Skip to main content
Log in

Quinolone Mode of Action

  • State-Of-The-Art Presentations
  • Published:
Drugs Aims and scope Submit manuscript

Summary

Physical studies have further defined interactions of quinolones with their principal target, DNA gyrase. The binding of quinolones to the DNA gyrase-DNA complex suggests 2 possible binding sites of differing affinities. Mutations in either the gyrase A gene (gyrA) or the gyrase B gene (gyrB) that affect quinolone susceptibility also affect drug binding, with resistance mutations causing decreased binding and hypersusceptibility mutations causing increased binding. Combinations of mutations in both GyrA and GyrB have further demonstrated the contribution of both subunits to the quinolone sensitivity of intact bacteria and purified DNA gyrase. A working model postulates initial binding of quinolones to proximate sites on GyrA and GyrB. This initial binding then produces conformational changes that expose additional binding sites, possibly involving DNA.

Quinolones also inhibit the activities of Escherichia coli topoisomerase IV (encoded by the parC and parE genes), but at concentrations higher than those inhibiting DNA gyrase. The patterns of resistance mutations in gyrA and parC suggest that topoisomerase IV may be a secondary drug target in E. coli and Neisseria gonorrhoeae. In contrast, in Staphylococcus aureus these patterns suggest that topoisomerase IV may be a primary target of quinolone action.

Regulation of expression of membrane efflux transporters may contribute to quinolone susceptibility in both Gram-positive and Gram-negative bacteria. The substrate profile of the NorA efflux transporter of S. aureus correlates with the extent to which the activity of quinolone substrates is affected by overexpression of NorA. In addition, the Emr transporter of E. coli affects susceptibility to nalidixic acid, and the MexAB OprK transport system of Pseudomonas aeruginosa affects susceptibility to ciprofloxacin. Quinolones avoiding transport by commonly occurring efflux systems may thus exhibit enhanced activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hooper DC. Quinolone mode of action — new aspects. Drugs 1993; 45: 8–14

    Article  PubMed  CAS  Google Scholar 

  2. Shen LL, Kohlbrenner WE, Weigl D, et al. Mechanism of quinolone inhibition of DNA gyrase. Appearance of unique norfloxacin binding sites in enzyme-DNA complexes. J Biol Chem 1989; 264: 2973–8

    PubMed  CAS  Google Scholar 

  3. Willmott CJM, Maxwell A. A single point mutation in the DNA gyrase A protein greatly reduces binding of fluoroquinolones to the gyrase-DNA complex. Antimicrob Agents Chemother 1993; 37: 126–7

    Article  PubMed  CAS  Google Scholar 

  4. Yoshida H, Nakamura M, Bogaki M, et al. Mechanism of action of quinolones against Escherichia coli DNA gyrase. Antimicrob Agents Chemother 1993; 37: 839–45

    Article  PubMed  CAS  Google Scholar 

  5. Yoshida H, Bogaki M, Nakamura M, et al. Quinolone resistance-determining region of the DNA gyrase gyrB gene of Escherichia coli. Antimicrob Agents Chemother 1991; 35: 1647–50

    Article  PubMed  CAS  Google Scholar 

  6. Yoshida H, Bogaki M, Nakamura M, et al. Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob Agents Chemother 1990; 34: 1271–2

    Article  PubMed  CAS  Google Scholar 

  7. Herrera G, Aleixandre V, Urios A, et al. Quinolone action in Escherichia coli cells carrying gyrA and gyrB mutations. FEMS Microbiol Lett 1993; 106: 187–92

    Article  PubMed  CAS  Google Scholar 

  8. Shen LL, Mitscher LA, Sharma PN, et al. Mechanism of inhibition of DNA gyrase by quinolone antibacterials. A cooperative drug-DNA binding model. Biochemistry 1989; 28: 2886–94

    Google Scholar 

  9. Timmers K, Sternglanz R. Ionization and divalent cation dissociation constants of nalidixic and oxolinic acids. Bioinorgan Chem 1978; 9: 145–55

    Article  CAS  Google Scholar 

  10. Palù G, Valisena S, Ciarrocchi G, et al. Quinolone binding to DNA is mediated by magnesium ions. Proc Natl Acad Sci USA 1992; 89: 9671–5

    Article  PubMed  Google Scholar 

  11. Kirchhausen, T, Wang JC, Harrison SC. DNA gyrase and its complexes with DNA: direct observations by electron microscopy. Cell 1985; 41: 933–43

    Article  PubMed  CAS  Google Scholar 

  12. Kato J-I, Nishimura Y, Imamura R, et al. New topoisomerase essential for chromosome segregation in E. coli. Cell 1990; 63: 393–404

    Article  PubMed  CAS  Google Scholar 

  13. Springer AL, Schmid MB. Molecular characterization of the Salmonella typhimurium parE gene. Nucl Acids Res 1993; 21: 1805–9

    Article  PubMed  CAS  Google Scholar 

  14. Kato J-I, Suzuki H, Ikeda H. Purification and characterization of DNA topoisomerase IV in Escherichia coli. J Biol Chem 1992; 267: 25676–84

    PubMed  CAS  Google Scholar 

  15. Peng H, Marians KJ. Escherichia coli topoisomerase IV. Purification, characterization, subunit structure, and subunit interactions. J Biol Chem 1993; 268: 24481–90

    PubMed  CAS  Google Scholar 

  16. Soussy CJ, Wolfson JS, Ng EY, et al. Limitations of plasmid complementation test for determination of quinolone resistance due to changes in the gyrase A protein and identification of conditional quinolone resistance locus. Antimicrob Agents Chemother 1993; 37: 2588–92

    Article  PubMed  CAS  Google Scholar 

  17. Belland RJ, Morrison SG, Ison C, et al. Neisseria gonorrhoeae acquires mutations in analogous regions of gyrA and parC in fluoroquinolone-resistant isolates. Mol Microbiol 1994; 14: 371–80

    Article  PubMed  CAS  Google Scholar 

  18. Ferrero L, Cameron B, Manse B, et al. Cloning and primary structure of Staphylococcus aureus DNA topoisomerase IV: a primary target of fluoroquinolones. Mol Microbiol 1994; 13: 641–53

    Article  PubMed  CAS  Google Scholar 

  19. Trucksis M, Wolfson JS, Hooper DC. A novel locus conferring fluoroquinolone resistance in Staphylococcus aureus. J Bacteriol 1991; 173: 5854–60

    PubMed  CAS  Google Scholar 

  20. Yoshida H, Bogaki M, Nakamura S, et al. Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones. J Bacteriol 1990; 172: 6942–9

    PubMed  CAS  Google Scholar 

  21. Kaatz GW, Seo SM, Ruble CA. Efflux-mediated fluoroquinolone resistance in Staphylococcus aureus. Antimicrob Agents Chemother 1993; 37: 1086–94

    Article  PubMed  CAS  Google Scholar 

  22. Ng EYW, Trucksis M, Hooper DC. Quinolone resistance mediated by norA: physiologic characterization and relationship to flqB, a quinolone resistance locus on the Staphylococcus aureus chromosome. Antimicrob Agents Chemother 1994; 38: 1345–55

    Article  PubMed  CAS  Google Scholar 

  23. Hooper DC, Chen J, Ng EY. Quinolone OPC17, 116 differs from ciprofloxacin in resistance mechanisms and effects on NorA-mediated drug transport in Staphylococcus aureus. Abstracts 94th General Meeting of the American Society for Microbiology 1994; A107

  24. Neyfakh AA. The multidrug efflux transporter of Bacillus subtilis is a structural and functional homolog of the Staphylococcus NorA protein. Antimicrob Agents Chemother 1992; 36: 484–5

    Article  PubMed  CAS  Google Scholar 

  25. Greenberg JT, Chou JH, Monach PA, et al. Activation of oxidative stress genes by mutations at the soxQ/cfxB/marA locus of Escherichia coli. J Bacteriol 1991; 173: 4433–9

    PubMed  CAS  Google Scholar 

  26. Ariza RR, Cohen SP, Bachhawat N, et al. Repressor mutations in the marRAB operon that activate oxidative stress genes and multiple antibiotic resistance in Escherichia coli. J Bacteriol 1994; 176: 143–8

    PubMed  CAS  Google Scholar 

  27. Cohen SP, McMurry LM, Hooper DC, et al. Cross-resistance to fluoroquinolones in multiple-antibiotic-resistant (Mar) Escherichia coli selected by tetracycline or chloramphenicol: decreased drug accumulation associated with membrane changes in addition of OmpF reduction. Antimicrob Agents Chemother 1989; 33: 1318–25

    Article  PubMed  CAS  Google Scholar 

  28. Ma D, Cook DN, Alberti M, et al. Molecular cloning and characterization of acrA and acrE genes of Escherichia coli. J Bacteriol 1993; 175: 6299–313

    PubMed  CAS  Google Scholar 

  29. Klein JR, Henrich B, Plapp R. Molecular analysis and nucleotide sequence of the envCD operon of Escherichia coli. Mol Gen Genet 1991; 230: 230–40

    Article  PubMed  CAS  Google Scholar 

  30. Lomovskaya O, Lewis K. emr, an Escherichia coli locus for multidrug resistance. Proc Natl Acad Sci USA 1992; 89 (19): 8938–42

    Article  PubMed  CAS  Google Scholar 

  31. Poole K, Krebes K, McNally C, et al. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J Bacteriol 1993; 175: 7363–72

    PubMed  CAS  Google Scholar 

  32. Li X-ZL, Livermore DL, Nikaido H. Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: resistance to tetracycline, chloramphenicol, and norfloxacin. Antimicrob Agents Chemother 1994; 38: 1732–41

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hooper, D.C. Quinolone Mode of Action. Drugs 49 (Suppl 2), 10–15 (1995). https://doi.org/10.2165/00003495-199500492-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199500492-00004

Keywords

Navigation