharmacology, 33: 299–304, 1992b

    Article  PubMed  CAS  Google Scholar 

  • Wallace S, Whiting B. Factors affecting drug binding in plasma of elderly patients. British Journal of Clinical Pharmacology 3: 327–330, 1976

    Article  PubMed  CAS  Google Scholar 

  • Wallace SM, Verbeeck RK. Plasma protein binding of drugs in the elderly. Clinical Pharmacokinetics 12: 41–72, 1987

    Article  PubMed  CAS  Google Scholar 

  • Wallach DFH, Schmidt-Ullrich R. Isolation of plasma membrane vesicles from animal cells. In Prescott (Ed.) Methods in cell biology pp 235–276, Academic Press, New York, San Francisco, London, 1977

    Google Scholar 

  • Walter K, Kurz H. Binding of drugs to human skin:influencing factors and the role of tissue lipids. Journal of Pharmacy and Pharmacology 40: 689–693, 1988

    Article  PubMed  CAS  Google Scholar 

  • Weder HG, Schildknecht J, Kesselring P. A new equilibrium dialyzing system. American Laboratory 10: 15–21, 1971

    Google Scholar 

  • Wibo M, Thines-Sempoux D, Amar-Costesec A, Beaufay H, Godelaine D. Analytical study of microsomes and isolated subcellular membranes from rat liver VIII: subfractionation of preparation enriched with plasma membranes, outer mitochondrial membranes, or Golgi complex membranes. Journal of Cell Biology 89: 456–474, 1981

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson GR. Clearance approaches in pharmacology. Pharmacological Reviews 39: 1–47, 1987

    PubMed  CAS  Google Scholar 

  • Wilkinson GR. Plasma and tissue binding considerations in drug disposition. Drug Metabolism Review 14: 427–465, 1983

    Article  CAS  Google Scholar 

  • Williams LT, Lefkowitz RJ. Reception Binding Studies in Adrenergic Pharmacology, Raven Press, New York (1978)

    Google Scholar 

  • Wilson AGE, Law FCP, Eling TE, Anderson MW. Uptake, metabolism and efflux of methadone in ‘single pass’ isolated perfused rabbit lungs. Journal of Pharmacology and Experimental Therapeutics 199: 360–367, 1976

    PubMed  CAS  Google Scholar 

  • Wilting J, Weideman MM, Roomer ACJ, Perrin JH. Conformational changes in human serum albumin around the neutral pH from circular dichroic measurements. Biochimica et Biophysica Acta 579: 469–473, 1979

    Article  PubMed  CAS  Google Scholar 

  • Windorfer A, Karitzky D, Gasteiger U, Stehr K. Investigations on salicylate protein binding in newborns and infants. European Journal Pediatrics 127: 163–172, 1978

    Article  CAS  Google Scholar 

  • Wise R. The clinical relevance of protein binding and tissue concentrations in antimicrobial therapy. Clinical Pharmacokinetics 11: 470–482, 1986

    Article  PubMed  CAS  Google Scholar 

  • Wittfoht W, Duwe K, Kuhnz W, Nau H. Microscale ultrafiltration technique for determining free drug in 50µl serum samples. Clinical Chemistry 30: 878–879, 1984

    PubMed  CAS  Google Scholar 

  • Wosilait WD. The accumulation and distribution of dicoumarol in rat liver slices. Biochemical Pharmacology 17: 429–437, 1968

    Article  PubMed  CAS  Google Scholar 

  • Yu HY, Sawada Y, Sugiyama Y, Iga T, Hanano M. Effect of sulphadimethoxine on thiopental distribution and elimination in rats. American Pharmaceutical Association 70: 323–326, 1981

    Article  CAS  Google Scholar 

  • Zaroslinski JF, Keresztes-Nagy S, Mais RF, Oester YT. Effect of temperature on the binding of salicylate by human serum albumin. Biochemical Pharmacology 23: 1767–1776, 1974

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pacifici, G.M., Viani, A. Methods of Determining Plasma and Tissue Binding of Drugs. Clin. Pharmacokinet. 23, 449–468 (1992). https://doi.org/10.2165/00003088-199223060-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199223060-00005

Keywords

Navigation