Skip to main content
Log in

Comparative Review of Dopamine Receptor Agonists in Parkinson’s Disease

  • Comparative Review
  • Published:
CNS Drugs Aims and scope Submit manuscript

Summary

Limitations of long term levodopa therapy for Parkinson’s disease represent a major problem in the management of many patients. Dopamine receptor agonists provide antiparkinsonian effects and their use is most clearly defined in the context of complications from levodopa therapy. As such, dopamine receptor agonists are useful adjunctive agents to levodopa. Because typical adverse effects of dopamine receptor agonists may differ from those of levodopa, combination therapy is often effective and well tolerated.

A variety of dopamine receptor agonists, both ergot and non-ergot derivatives, are useful in the treatment of Parkinson’s disease. Five dopamine receptor agonists are currently available for use throughout much of the world, and many more are in developmental phases. Varying pharmacodynamic and pharmacokinetic profiles allow selection of appropriate dopamine receptor agonists for specific clinical scenarios. Recently reported comparative studies also suggest certain prescribing recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marsden CD, Parkes JD, Quinn N. Fluctuations of disability in Parkinson’s disease: pathophysiological aspects. In: Marsden CD, Fahn S, editors. Movement disorders. London: Butterworth, 1987: 96–122

    Google Scholar 

  2. Obeso JA, Grandas F, Vaamonde J, et al. Motor complications associated with chronic levodopa therapy in Parkinson’s disease. Neurology 1989; 39Suppl. 2: 11–9

    CAS  PubMed  Google Scholar 

  3. Kebabian JW, Calne DB. Multiple receptors for dopamine. Nature 1979; 277: 93–6

    CAS  PubMed  Google Scholar 

  4. Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex.Ann Rev Neurosci 1986; 9: 357–81

    CAS  PubMed  Google Scholar 

  5. Gerfen CR, Engber TM, Susel Z, et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 1990; 250: 1429–32

    CAS  PubMed  Google Scholar 

  6. Gerfen CR. The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci 1993; 15: 133–9

    Google Scholar 

  7. Kebabian JW. Neurotransmitter receptors in neurodegeneration. In: Calne DB, editor. Neurodegenerative diseases. Philadelphia: W.B. Saunders Company, 1994: 119–26

    Google Scholar 

  8. Braun AR, Barone P, Chase TN. Interaction of D1 and D2 dopamine receptors in the expression of dopamine agonist induced behaviors. Ad Exp Med Biol 1986; 204: 151–66

    CAS  Google Scholar 

  9. Robertson GS, Robertson HA. Synergic effects of D1 and D2 dopamine agonists on turning behaviour in rats. Brain Res 1986; 384: 387–90

    CAS  PubMed  Google Scholar 

  10. Carlson JH, Bergstrom DA, Walters JR. Stimulation of both D1 and D2 dopamine receptors appears necessary for full expression of postsynaptic effects of dopamine agonists: a neurophysiological study. Brain Res 1987; 400: 205–18

    CAS  PubMed  Google Scholar 

  11. Walters JR, Bergstrom DA, Carlson JH, et al. D1 dopamine receptor activation required for postsynaptic expression of D2 agonist effects. Science 1987; 236: 719–22

    CAS  PubMed  Google Scholar 

  12. Koller WC, Herbster G. D1 and D2 dopamine receptor mechanisms in dopaminergic behaviors. Clin Neuropharmacol 1988; 11: 221–31

    CAS  PubMed  Google Scholar 

  13. Vermeulen RJ, Orukarch B, Sahadat MCR, et al. The dopamine D1 agonist SKF 81297 and the dopamine D2 agonist LY 171555 act synergistically to stimulate motor behavior of 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine-lesioned parkinsonian rhesus monkeys. Mov Disord 1994; 9: 664–72

    CAS  PubMed  Google Scholar 

  14. Rouillard C, Bedard PJ, Di Paolo T. Behavioral and biochemical effect of chronic treatment of MPTP-monkeys with bromocriptine alone or in combination with SKF-38393. Eur J Pharmacol 1990; 185: 209–15

    CAS  PubMed  Google Scholar 

  15. Gomez-Mancilla B, Boucher R, Gagnon C, et al. Effect of adding the D1 agonist CY208-243 to chronic bromocriptine treatment. I: Evaluation of motor parameters in relation to striatal catecholamine content and dopamine receptors. Mov Disord 1993; 8: 144–50

    CAS  PubMed  Google Scholar 

  16. Gershanik O, Heikkila RE, Duvoisin RE. Behavioral correlations of dopamine receptor activation. Neurology 1983; 33: 1489–92

    CAS  PubMed  Google Scholar 

  17. Jackson DM, Hashizume M. Bromocriptine induces marked locomotor stimulation in dopamine-depleted mice when D1 dopamine receptors are stimulated with SKF38393. Psychopharmacology 1986; 90: 147–9

    CAS  PubMed  Google Scholar 

  18. Sokoloff P, Giros B, Martres MP, et al. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 1990; 347: 146–51

    CAS  PubMed  Google Scholar 

  19. Van Tol HHM, Bunzow JR, Guan HC, et al. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 1991; 350: 610–4

    PubMed  Google Scholar 

  20. Jenner P. The rationale for the use of dopamine agonists in Parkinson’s disease. Neurology 1995; 45Suppl. 3: S6–12

    CAS  PubMed  Google Scholar 

  21. Goetz CG. Dopaminergic agonists in the treatment of Parkinson’s disease. Neurology 1990; 40Suppl. 3: 50–4

    PubMed  Google Scholar 

  22. Mena MA, Pardo B, Casarejos JJ, et al. Neurotoxicity of levodopa on catecholamine-rich neurons. Mov Disord 1992; 7: 23–31

    CAS  PubMed  Google Scholar 

  23. Fornstedt B. Role of catechol autooxidation in the degeneration of dopamine neurons. Acta Neurol Scand 1990; 129Suppl.: 12–4

    CAS  Google Scholar 

  24. Olanow CW. Oxidation reactions in Parkinson’s disease. Neurology 1990; 40Suppl. 3: 32–7

    PubMed  Google Scholar 

  25. Dexter DT, Carter CJ, Wells FR, et al. Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 1989; 52: 381–9

    CAS  PubMed  Google Scholar 

  26. Shoulson I. Experimental therapeutics directed at the pathogenesis of Parkinson’s disease. In: Calne DB, editor. Drugs for the treatment of Parkinson’s disease (handbook of experimental pharmacology. Vol. 88). New York: Springer-Verlag, 1988: 289–305

    Google Scholar 

  27. Spina MB, Cohen G. Dopamine turnover and glutathione oxidation: implications for Parkinson disease. Proc Natl Acad Sci USA 1989; 86: 1398–400

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Tsui JKC. Treatment of Parkinson’s disease. In: Calne DB, editor. Neurodegenerative diseases. Philadelphia: W.B. Saunders Company, 1994: 573–82

    Google Scholar 

  29. Lieberman A. Bromocriptine in Parkinson’s disease. In: Koller WC, Paulson G, editors. Therapy of Parkinson’s disease. New York: Marcel Dekker Inc., 1990: 255–67

    Google Scholar 

  30. Montastruc JL, Rascol O, Senard JM. Current status of dopamine agonists in Parkinson’s disease management. Drugs 1993; 46: 384–93

    CAS  PubMed  Google Scholar 

  31. The Parkinson Study Group. Effect of deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 1989; 321: 1364–71

    Google Scholar 

  32. The Parkinson Study Group. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 1993; 328: 176–83

    Google Scholar 

  33. Rinne UK. Combined bromocriptine-levodopa therapy early in Parkinson’s disease. Neurology 1985; 35: 1196–8

    CAS  PubMed  Google Scholar 

  34. Rinne UK. Early combination of bromocriptine and levodopa in the treatment of Parkinson’s disease: a 5-year follow-up. Neurology 1987; 37: 826–8

    CAS  PubMed  Google Scholar 

  35. Factor SA, Weiner WJ. Early combination therapy with bromocriptine and levodopa in Parkinson’s disease. Mov Disord 1993; 8: 257–62

    CAS  PubMed  Google Scholar 

  36. Weiner WJ, Lang AE, editors. Parkinson’s disease. Movement disorders: a comprehensive survey. Mount Kisco, NY: Futura Publishing Company, 1989: 23–115

    Google Scholar 

  37. Montastruc JL, Rascol O, Rascol A. A randomized controlled study of parkinsonian patients: a 3 year follow-up. J Neurol Neurosurg Psychiatry 1989; 52: 773–5

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Kempster PA, Frankel JP, Stern GM, et al. Comparison of motor response to apomorphine and levodopa in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1990; 53: 1004–7

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Ahlskog JE, Muenter MD, Bailey PA, et al. Dopamine agonist treatment of fluctuating parkinsonism: D2 (controlled-release MK-458) vs combined D1 and D2 (pergolide). Arch Neurol 1992; 49: 560–8

    CAS  PubMed  Google Scholar 

  40. Boyce S, Rupniak NMJ, Steventon MJ, et al. Differential effects of D1 and D2 agonists in MPTP-treated primates: functional implications for Parkinson’s disease. Neurology 1990; 40: 927–33

    CAS  PubMed  Google Scholar 

  41. Jenner P. Parkinson’s disease: pathological mechanisms and action of piribedil. J Neurol 1992; 239Suppl. 1: S2–8

    PubMed  Google Scholar 

  42. Fuller RW, Clemens JA, Hynes III MD. Degree of selectivity of pergolide as an agonist at presynaptic versus postsynaptic dopamine receptors: implications for prevention or treatment of tardive dyskinesias. J Clin Psychopharmacol 1982; 2: 371–5

    CAS  PubMed  Google Scholar 

  43. Feiten DL, Feiten SV, Fuller RW, et al. Chronic dietary pergolide preserves nigrostriatal neuronal integrity in aged Fischer 344 rats. Neurobiol Aging 1992; 13: 339–51

    Google Scholar 

  44. Parkes JD, Schachter M, Marsden CD, et al. Lisuride in parkinsonism. Ann Neurol 1981; 9: 48–52

    CAS  PubMed  Google Scholar 

  45. Lieberman A, Goldstein M, Neophytides A, et al. Lisuride in Parkinson disease: efficacy of lisuride compared to levodopa. Neurology 1981; 31: 961–5

    CAS  PubMed  Google Scholar 

  46. Montastruc JL, Llau ME, Rascol O, et al. Drug-induced parkinsonism: a review. Fundam Clin Pharmacol 1994; 8: 293–306

    CAS  PubMed  Google Scholar 

  47. Coleman RJ, Lange KW, Quinn NP, et al. The antiparkinsonian actions and pharmacokinetics of transdermal (+)-4-propyl-9-hydroxynaphthoxazine (+PHNO): preliminary results. Mov Disord 1989; 4: 129–38

    CAS  PubMed  Google Scholar 

  48. Obeso JA, Luquin MR, Martinez-Lage JM. Lisuride infusion pump: a device for the treatment of motor nuctuations in Parkinson’s disease. Lancet 1986; I: 467–70

    Google Scholar 

  49. Schran HF, Bhuta SI, Schwarz HJ, et al. The pharmacokinetics of bromocriptine in man. Adv Biochem Psychopharm 1980; 23: 125–39

    CAS  Google Scholar 

  50. Humpel M, Nieuweboer B, Hasan SH, et al. Radioimmunoassay of plasma lisuride in man following intravenous and oral administration of lisuride hydrogen maleate; effects on plasma prolactin level. Eur J Clin Pharmacol 1981; 20: 47–51

    CAS  PubMed  Google Scholar 

  51. Koller WC, Weiner WJ, Diamond SG, et al. The pharmacological evaluation of pergolide mesylate as a potential anti-parkinson agent. Neuropharmacol 1980; 19: 831–7

    CAS  Google Scholar 

  52. Ahlskog JE, Wright KF, Muenter MD, et al. Adjunctive cabergoline therapy of Parkinson’s disease: response duration and dose responses. Clin Neuropharmacol. In press

  53. Mannen T, Mizuno Y, Iwata M, et al. A multi-center, double-blind study on slow-release bromocriptine in the treatment of Parkinson’s disease. Neurology 1991; 41: 1598–602

    CAS  PubMed  Google Scholar 

  54. LeWitt PA, Ward CD, Larsen TA, et al. Comparison of pergolide and bromocriptine therapy in parkinsonism. Neurology 1983; 33: 1009–14

    CAS  PubMed  Google Scholar 

  55. Pezzoli G, Martignoni E, Pacchetti C, et al. Pergolide compared with bromocriptine in Parkinson’s disease: a multicenter, crossover, controlled study. Mov Disord 1994; 9: 431–6

    CAS  PubMed  Google Scholar 

  56. Pezzoli G, Martignoni E, Pacchetti C, et al. A crossover, controlled study comparing pergolide with bromocriptine as an adjunct to levodopa for the treatment of Parkinson’s disease. Neurology 1995; 45Suppl. 3: S22–7

    CAS  PubMed  Google Scholar 

  57. Mizuno Y, Kondo T, Narabayashi H. Pergolide in the treatment of Parkinson’s disease. Neurology 1995; 45: S13–21

    CAS  PubMed  Google Scholar 

  58. Lieberman AN, Neophytides A, Leibowitz M, et al. Comparative efficacy of pergolide and bromocriptine in patients with advanced Parkinson’s disease. Adv Neurol 1983; 37: 95–108

    CAS  PubMed  Google Scholar 

  59. Goetz CG, Tanner CM, Glantz RH, et al. Chronic agonist therapy for Parkinson’s disease: a 5-year study of bromocriptine and pergolide. Neurology 1985; 35: 749–51

    CAS  PubMed  Google Scholar 

  60. Factor SA, Sanchez-Ramos JR, Weiner WJ. Parkinson’s disease: an open label trial of pergolide in patients failing bromocriptine therapy. J Neurol Neurosurg Psychiatry 1988; 51: 529–33

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Olanow CW. Pergolide/Parlodel crossover study [abstract]. Neurology 1988; 38: 314

    Google Scholar 

  62. Goetz CG, Shannon KM, Tanner CM, et al. Agonist substitution in advanced Parkinson’s disease. Neurology 1989; 39; 1121–2

    CAS  PubMed  Google Scholar 

  63. Stocchi F, Bramante L, Monge A, et al. Apomorphine and lisuride infusion: a comparative chronic study. Adv Neurol 1993; 60: 653–5

    CAS  PubMed  Google Scholar 

  64. Inzelberg R, Nisipeanu P, Rabey JM, et al. Comparison of cabergoline (CBG) and bromocriptine (BCR) in Parkinson’s disease (PD) patients with motor fluctuations [abstract]. Neurology 1995: 45: A292

    Google Scholar 

  65. Ferrari C, Barbieri C, Caldara R, et al. Long-lasting prolactin-lowering effect of cabergoline, a new dopamine agonist. in hyperprolactinemic patients. J Clin Endocrinol Metab 1986: 63: 941–5

    CAS  PubMed  Google Scholar 

  66. Ferrari C, Paracchi A, Romano C, et al. Long-lasting lowering of serum growth hormone and prolactin levels by single and repetitive cabergoline administration in dopamine-responsive acromegalic patients. Clin Endocrinol 1988: 29: 467–76

    CAS  Google Scholar 

  67. European Multicentre Study Group for Cabergoline in Lactation and Inhibition. Single dose cabergoline versus bromocriptine in inhibition of puerperal lactation: randomised, double-blind, multicentre study. BMJ 1991; 302: 1367–71

    Google Scholar 

  68. LeWitt PA, Gopinathan G, Ward CD, et al. Lisuride versus bromocriptine treatment in Parkinson disease: a double blind study. Neurology 1982; 32: 69–72

    CAS  PubMed  Google Scholar 

  69. Lees AJ, Stern GM. Pergolide and lisuride for levodopa-induced oscillations [letter]. Lancet 1981: I: 577

    Google Scholar 

  70. Lieberman AN, Gopinathan G, Neophytides A, et al. Pergolide and lisuride in advanced Parkinson’s disease. In: Hassler RG, Christ JF. editors. Parkinson-specific motor and mental disorders. role of pallidum: pathophysiological, biochemical, and therapeutic aspects. New York: Raven Press, 1984: 503–7

    Google Scholar 

  71. Pacchetti C, Martignoni E, Bruggi P, et al. Terguride in fluctuating parkinsonian patients: a double-blind study versus placebo. Mov Disord 1993; 8: 463–5

    CAS  PubMed  Google Scholar 

  72. Cotzias GC, Papavasiliou PS, Tolosa ES, et al. Treatment of Parkinson’s disease with aporphines. N Engl J Med 1976; 294: 576–72

    Google Scholar 

  73. Horowski R, Obeso JA, Lisuride: a direct dopamine agonist in the treatment of Parkinson’s disease. In: Koller WC, Paulson E. editors. Therapy of Parkinson’s disease. New York: Marcel Dekker Inc., 1990: 269–309

    Google Scholar 

  74. Dewey RB, Maraganore DM, Ahlskog JE, et al. Intranasal apomorphine rescue therapy for parkinsonian ‘off’ periods. Clin Neuropharmacol. In press

  75. Vermersch P, Petit H. Long-term selegiline tolerance in the treatment of Parkinson’s disease. Therapie 1992; 47: 75–8

    CAS  PubMed  Google Scholar 

  76. Rinne UK. Pleuropulmonary changes during long-term bromocriptine treatment for Parkinson’s disease [letter]. Lancet 1981; 11: 44

    Google Scholar 

  77. Wiggins J, Skinner C. Bromocriptine induced pleuropulmonary fibrosis. Thorax 1986; 41: 328–30

    CAS  PubMed Central  PubMed  Google Scholar 

  78. McElvaney NG, Wilcox PG, Churg A, et al. Pleuropulmonary disease during bromocriptine treatment of Parkinson’s disease. Arch Int Med 1988; 148: 2231–6

    CAS  Google Scholar 

  79. Demonet JF, Rostin M, Dueymes JM. et al. Retroperitoneal fibrosis and treatment of Parkinson’s disease with high doses of bromocriptine. Clin Neuropharmacol 1986; 9: 200–1

    CAS  PubMed  Google Scholar 

  80. Bhatt MH, Keenan SP, Fleetham JA, et al. Pleuropulmonary disease associated with dopamine agonist therapy. Ann Neurol 1991; 30: 613–6

    CAS  PubMed  Google Scholar 

  81. LeWitt PA, Calne DB. Recent advances in the treatment of Parkinson’s disease: the role of bromocripline. J Neural Transm 1981; 51: 175–84

    CAS  Google Scholar 

  82. Tornling G, Unge G, Axelsson G, et al. Pleuropulmonary reactions in patients on bromocriptine treatment. Eur J Respir Disord 1986; 68: 35–8

    CAS  Google Scholar 

  83. Frans E, Dom R, Demedts M. Pleuropulmonary changes during treatment of Parkinson’s disease with a long-acting ergot derivative, cabergoline. Eur Respir J 1992: 5: 263–5

    CAS  PubMed  Google Scholar 

  84. Graham JR, Suby HI, LeCompte PR, et al. Fibrotic disorders associated with methysergide therapy for headache. N Engl J Med 1966; 274: 359–68

    CAS  PubMed  Google Scholar 

  85. Colzias CG, Mena I, Papavasiliou PS, et al. Unexpected findings with apomorphine and their consequences. Adv Neurol 1974; 5: 295–9

    Google Scholar 

  86. Calne DB, Teychenne PF, Claveria LE, et al. Bromocriptine in parkinsonism. BMJ 1974; 4: 442–4

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Lieberman AN, Goldstein M. Bromocriptine in Parkinson’s disease. Pharmacol Rev 1985; 37: 217–27

    CAS  PubMed  Google Scholar 

  88. Lieberman AN, Kupersmith M, Estey E, et al. Treatment of Parkinson’s disease with bromocriptine. N Engl J Med 1976; 295: 1400–3

    CAS  PubMed  Google Scholar 

  89. Vance ML, Evans WS, Thorner MO. Diagnosis and treatment five years later: bromocriptine. Ann Int Med 1984; 100: 78–89

    CAS  PubMed  Google Scholar 

  90. Nelson MV, Berchou RC, Kareti D, et al. Pharmacokinetic evaluation of erythromycin and caffeine administered with bromocriptine. Clin Pharmacol Ther 1990; 47: 694–7

    CAS  PubMed  Google Scholar 

  91. Staal-Schreinemachers AL, Wesseling H, Kamphuis DJ, et al. Low-dose bromocriptine therapy in Parkinson’s disease: double-blind. placebo-controlled study. Neurology 1986; 36: 291–3

    CAS  PubMed  Google Scholar 

  92. Yoshikawa T, Minamiyama Y, Naito Y, et al. Antioxidant properties of bromocriptine, a dopamine agonist. J Neurochem 1994; 62: 1034–8

    CAS  PubMed  Google Scholar 

  93. Ahlskog JE, Muenter MD. Treatment of Parkinson’s disease with pergolide: a double-blind study. Mayo Clin Proc 1988: 63: 969–78

    CAS  PubMed  Google Scholar 

  94. Diamond SG, Markham CH, Treciokas LJ. Double-blind trial of pergolide for Parkinson’s disease. Neurology 1985; 35: 291–5

    CAS  PubMed  Google Scholar 

  95. Olanow CW, Fahn S, Muenter M, et al. A multicenter double-blind placebo-controlled trial of pergolide as an adjunct to Sinemet in Parkinson’s disease. Mov Disord 1994; 9: 40–7

    CAS  PubMed  Google Scholar 

  96. Vaamonde J, Luquin MR, Obeso JA. Dopaminergic responsiveness to apomorphine after chronic treatment with subcutaneous lisuride infusion in Parkinson’s disease. Mov Disord 1990; 5: 260–2

    CAS  PubMed  Google Scholar 

  97. Baronli F, Mouradian MM, Davis TL, et al. Continuous lisuride effects on central dopaminergic mechanisms in Parkinson’s disease. Ann Neurol 1992; 32: 776–81

    Google Scholar 

  98. Rondot P, Ziegler M. Activity and acceptability of piribedil in Parkinson’s disease: a multicentre study. J Neurol 1992; 239Suppl. 1: S28–34

    PubMed  Google Scholar 

  99. Gancher ST, Woodward WR, Boucher B, et al. Peripheral pharmacokinetics of apomorphine in humans. Ann Neurol 1989; 26: 232–8

    CAS  PubMed  Google Scholar 

  100. Frankel JP, Lees AJ, Kempster PA, et al. Subcutaneous apomorphine in the treatment of Parkinson’s disease. J Neurol Neurosurg Psychiatry 1990; 53: 96–101

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Kleedorfer B, Turjanski N, Ryan R, et al. Intranasal apomorphine in Parkinson’s disease. Neurology 1991; 41: 761–2

    CAS  PubMed  Google Scholar 

  102. Van Laar T, Jansen ENH, Essink AWG, et al. Intranasal apomorphine in parkinsonian on-off fluctuations. Arch Neurol 1992; 49: 482–4

    PubMed  Google Scholar 

  103. Slibe CMH, Lees AJ, Kempster PA, et al. Subcutaneous apomorphine in parkinsonian on-off oscillations. Lancet 1988; I: 403–6

    Google Scholar 

  104. Hughes AJ, Bishop S, Kleedorfer B, et al. Subcutaneous apomorphine in Parkinson’s disease: response to chronic administration for up to five years. Mov Disord 1993; 8: 165–70

    CAS  PubMed  Google Scholar 

  105. Jori MC, Franceschi M, Giusti MC, et al. Clinical experience with cabergoline, a new ergoline derivative, in the treatment of Parkinson’s disease. Adv Neurol 1990; 53: 539–43

    CAS  PubMed  Google Scholar 

  106. Benedetti MS, Dostert P, Barone D, et al. In vivo interaction of cabergoline with rat brain dopamine receptors labelled with [3H]N-n-propylnorapomorphine. Eur J Pharmacol 1990; 187: 399–408

    CAS  PubMed  Google Scholar 

  107. Fariello RG, Carfagna N, Buonamici M, et al. Cabergoline: a long-acting D2 agonist with antiparkinsonian properties — preclinical studies [abstract]. Ann Neurol 1991; 30: 258

    Google Scholar 

  108. Ahlskog JE, Muenter MD, Maraganore DM, et al. Fluctuating Parkinson’s disease: treatment with the long-acting dopamine agonist cabergoline. Arch Neurol 1994; 51: 1236–41

    CAS  PubMed  Google Scholar 

  109. Hutton JT, Morris JL, Brewer MA. Controlled study of the antiparkinsonian activity and tolerability of cabergoline. Neurology 1993; 43: 613–6

    CAS  PubMed  Google Scholar 

  110. Leiberman A, Imke S, Muenter M, et al. Multicenter study of cabergoline, a long-acting dopamine receptor agonist, in Parkinson’s disease patients with fluctuating responses to levodopa/carbidopa. Neurology 1993; 43: 1981–4

    Google Scholar 

  111. Hutton JT, Hurtig H, Hiner B, et al. Multicenter, placebo-controlled trial of cabergoline taken once daily in the treatment of Parkinson’s disease [abstract]. Neurology 1995; 45Suppl. 4: A203

    Google Scholar 

  112. Lera G, Vaamonde J, Muruzabal J, et al. Cabergoline: a long-acting dopamine agonist in Parkinson’s disease. Ann Neurol 1990; 28: 593–4

    CAS  PubMed  Google Scholar 

  113. Lera G, Vaamonde J, Rodriguez M, et al. Cabergoline in Parkinson’s disease: long-term follow-up. Neurology 1993; 43: 2587–90

    CAS  PubMed  Google Scholar 

  114. Baronti F, Ruggieri S, Stocchi F, et al. Terguride therapy of Parkinson’s disease [abstract]. Mov Disord 1992; 7: 98

    Google Scholar 

  115. Carter AJ, Muller RE. Pramipexole, a dopamine D2 autoreceptor agonist, decreases the extracellular concentration of dopamine in vivo. Eur J Pharmacol 1991; 200: 65–72

    CAS  PubMed  Google Scholar 

  116. Svensson KA, Carlsson A, Huff RM, et al. Behavioral and neurochemical data suggest functional differences between dopamine D2 and D3 receptors. Eur J Pharmacol 1994; 263: 235–43

    CAS  PubMed  Google Scholar 

  117. Albani C, Popescu R, Lacher R, et al. Single dose response to pramipexole in patients with Parkinson’s disease [abstract]. Mov Disord 1992; 7: 98

    Google Scholar 

  118. Molho ES, Factor SA, Weiner WJ, et al. The use of pramipexole, a novel dopamine agonist, in advanced Parkinson’s disease. Neurology 1993; 43: A384–5

    Google Scholar 

  119. Irifune M, Nomoto M, Fukuda T. Antiparkinsonian activity of talipexole in MPTP-treated monkeys: in combination with L-dopa and as chronic treatment. Eur J Pharmacol 1994; 264: 117–23

    CAS  PubMed  Google Scholar 

  120. Eden RJ, Costall B, Domeney AM, et al. Preclinical pharmacology of a novel dopamine D2 agonist. Pharmacol Biochem Behav 1991; 38: 147–54

    CAS  PubMed  Google Scholar 

  121. Pfeiffer RF, Hofman R. CQA 206-291 in Parkinson’s disease. Clin Neuropharmacol 1991; 14: 170–8

    CAS  PubMed  Google Scholar 

  122. Rascol O, Fabre N, Teravainen H, et al. CQA 206-291: a novel dopamine agonist in the treatment of Parkinson’s disease. Clin Neuropharmacol 1990; 13: 303–11

    CAS  PubMed  Google Scholar 

  123. Olanow CW, Werner EG, Gauger LL. CV 205-502: safety, tolerance to, and efficacy of increasing doses in patients with Parkinson’s disease in a double-blind, placebo crossover study. Clin Neuropharmacol 1989; 12: 490–7

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uitti, R.J., Ahlskog, J.E. Comparative Review of Dopamine Receptor Agonists in Parkinson’s Disease. CNS Drugs 5, 369–388 (1996). https://doi.org/10.2165/00023210-199605050-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-199605050-00006

Keywords

Navigation