Skip to main content
Log in

Pharmacokinetic Optimisation of the Treatment of Septic Arthritis

  • Review Article
  • Disease Management
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Early diagnosis and treatment of septic arthritis improves the potential for a favourable outcome. Optimal treatment includes the prompt and judicious use of effective antimicrobial agents coupled with prompt drainage of the affected joint. Adequate drainage may be accomplished by means of repeated closed large-bore needle aspiration, arthroscopy, or an open surgical procedure.

The purpose of this article is to describe optimal antimicrobial therapy based upon available pharmacokinetic data. The host-dependent vulnerability to specific pathogens, local antibacterial susceptibility patterns and knowledge of antibacterial activity at the site of infection must all be taken into account when planning appropriate treatment. This article does not address arthritis secondary to human and animal bites, diabetic foot infections, mycobacteria, fungi, Lyme spirochaete, or other nonbacterial causes of septic arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prober CG. Current antibiotic therapy of community-acquired bacterial infections in hospitalized children: bone and joint infections. Pediatr Infect Dis J 1992; 11: 156–9

    Article  PubMed  CAS  Google Scholar 

  2. Wilber RB. Beta-lactam therapy of osteomyelitis and septic arthritis. Scand J Infect Dis 1984; 42: 155–68

    CAS  Google Scholar 

  3. Brause BD. Infections associated with prosthetic joints. Clin Rheum Dis 1986; 12: 523–36

    PubMed  CAS  Google Scholar 

  4. Smith JW, Piercy EA. Infectious arthritis. Clin Infect Dis J 1995; 20: 225–31

    Article  CAS  Google Scholar 

  5. Dorff GJ, Ziokowski JS, Rytel MW. Detection by counterimmunoelectrophoresis of pneumococcal antigen in synovial fluid from septic arthritis. Arthritis Rheum 1975; 18: 613–5

    Article  Google Scholar 

  6. Tuazon CU. Teichoic acid antibodies in osteomyelitis and septic arthritis caused by Staphylococcus aureus. J Bone Joint Surg 1982; 64A; 762–5

    Google Scholar 

  7. Nelson JD. Antibiotic concentrations in septic joint effusions. N Engl J Med 1971; 284: 349–53

    Article  PubMed  CAS  Google Scholar 

  8. Parker RH, Schmid FR. Antibacterial activity of synovial fluid during therapy of septic arthritis. Arthritis Rheum 1971; 14: 96–104

    Article  PubMed  CAS  Google Scholar 

  9. Tetzlaff TR, Howard JB, McCracken GH, et al. Antibiotic concentrations in pus and bone of children with osteomyelitis. J Pediatr 1978; 92: 135–40

    Article  PubMed  CAS  Google Scholar 

  10. Nelson JD, Howard JB, Shelton S. Oral antibiotic therapy for skeletal infections of children. J Pediatr 1978; 92: 131–4

    Article  PubMed  CAS  Google Scholar 

  11. Howell A, Sutherland R, Rolinson GN. Effect of protein binding on levels of ampicillin and cloxacillin in synovial fluid. Clin Pharmacol Ther 1972; 13: 724–32

    PubMed  CAS  Google Scholar 

  12. Viek P. Concentration of sodium nafcillin in pathological synovial fluid. Antimicrob Agents Chemother 1962; 379–83

  13. Baciocco EA, Iles RL. Ampicillin and kanamycin concentrations in joint fluid. Clin Pharmacol Ther 1971; 12: 858–63

    PubMed  CAS  Google Scholar 

  14. Schurman DJ, Hirshman HP, Kajiyama G, et al. Cefazolin concentrations in bone and synovial fluid. J Bone Joint Surg 1978; 60-A: 359–62

    Google Scholar 

  15. Valencia-Chinas A, Galindo-Hernandez F, Reyes-Sanchez J, et al. Concentrations of cefadroxil in osteoarticular tissues [abstract no. 338]. Abstracts of the 19th Interscience Conference on Antimicrobial Agents and Chemotherapy; American Society for Microbiology; 1979: Washington, DC.

  16. Vainiopää S, Wilppula E, Lalla M, et al. Cefamandole and isoxazolyl penicillins in antibiotic prophylaxis of patients undergoing total hip or knee-joint arthroplasty. Arch Orthop Trauma Surg 1988; 107: 228–30

    Article  Google Scholar 

  17. Harle A, Ritzerfeld W, Kluppelberg FH. Cefotaxime levels in synovial fluid following intravenous administration. Z Orthop Ihre Grenzgeb 1988; 126: 425–30

    Article  PubMed  CAS  Google Scholar 

  18. Morgan JR, Pauli A, O'Sullivan M, et al. The penetration of ceftriaxone into synovial fluid of the inflamed joint. J Antimicrob Chemother 1985; 16: 367–71

    Article  PubMed  CAS  Google Scholar 

  19. Somekh E, Heifets L, Tanai A, et al. Penetration of cefixime into synovial fluid [abstract A56]. 35th Interscience Conference on Antimicrobial Agents and Chemotherapy: 1995 Sep 17; Washington, DC: 11

  20. MacLeod CM, Bartley EA, Galante JO, et al. Aztreonam penetration into synovial fluid and bone. Antimicrob Agents Chemother 1986; 29: 710–2

    Article  PubMed  CAS  Google Scholar 

  21. Bosseray A, Leclercq P, Manquat G, et al. Penetration of ciprofloxacin into synovial fluid after oral dosing. J Antimicrob Chemother 1992; 30: 874–5

    Article  PubMed  CAS  Google Scholar 

  22. Dee TH, Kozin F. Gentamicin and tobramycin penetration into synovial fluid. Antimicrob Agents Chemother 1977; 12: 548–9

    Article  PubMed  CAS  Google Scholar 

  23. Geraci JE, Heilman ER, Nichols DR, et al. Some laboratory and clinical experiences with a new antibiotic, vancomycin. Proc Staff Meetings Mayo Clin 1956; 31: 564–82

    CAS  Google Scholar 

  24. Gerding DN, Peterson LR, Hughes CE, et al. Extravascular antimicrobial distribution and the respective blood-concentrations in humans. In: Lorian V, editor. Antibiotics in laboratory medicine. 3rd ed. Baltimore: Williams & Wilkins, 1991

    Google Scholar 

  25. Drutz DJ, Schaffner W, Hillman JW, et al. The penetration of penicillin and other antimicrobials into joint fluid. J Bone Joint Surg 1967; 49-A: 1415–21

    Google Scholar 

  26. Hedström SÅ, Lindgren L, Nilsson-Ehle I. Cefuroxime in acute septic arthritis. Scand J Infect Dis 1984; 16: 79–82

    Article  PubMed  Google Scholar 

  27. Parker RH, Birbara C, Schmid FR. Passage of nafcillin and ampicillin into synovial fluid. In: Jeljaszewicz J, editor. Staphylococci and staphylococcal diseases. New York: Gustav Fischer Verlag, 1976: 1115–23

    Google Scholar 

  28. Sutherland R, Croydon EA, Rolinson GN. Flucloxacillin, a new isoxazolyl penicillin, compared with oxacillin, cloxacillin, and dicloxacillin. BMJ 1970; 4: 455–60

    Article  PubMed  CAS  Google Scholar 

  29. Black J, Hunt TL, Godley PJ, et al. Oral antimicrobial therapy for adults with osteomyelitis or septic arthritis. J Infect Dis 1987; 155: 968–72

    Article  PubMed  CAS  Google Scholar 

  30. Kolyvas E, Ahronheim G, Marks MI, et al. Oral antibiotic therapy of skeletal infections in children. Pediatrics 1980; 65: 867–71

    PubMed  CAS  Google Scholar 

  31. Nelson JD, Bucholz RW, Kusmiesz H, et al. Benefits and risks of sequential parenteral-oral cephalosporin therapy for suppurative bone and joint infections. J Pediatr Orthop 1982; 2: 255–62

    Article  PubMed  CAS  Google Scholar 

  32. Prober CG. Oral antibiotic therapy for bone and joint infections. Pediatr Infect Dis J 1982; 1: 8–10

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Homed, K.A., Tam, J.Y. & Prober, C.G. Pharmacokinetic Optimisation of the Treatment of Septic Arthritis. Clin-Pharmacokinet 31, 156–163 (1996). https://doi.org/10.2165/00003088-199631020-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199631020-00006

Keywords

Navigation