Skip to main content
Log in

Models for Placental Transfer Studies of Drugs

  • Review Article
  • Clinical Pharmacokinetic Concepts
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Pregnancy is a specific dynamic state, and the potential usefulness of caring for a disorder in the fetus or the mother is now well established. Previously, pregnant women have been excluded from clinical trials, therefore only a few studies concerning evaluation of the pregestational metabolism or transplacental transfer (TPT) of drugs exist.

Questions regarding the TPT of drugs are extensive and complex. For example, does TPT occur at a given gestational age, in the context of a particular type of pathology or when a drug is administered by a certain dosage regimen? If this is the case, what is the rapidity of penetration of the products of conception by the drug (bearing in mind its physicochemical characteristics)? Need harmful adverse effects on the child be feared? Is such penetration desirable, of no consequence, or dangerous? Does the possibility exist of accumulation in the placenta, fetal tissue or amniotic fluid? Should such findings modify the therapeutic regimens of drugs given to expectant mothers?

Exchange mechanisms are complicated and models developed in vitro only partially reflect the actual equilibria that exist between mother and fetus. These include: (i) the perfused cotyledon model, which while simple, elegant and inexpensive, offers only a localised, restricted and fixed view of pregnancy; (ii) isolated anatomical fractions that are informative, but which straddle the border between physiology and pharmacology; and (iii) the necessary study, using microsomes, of placental metabolic capacity (enzyme cartography). In vivo study of TPT is based upon various multicompartmental pharmacokinetic models, some of which have been relatively validated in animals. The simplest indicator for the in vivo evaluation of TPT of a drug in the human species is determination of a feto-maternal blood concentration ratio (usually performed at the time of placental separation). However, the usefulness and limitations of this parameter are controversial, and it would seem preferable to associate it with a pharmacokinetic profile of variations in blood concentrations established in the mother. Furthermore, any extrapolation of a single result to fetal and adjacent tissues must be done with the greatest caution.

Although, no drug should be used in pregnancy unless there is a clear therapeutic indication, study of the TPT of therapeutically useful agents is essential to the understanding of their metabolism and is a prerequisite to the safe use of medications during pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stern L. Drug therapy in the perinatal period. In: Stern L, editor. Basic and therapeutic aspects of perinatal pharmacology. New York: Raven Press, 1980: 7–12

    Google Scholar 

  2. Yaffe SJ, Stern L. Clinical implications of perinatal pharmacology. In: Mirkin C, editor. Perinatal pharmacology therapeutics. New York: Academic Press, 1976: 355–428

    Google Scholar 

  3. Stern L. Placental transfer of drugs. In: Stern L, editor. Drug use in pregnancy. Sydney: Adis Health Science Press, 1984: 45–67

    Google Scholar 

  4. Krauer B, Krauer F, Hytten F. Drug prescribing in pregnancy. Edinburgh: Churchill Livingston, 1984

    Google Scholar 

  5. Bourget P, Fernandez H, Delouis C, et al. Pharmacokinetics of tobramycin in pregnant women: safety and efficacy of a once-daily dose regimen. J Clin Pharm Ther 1991; 16: 167–76

    PubMed  CAS  Google Scholar 

  6. Reece EA, Hobbins JC, Mahoney MJ, et al. Medicine of the fetus and mother. Reece EA, editor. Philadelphia: Lippincott Company, 1994

  7. Fox H, Agrafojo-Blanco A. Scanning electron microscopy of the human placenta in normal and abnormal pregnancies. Eur J Obstet Gynecol Reprod Biol 1974; 412: 45–50

    Google Scholar 

  8. Reynolds F, Knott C. Pharmacokinetics in pregnancy and placental drug transfer. Oxf Rev Reprod Biol 1990; 11: 389–449

    Google Scholar 

  9. Schaaps JP, Hustin J, Thoumsin HJ, et al. Physiologie placentaire. Encyclopedie médicochirurgicale (Paris) obstétrique 5005 A10, 1989; 10: 1–24

    Google Scholar 

  10. Forestier F, Sole Y, Aiach M, et al. Absence of transplacental passage of Fragmin (KABI) during the second and the third trimesters of pregnancy. Thromb Haemost 1992; 67: 180–1

    PubMed  CAS  Google Scholar 

  11. Page EW. Transfer of materials across the human placenta. Am J Obstet Gynecol 1957; 74: 705–18

    PubMed  CAS  Google Scholar 

  12. Seller MJ. Some aspects of placental function. Postgrad Med J 1965; 41: 189–93

    Google Scholar 

  13. Labaune JP. Pharmacocinétique; principes fondamentaux. Paris: Masson, 1988

    Google Scholar 

  14. Contractor SF. Metabolic and enzymatic activity of human trophoblast. In: Loke YW, Whyte A, editors. Biology of trophoblast. Oxford: Elsevier, 1983: 235–81

    Google Scholar 

  15. Bohn H, Dati F, Luben G. Human trophoblast specific products other than hormones. In: Loke YW, Whyte A, editors. Biology of trophoblast. Oxford: Elsevier, 1983: 317–52

    Google Scholar 

  16. Panigel M, Pascaud M, Brun JL. Une nouvelle technique de perfusion de l’espace intervilleux dans le placenta humain isolé. Pathol Biol 1967; 15: 821

    Google Scholar 

  17. Schneider H, Panigel M, Dancis J. Transfer across the perfused human placenta of antipyrine, sodium and leucine. Am J Obstet Gynecol 1972; 114: 822–8

    PubMed  CAS  Google Scholar 

  18. Schneider H, Proegler M, Duft R. Transfer of antipyrine, H2O, L-glucose and aminobutyric acid across the in vitro perfused human placental lobe. In: Kaufmann P, Miller RK, editors. Trophoblast research. New York: Plenum Medical Book Co, 1987: 525–33

    Google Scholar 

  19. Earle WR. Production of malignancy in vitro: IV the mouse fibroblast, cultures and changes seen in the living cells. J Natl Cancer Inst 1943; 4: 165–212

    CAS  Google Scholar 

  20. Challier JC, Millo-Guerre M, Nandakumaran M, et al. Flow dependent transfer of antipyrine in the human in vitro. Reprod NutrDev 1983; 23: 41–50

    CAS  Google Scholar 

  21. Ghabrial H, Czuba MA, Stead CK. Transfer of acipimox across the isolated perfused human placenta. Placenta 1991; 12: 653–61

    PubMed  CAS  Google Scholar 

  22. Henderson GI, Zhi-Qiang Hu, Johnson RF, et al. Acyclovir transport by the human placenta. J Lab Clin Med 1992; 120: 885–92

    PubMed  CAS  Google Scholar 

  23. Schenker S, Dicke JM, Johnson RF, et al. Effect of ethanol on human placental transport of model amino acids and glucose. Alcohol Clin Exper Res 1989; 13: 112–9

    CAS  Google Scholar 

  24. Schneider H, Mohlen KH, Dancis J. Transfer of amino-acids across the in vitro perfused human placenta. Pediatr Res 1979; 13: 236–40

    PubMed  CAS  Google Scholar 

  25. Krishna BR, King RG, Gu W, et al. Effect of indomethacin on materno-fetal amino acid transfer in the dual perfused human placental cotyledon. Reprod Fertil Dev 1990; 2: 597–602

    PubMed  CAS  Google Scholar 

  26. Krishna BR, King RG, Brennecke SP. Acetylcholine output and materno-fetal alpha aminoisobutyric acid transfer in the perfused human placental lobule. Reprod Fertil Dev 1991; 3: 459–65

    PubMed  CAS  Google Scholar 

  27. Akbaraly JP, Guibert S, Leng JJ, et al. Etude du passage transplacentaire de cinq antibiotiques par perfusion in vitro du placenta humain. Pathol Biol 1985; 33: 368–72

    PubMed  CAS  Google Scholar 

  28. Gude NH, Rice GE, King RG, et al. Analysis of the responses of the fetal vessels of human perfused human placental lobule to acute infusions of arachidonic acid. Reprod Fertil Dev 1990; 2: 591–6

    PubMed  CAS  Google Scholar 

  29. Kraczkowski J, Grudzien M, Zrubeck H, et al. Influence of betamethasone on the vascular resistance in human placenta perfusion in vitro. Ginekol Pol 1989; 60: 160–5

    PubMed  CAS  Google Scholar 

  30. Karl PI, Fisher SE. Biotin transport in microvillous membrane vesicles, cultured trophoblasts, and isolated perfused human placenta. Am J Physiol 1992; 262: 302–8

    Google Scholar 

  31. Wier PJ, Miller RK, Maulik D, et al. Toxicity of cadmium in the perfused human placenta. Toxicol Appl Pharmacol 1990; 105: 156–71

    PubMed  CAS  Google Scholar 

  32. Boadi WY, Yannai S, Urbach J, et al. Transfer and accumulation of cadmium and the level of metallothionein in perfused human placenta. Arch Toxicol 1991; 65: 318–23

    PubMed  CAS  Google Scholar 

  33. Stulc J, Stulcova B, Smid M, et al. Parallel mechanisms of Ca++ transfer across the perfused human placental cotyledon. Am J Obstet Gynecol 1994; 170: 162–7

    PubMed  CAS  Google Scholar 

  34. Leng JJ, Mbanzulu PN, Akbaraly JP, et al. Etude in vitro du passage transplacentaire du sulfate de chloroquine. Pathol Biol 1987; 35: 1051–4

    PubMed  CAS  Google Scholar 

  35. Levitz M, Jansen V, Dancis J. Transfer and metabolism of cortico-steroids in perfused human placenta. Am J Obstet Gynecol 1978; 132: 363–6

    PubMed  CAS  Google Scholar 

  36. Nandakumaran M, Eldeen AS. Transfer of cyclosporin in the perfused human placenta. Dev Pharmacol Ther 1990; 15: 101–5

    PubMed  CAS  Google Scholar 

  37. Dancis J, Lee JD, Mendoza S, et al. Transfer and metabolism of dideoxynosine by the perfused human placenta. J Acquir Immune Defic Syndr 1993; 6: 2–6

    PubMed  CAS  Google Scholar 

  38. Derewlany LO, Leeder JS, Kumar R, et al. The transport of digoxin across the perfused human placental lobule. J Pharmacol Exper Ther 1990; 256: 1107–11

    Google Scholar 

  39. Dancis J, Jansen V, Kayden HJ, et al. Transfer across perfused human placenta II: free fatty acids. Pediatr Res 1973; 7: 192–7

    PubMed  CAS  Google Scholar 

  40. Elliot BD, Langer O, Schenker S, et al. Insignificant transfer of glyburide occurs across the human placenta. Am J Obstet Gynecol 1991; 165: 807–12

    Google Scholar 

  41. Challier JC, Nandakumaran M, Mondow F. Placental transport of hexoses: a comparative study with antipyrine and amino acids. Placenta 1985; 6: 497–504

    PubMed  CAS  Google Scholar 

  42. Fisher SE, Karl PI. Histidine transfer across the human placenta characteristics in the isolated perfused human placenta and the effect of ethanol. Placenta 1990; 2: 157–65

    Google Scholar 

  43. Groom TM, Gautieri RF. Influence of a stable prostacyclin analogue (iloprost) and cyclooxygenase inhibition on angiotensin-II in the perfused human placenta. Res Commun Chem Pathol Pharmacol 1989; 66(1): 21–32

    PubMed  CAS  Google Scholar 

  44. Dumas JC, Giroux M, Teixera MG. Etude du passage transplacentaire de l’interféron alpha 2a sur le modèle du cotylédon isolé perfusé. Therapie 1993; 48: 73–5

    PubMed  CAS  Google Scholar 

  45. Dancis J. The transfer of nutrients across the perfused human placenta. Adv Nutr Res 1990; 8: 1–10

    PubMed  CAS  Google Scholar 

  46. Gude NM, Krishna BR, King RG, et al. Effects of opioids on acetylcholine output of perfused human placental cotyledon. Placenta 1989; 10: 445–52

    PubMed  CAS  Google Scholar 

  47. Boura AL, Brennecke SP, Gude NM, et al. Effects of opioids on acetylcholine release into fetal vessels of human perfused placental cotyledon. Prog Clin Biol Res 1990; 328: 359–62

    PubMed  CAS  Google Scholar 

  48. Fortunato SJ, Bawdon RE. Determination of pentamidine transfer in the in vitro perfused human cotyledon with high performance liquid chromatography. Am J Obstet Gynecol 1989; 60: 759–61

    Google Scholar 

  49. Challier JC, Guerre-Millo M, Richard MO, et al. Transfert et échange d’antipyrine dans le lobule placentaire humain perfusé in vitro. Ann Biol Animale Biochim Biophys 1977; 17: 1107–15

    CAS  Google Scholar 

  50. Dickinson RG, Hooper WD, Wood B, et al. The effect of pregnancy in humans on the pharmacokinetics of stable isotope labelled phenytoin. Br J Clin Pharmacol 1989; 28: 17–27

    PubMed  CAS  Google Scholar 

  51. Kluck RM, Cannell GR, Hooper WD, et al. Disposition of phenytoin and phenobarbitone in the isolated perfused placenta. Clin Exper Obstet Gynecol 1988; 15: 827–36

    CAS  Google Scholar 

  52. Kuhn DC, Walenga RW, Stuart MJ. Aprostacyclin analogue crosses the in vitro perfused human placenta and improves transfer in some pathologie states. Am J Perinatol 1991; 8: 179–84

    PubMed  CAS  Google Scholar 

  53. Dancis J, Levitz M, Katz J. Transfer and metabolism of retinol by the perfused human placenta. NY Pediatr Res 1992; 32: 195–9

    CAS  Google Scholar 

  54. Urbach J, Mor L, Fuchs S, et al. Transplacental transfer of ritodrine and its effect on placental glucose and oxygen consumption in an vitro human placental cotyledon perfusion. Gynecol Obstet Invest 1991; 32: 10–4

    PubMed  CAS  Google Scholar 

  55. Bawdon RE, Maberry MC, Fortunato SJ, et al. Trimethoprim and sulfamethoxazole transfer in the in vitro perfused human cotyledon. Gynecol Obstet Invest 1991; 31: 240–2

    PubMed  CAS  Google Scholar 

  56. Karl PI, Fisher SE. Taurine transport by microvillous membrane vesicles and the perfused cotyledon of the human placenta. Am J Physiol 1990; 258: 443–51

    Google Scholar 

  57. Omarini D, Barzago MM, Aramayona J, et al. Theophylline transfer across human placental cotyledon during in vitro dual perfusion. J Med 1992; 23: 101–16

    PubMed  CAS  Google Scholar 

  58. Fortunato SJ, Bawdon RE, Swan KF. Transfer of timentin (ticarcillin and clavulanic acid) across the in vitro perfused human placenta: comparison with other agents. Am J Obstet Gynecol 1992; 167: 1595–9

    PubMed  CAS  Google Scholar 

  59. Fowler DW, Eadie MJ, Dickinson RG. Transplacental transfer and biotransformation studies of valproic acid and its glucuronide (s) in the perfused human placenta. J Pharmacol Exper Ther 1989; 249: 318–23

    CAS  Google Scholar 

  60. Soto P, Berrebi A, Grandjean H. In vitro placental transfer of AZT using the perfused human placental cotyledon model. 2nd Congress of European Society for Development Pharmacology; 1990; Italy: 1990; N42

  61. Berrebi A, Dumas JC, Giroux M. AZT materno-fetal and fetomaternal transfer in an ex vivo study. VII International Conference on AIDS; 1991 June; Florence, Italy, WA 1048

  62. Beer WH, Johnson RF, Guentzel MN, et al. Human placental transfer of zinc: normal characteristics and role of ethanol. Alcohol Clin Exper Res 1992; 16: 98–105

    CAS  Google Scholar 

  63. Page KR, Abramovich DR, Aggett PJ. The transfer of zinc across the term dually perfused human placental lobule. Q J Exper Physiol 1988; 73: 585–93

    CAS  Google Scholar 

  64. Essien FE, Afamefuma GC. Chloroquine and its metabolites in human cord blood, neonatal blood and urine after maternal medication. Clin Chem 1982; 28: 1148–52

    PubMed  CAS  Google Scholar 

  65. Carter BL, Driscoll CE, Smith GD. Theophylline clearance during pregnancy. Obstet Gynecol 1986; 68: 555–9

    PubMed  CAS  Google Scholar 

  66. Grella PV, di Lenardo L, Konishi de Toffoli G, et al. Antenatal theophylline: fetus and newborn. In: Cosmi EV, Di Renzo GC, editors. Proceedings of XI European Congress of Perinatal Medecine. Chur, Switzerland: Harwood Academic Publishers, 1989: 584–93

    Google Scholar 

  67. Dancis J, Jansen V, Kayden HJ, et al. Transfer across perfused human placenta III: effect of chain length on transfer of free fatty acids. Pediatr Res 1974; 8: 796–9

    PubMed  CAS  Google Scholar 

  68. Dancis J, Jansen V, Levitz M. Transfer across perfused human placenta IV: effect of protein binding on free fatty acids. Pediatr Res 1986; 10: 5–10

    Google Scholar 

  69. Plaa GL. Cinétique de distribution des médicaments dans l’unité foeto-placentaire. Coll INSERM Pharmacologie Périnatale 1977; 73: 17–22

    Google Scholar 

  70. Nandakumaran M, Gardey CL, Challier JC, et al. Placental monoamine oxidase content and inhibition: effect of enzyme inhibition on maternofetal transfer of noradrenaline (norepinephrine) in the human placenta in vitro. Placenta 1983; 4: 57–64

    PubMed  CAS  Google Scholar 

  71. Ostrea Jr EM, Porter T, Balun J, et al. Effect of chronic maternal drug addiction on placental drug metabolism. Dev Pharmacol Ther 1989; 12: 42–8

    PubMed  Google Scholar 

  72. Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the folin phenol reagent. J Biol Chem 1951; 193: 265–75

    PubMed  CAS  Google Scholar 

  73. Omura T, Sato R. The carbon monoxide-binding pigment of liver microsomes. J Biol Chem 1964; 239: 2370–85

    PubMed  CAS  Google Scholar 

  74. Van Petten GR, Hirsch GH, Cherrington AD. Drug-metabolising activity of the human placenta. Can J Biochem 1968; 46: 1057–61

    PubMed  Google Scholar 

  75. Daubeze M, Cassand P, Migaud ML. Activation métabolique du benzo (a)pyrène par le liquide amniotique humain. C R Acad Sci 1986; 302: 625–8

    CAS  Google Scholar 

  76. Raghuram TC, Krishnaway K. Basic concepts of clinical pharmacokinetics. J Assoc Physicians India 1992; 40: 29–35

    PubMed  CAS  Google Scholar 

  77. Szeto HH. Maternal-fetal pharmacokinetics and fetal doseresponse relationships. Ann NY Acad Sci 1989; 562: 42–55

    PubMed  CAS  Google Scholar 

  78. Fernandez H, Bourget P, Delouis C. Fetal levels of tobramycin following maternal administration. Obstet Gynecol 1990; 76: 992

    PubMed  CAS  Google Scholar 

  79. Minora T, Ventresca GP, Mariani I. Problemi di farmacocinetica in gravidanza rassegna bibliografica. Ann Ostet Ginecol Med Perinat 1990: 127; 159–73

    Google Scholar 

  80. Bourget P, Pons JC, Delouis C, et al. Flecainide distribution, transplacental passage and accumulation into the amniotic fluid during the third trimester of pregnancy. Ann Pharmacother 1994; 28: 1031–4

    PubMed  CAS  Google Scholar 

  81. Szeto HH, Umans JG, Mc Farland J. A comparison of morphine and methadone disposition in the maternal-fetal unit. Am J Obstet Gynecol 1982; 143: 700–6

    PubMed  CAS  Google Scholar 

  82. Luecke RH, Wosilait WD, Pearce BA, et al. A physiologically based computer model for human pregnancy. Teratology 1994; 49: 90–103

    PubMed  CAS  Google Scholar 

  83. Golub MS, Eisele JH, Anderson JH. Maternal-fetal distribution of morphine and alfentanil in near-term sheep and rhesus monkeys. Dev Pharmacol Ther 1986; 9: 12–22

    PubMed  CAS  Google Scholar 

  84. Michiels M, Hendriks R, Heykants J. On the pharmacokinetics of domperidone in animals and men. II: tissue distribution, placental and milk transfer of domperidone in the wistar rat. Eur J Drug Metab Pharmacokinet 1981; 6: 37–48

    PubMed  CAS  Google Scholar 

  85. Laishley RS, Carson RJ, Reynolds F. Effect of adrenaline on placental transfer of bupivacaine in rabbits. Br J Anaesth 1988; 60: 330–1

    Google Scholar 

  86. Hamshaw-Thomas AH, Rogerson N, Reynolds F. Transfer of bupivacaine, lignocaine and pethidine across the rabbit placenta-influence of maternal protein binding and fetal flow. Placenta 1984; 5: 61–70

    PubMed  CAS  Google Scholar 

  87. Vert P, Boutroy MJ, Morselli P. Placental transfer of drugs. In: Stern L, editor. Drug use in pregnancy. Sydney: Adis Health Science Press, 1984: 45–67

    Google Scholar 

  88. Pedersen H, Morishima HO, Finster M. Anaesthesia during pregnancy and parturition. In: Finster M, Eskes TKAB, editors. Drug therapy during pregnancy. London: Butterworths, 1985: 161–82

    Google Scholar 

  89. Moya F, Thorndike V. Passage of drug across the placenta. Am J Obstet Gynecol 1962; 84: 1778–98

    PubMed  CAS  Google Scholar 

  90. Krauer B, Dayer P. Fetal drug metabolism and its possible clinical implications. Clin Pharmacokinet 1991; 21: 70–80

    PubMed  CAS  Google Scholar 

  91. Morselli PL, Boutroy MJ, Bianchetti G, et al. Pharmacokinetics of antihypertensive drugs in the neonatal périod. Dev Pharmacol Ther 1989; 13: 190–8

    PubMed  CAS  Google Scholar 

  92. Obata I, Yamato T, Hayashi S, et al. Pharmacokinetic study of aztreonam transfer from mother to fetus. Jpn J Antibiot 1990; 43: 70–80

    PubMed  CAS  Google Scholar 

  93. Matsuda S, Oh K, Hirayama H, et al. Transplacental transfer and clinical application of aztreonam. Jpn J Antibiot 1990; 43: 700–5

    PubMed  CAS  Google Scholar 

  94. Ito K, Hirose R, Tamaya T, et al. Pharmacokinetic and clinical studies on aztreonam in the perinatal period. Jpn J Antibiot 1990; 43: 719–26

    PubMed  CAS  Google Scholar 

  95. Makinoda S, Negishi H, Ohkohchi T, et al. Basic and clinical studies on aztreonam in obstetric and gynecologic infections during the perinatal period. Jpn J Antibiot 1990; 43: 692–5

    PubMed  CAS  Google Scholar 

  96. Yamamoto T, Yasuda J, Okada H, et al. Pharmacokinetic and clinical studies on aztreonam in the perinatal period in obstetric and gynecology. Jpn J Antibiot 1990; 43: 727–35

    PubMed  CAS  Google Scholar 

  97. Sengoku K, Shimizu T, Haga H, et al. Pharmacokinetic and clinical studies on aztreonam in the perinatal period. Jpn J Antibiot 1990; 43: 686–91

    PubMed  CAS  Google Scholar 

  98. Yerbi MS, Friel PN, Mac Cormick K, et al. Pharmacokinetics of anticonvulsants in pregnancy: alteration in plasma protein binding. Epilepsy Res 1990; 5: 223–8

    Google Scholar 

  99. Brown CEL, Christmas JT, Bawdon RE. Placental transfer of cefazolin and piperacillin in pregnancies remote from term complication by Rh isoimmunization. Am J Obstet Gynecol 1990; 163: 938–43

    PubMed  CAS  Google Scholar 

  100. Cho N, Fukunaga K, Kunji K. Pharmacokinetic studies on cefsulodin in the perinatal period. Jpn J Antibiot 1989; 42: 2735–42

    PubMed  CAS  Google Scholar 

  101. Bourget P, Fernandez H, Quinquis V, et al. Pharmacokinetics and protein binding of ceftriaxone during pregnancy. Antimicrob Agents Chemother 1993; 37: 54–9

    PubMed  CAS  Google Scholar 

  102. Bourget P, Quinquis V, Fernandez H, et al. Pharmacocinétique clinique de la ceftriaxone au cours du troisième trimestre de la grossesse et étude de son passage transplacentaire dans deux cas. Pathol Biol 1993; 41: 242–8

    PubMed  CAS  Google Scholar 

  103. Bourget P, Quinquis-Desmaris V, Fernandez H. Ceftriaxone distribution and protein binding between maternal blood and milk postpartum. Ann Pharmacother 1993; 27: 294–7

    PubMed  CAS  Google Scholar 

  104. Amoura Z, Schermann JM, Wechsler B, et al. Transplacental passage of colchicine in familial Mediterranean fever [letter]. J Rheumatol 1994; 21: 383

    PubMed  CAS  Google Scholar 

  105. Bourget P, Fernandez H, Bismuth H, et al. Transplacental passage of cyclosporin after liver transplantation. Transplantation 1990; 49: 663–4

    PubMed  CAS  Google Scholar 

  106. Bourget P, Fernandez H, Delouis C. Accumulation of cyclosporin in the conceptus during the first trimester of pregnancy after liver transplantation. Transplantation 1991; 51: 1306–7

    PubMed  CAS  Google Scholar 

  107. Bourget P, Fernandez H, Quinquis V, et al. Pharmacokinetics of cyclosporin A during pregnancy: monitoring of treatment and specific assays of cyclosporin, based on five liver transplant patients. J Pharm Biomed Anal 1993; 11: 43–8

    PubMed  CAS  Google Scholar 

  108. Kanhai HH, Van-Kamp II, Moolenar AJ, et al. Transplacental passage of digoxin in severe rhesus immunization. J Perinat Med 1990; 18: 339–43

    PubMed  CAS  Google Scholar 

  109. Hildebrandt R, Weitzel H, Warnke K, et al. Pharmacokinetics of fenoterol in pregnant and non-pregnant women. Eur J Clin Pharmacol 1993; 45: 275–7

    PubMed  CAS  Google Scholar 

  110. Kofinas AD, Simon NV, Sagel H, et al. Treatment of fetal supraventricular tachycardia with flecainide acetate after digoxin failure. Am J Obstet Gynecol 1991; 165: 630–1

    PubMed  CAS  Google Scholar 

  111. Yamamoto T, Yasuda J, Okada H, et al. Pharmacokinetic and clinical studies on flomoxef in the perinatal period in obstetrics and gynecology. Jpn J Antibiot 1991; 44: 686–96

    Google Scholar 

  112. Tamate K, Sengoku K, Ishikawa M, et al. Study on flomoxef in the perinatal period. Jpn J Antibiot 1991; 44: 643–51

    PubMed  CAS  Google Scholar 

  113. Ito K, Mikamo H, Tamaya T, et al. Pharmacokinetic and clinical studies on flomoxef in perinatal period. Jpn J Antibiot 1991; 44: 683–8

    PubMed  CAS  Google Scholar 

  114. Cho N, Fukunaga K, Kunii K, et al. Studies on flomoxef in the perinatal period. Jpn J Antibiot 1991; 44: 674–82

    PubMed  CAS  Google Scholar 

  115. Matsuda S, Hirayama H, Oh K. Pharmacokinetic and clinical studies of flomoxef in perinatal period. Jpn J Antibiot 1991; 44: 669–73

    PubMed  CAS  Google Scholar 

  116. Forestier F, Daffos F, Said R, et al. Passage transplacentaire du fluor. J Gynecol Obstet Biol Reprod 1990; 19: 171–5

    CAS  Google Scholar 

  117. Melkkila A, Kaila T, Kanto J, et al. Pharmacokinetics of glycopyrronium in parturients. Anesthesia 1990; 45: 634–7

    Google Scholar 

  118. Matzsch T, Bergquist D, Bergquist A, et al. No transplacental passage of standard heparin or an enzymatically depolymerized low molecular weight heparin blood. Coag Fibrinolysis 1991; 2: 273–8

    CAS  Google Scholar 

  119. Heikkila A, Renkonen O, Erkkola R. Pharmacokinetics and transplacental passage of imipenem during pregnancy. Antimicrob Agents Chemother 1992; 36: 2652–5

    PubMed  CAS  Google Scholar 

  120. Menon RK, Cohen RM, Sperling MA, et al. Transplacental passage of insulin in pregnant women with insulin-dependant diabetes mellitus. N Engl J Med 1990; 323: 309–15

    PubMed  CAS  Google Scholar 

  121. Goyer RA. Transplacental transport of lead. Environ Health Perspect 1990; 89: 101–5

    PubMed  CAS  Google Scholar 

  122. Guay J, Gaudreault P, Boulanger A, et al. Lidocaine hydrocarbonate and lidocaine hydrochloride for cesarean section: transplacental passage and neonatal effects. Acta Anaesthesiol Scand 1992; 36: 722–7

    PubMed  CAS  Google Scholar 

  123. Heikkila A, Pyykko K, Erkkola R, et al. The pharmacokinetic of mecillinam and pivmeccillinam in pregnant and nonpregnant. Br J Clin Pharmacol 1992; 33: 629–33

    PubMed  CAS  Google Scholar 

  124. Hill NCW, Selinger M, Ferguson J, et al. The placental transfer of mifepristone (RU 486) during the second trimester and its influence upon maternal and fetal steroid concentration. Br J Obstet Gynecol 1990; 97: 406–11

    CAS  Google Scholar 

  125. Hill NW, Selinger M, Ferguson J, et al. Transplacental passage of mifepristone and its influence on maternal and fetal steroid concentration in the second trimester of pregnancy. Hum Reprod 1991; 6: 458–62

    PubMed  CAS  Google Scholar 

  126. Gerdin E, Salmonson T, Lindberg B, et al. Maternal kinetics of morphine during labour. J Perinat Med 1990; 18: 479–87

    PubMed  CAS  Google Scholar 

  127. Belfort MA, Saade GR, Moise Jr KJ, et al. Nimodipine in the management of preeclampsia: maternal and fetal effects. Am J Obstet Gynecol 1994; 171: 417–24

    PubMed  CAS  Google Scholar 

  128. Boiko SS, Zherdev VP, Vikhliaeva EM, et al. The pharmacokinetics and pharmacodynamics of pentoxifylline (trental) in the third pregnancy trimester. Eksp Klin Farmakol 1992; 55: 52–5

    PubMed  CAS  Google Scholar 

  129. Takeda A, Okada H, Tanaka H. Protein binding of four anti-epileptic drugs in maternal and umbilical cord serum. Epilepsy Res 1992; 13: 147–51

    PubMed  CAS  Google Scholar 

  130. Kazzi NJ, Ilagan NB, Liang K, et al. Placental transfer of vitamin K1 in preterm pregnancy. Obstet Gynecol 1990; 75 (Pt 1): 334–7

    PubMed  CAS  Google Scholar 

  131. Heikkila A, Erkkola R. Pharmacokinetics of piperacillin during pregnancy. J Antimicrob Chemother 1991; 28: 419–23

    PubMed  CAS  Google Scholar 

  132. Bourget P, Fernandez H, Ribou F, et al. Faible passage transplacentaire de la prazosine (Alpress®) au cours du troisième trimestre de la grossesse. J Gynecol Obstet Biol Reprod (Paris) 1993; 22: 871–4

    CAS  Google Scholar 

  133. Doreangeon PH, Fay R, Marx-Chemla C, et al. Passage transplacentaire de l’association pyrimethamine-sulfadoxine lors du traitement anténatal de la toxoplasmose congénitale. Presse Med 1990; 19: 22–9

    Google Scholar 

  134. Fujimoto S, Akahane M, Tanaka T, et al. Pharmacokinetics and materno-fetal influence of ritodrine hydrochloride during the continuous treatment of threatened premature labor. Nippon Sanka Fujinka Gakkai Zasshi 1989; 41: 321–7

    PubMed  CAS  Google Scholar 

  135. Bourget P, Fernandez H, Demirdjian S, et al. Détermination des rapports de concentrations sériques foeto-maternelles de la tobramycine à la naissance. Un modèle de pharmacocinétique réduite. Arch Fr Pediatr 1991; 48: 543–7

    PubMed  CAS  Google Scholar 

  136. Johannessen SI. Pharmacokinetics of valproate in pregnancy: mother-fetus-newborn. Pharm Weekbl Sci 1992; 14: 114–7

    PubMed  CAS  Google Scholar 

  137. Bourget P, Fernandez H, Delouis C, et al. Transplacental passage of vancomycin during the second trimester of pregnancy. Obstet Gynecol 1991; 78: 908–11

    PubMed  CAS  Google Scholar 

  138. Schenker S, Johnson RF, King TS, et al. Azidothymidine (zidovudine) transport by the human placenta. Am J Med 1990; 299: 16–20

    CAS  Google Scholar 

  139. Gillet JY, Bongain A, Abrar D, et al. Etude préliminaire sur le passage transplacentaire de l’AZT (Rétrovir®). J Gynecol Obstet Biol Reprod 1990; 19: 177–80

    CAS  Google Scholar 

  140. Pons JC, Taburet AM, Singlas E, et al. Placental passage of azathiothymidine (AZT) during the second trimester of pregnancy: study by direct fetal blood sampling under ultrasound. Eur J Obstet Gynecol Reprod Biol 1991; 40: 229–31

    PubMed  CAS  Google Scholar 

  141. Basso A, Fernandez A, Althabe O. Passage of mannitol from mother to amniotic fluid and fetus. Am J Obstet Gynecol 1977; 49: 628–31

    CAS  Google Scholar 

  142. Kivalo I, Saarikoski S. Placental transmission and fetal uptake of 14C dimethyltubocurarine. Br J Anaesth 1972; 44: 557–61

    PubMed  CAS  Google Scholar 

  143. Kivalo I, Saarikoski S. Placental transfer of 14C dimethyltubocurarine during caesarian section. Br J Anaesth 1976; 48: 239–42

    PubMed  CAS  Google Scholar 

  144. Sodha RJ, Schneider H. Sulphate conjugation of β2-adrenoreceptor stimulating drugs by platelet and placental phenol sulfotransferase. Br J Clin Pharmacol 1984; 17: 106–8

    PubMed  CAS  Google Scholar 

  145. Juchau MR. The role of the placenta in developmental toxicology. In: Snell L, editor. Developmental toxicology. London, 1982: 189–209

    Google Scholar 

  146. Rane A, Von Bahr C, Orrenius S, et al. Drug metabolism in the human fetus. In: Boreus L, editor. Fetal pharmacology. New York: Raven Press, 1973: 287–303

    Google Scholar 

  147. Gabler WL, Hubbard GL. The metabolism of 5,5-diphenylhydantoin in non pregnant and rhesus monkeys. Arch Int Pharmacodyn Ther 1973; 203: 72–91

    PubMed  CAS  Google Scholar 

  148. Rane A, Tomson G. Prenatal and neonatal drug metabolism in man. Eur J Clin Pharmacol 1980; 18: 9–15

    PubMed  CAS  Google Scholar 

  149. Hamsham-Thomas A, Reynolds F. Placental transfer of bupivicaine, pethidine and lignocaine in the rabbit: effect of umbilical flow rate and protein content. Br J Obstet Gynaecol 1985; 92: 706–13

    Google Scholar 

  150. Knott C, Reynolds F. Placental transfer of anticonvulsants in the rabbit: effect of maternal protein binding and fetal flow. Placenta 1986; 7: 333–8

    PubMed  CAS  Google Scholar 

  151. Wilkening RB, Anderson S, Martensson L, et al. Placental transfer as a function of uterine blood flow. Am J Physiol 1982; 242: 429–36

    Google Scholar 

  152. Vella LM, Knott C, Reynolds F. Transfer of fentanyl across the rabbit placenta — effect of umbilical flow and concurrent drug administration. Br J Anaesthes 1986; 58: 49–54

    CAS  Google Scholar 

  153. Reynolds F. Transfer of drugs across membranes. Top Rev Anaesth 1980; 1: 135–78

    Google Scholar 

  154. Biehl D, Shnider SM, Levinson G, et al. Placental transfer of lidocaine: effects of fetal acidosis. Anesthesiology 1978; 48: 409–12

    PubMed  CAS  Google Scholar 

  155. Kennedy RL, Erenberg A, Robillard JE, et al. Effects of changes in maternal-fetal pH on the transplacental equilibrium of bupivacaine. Anesthesiology 1979; 51: 50–4

    PubMed  CAS  Google Scholar 

  156. Datta S, Brown WU, Ostheimer GW. Epidural anesthesia for cesarean section in diabetic parturients: maternal and neonatal acid-base status and bupivacaine concentration. Anesth Analg 1981; 60: 574–8

    PubMed  CAS  Google Scholar 

  157. O’Brien WF, Cefalo RC, Grissom MP. The influence of asphyxia on fetal lidocaine toxicity. Am J Obstet Gynecol 1982; 142: 205–8

    PubMed  Google Scholar 

  158. Krauer B, Dayer P, Anner R. Changes in serum albumin and α1-acid glycoprotein concentrations during pregnancy: an analysis of feto-maternal pairs. Br J Obstet Gynaecol 1984; 91: 875–81

    PubMed  CAS  Google Scholar 

  159. Krauer B, Nau H, Dayer P, et al. Serum protein binding of diazepam and propranolol in the feto-maternal unit from early to late pregnancy. Br J Obstet Gynaecol 1986; 93: 322–8

    PubMed  CAS  Google Scholar 

  160. Hamar C, Levy G. Serum protein binding of drugs and bilirubin in newborn infants and their mothers. Clin Pharmacol Ther 1980; 28: 58–63

    PubMed  CAS  Google Scholar 

  161. Petersen MC, Moore RG, Nation RL, et al. Relationship between the transplacental gradients of bupivacaine and α1-acid glycoprotein. Br J Clin Pharmacol 1981; 12: 859–62

    PubMed  CAS  Google Scholar 

  162. Erkkola R, Lamintausta R, Liulkko P, et al. Transfer of propranolol and sotalol across the human placenta: their effect on maternal and fetal plasma renin activity. Acta Obstet Gynecol Scand 1982; 61: 31–4

    PubMed  CAS  Google Scholar 

  163. Sioufi A, Hillion D, Lumbroso P, et al. Oxprenolol placental transfer, plasma concentrations in newborns and passage into breast milk. Br J Clin Pharmacol 1984; 18: 453–6

    PubMed  CAS  Google Scholar 

  164. Meuldermans W, Woestenborghs R, Noorduin H. Protein binding of the analgesics alfentanil and sufentanil in maternal and neonatal plasma. Eur J Clin Pharmacol 1986; 30: 217–9

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourget, P., Roulot, C. & Fernandez, H. Models for Placental Transfer Studies of Drugs. Clin. Pharmacokinet. 28, 161–180 (1995). https://doi.org/10.2165/00003088-199528020-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199528020-00006

Keywords

Navigation