Skip to main content
Log in

Potential Adjunctive Therapies in Adolescents with Type 1 Diabetes Mellitus

  • Current Opinion
  • Published:
Treatments in Endocrinology

Abstract

Appropriate insulin therapy is central to the management of all individuals with type 1 diabetes mellitus. The potential role of adjunctive therapy in type 1 diabetes is to improve insulin action, and facilitate the ability of all individuals with type 1 diabetes to achieve and maintain ‘better’ metabolic control. The landmark clinical trial in type 1 diabetes is the Diabetes Control and Complications Trial (DCCT). The DCCT showed that there is no threshold below which a reduction in glycemia would not provide further benefit against diabetes-related microvascular complications. This study in particular provides the rationale for attempting to achieve as near normoglycemia as possible. We review the use of recognized pharmacologic agents as potential insulin adjunctives in children and adolescents with type 1 diabetes. Adjunctive therapies can be grouped into the following categories based on their putative mechanism of action: enhancement of insulin action (e.g. the biguanides and thiazolidinediones), alteration of gastrointestinal nutrient delivery (e.g. acarbose and amylin), and other targets of action (e.g. pirenzepine and insulin-like growth factor-1 [IGF-1], which reduce growth hormone secretion, and glucagon-like peptide-1, which acts to stimulate insulin secretion). Many of these agents have been found to be effective in short-term studies with decreases in glycosylated hemoglobin of 0.5–1.0%, lowered postprandial blood glucose levels, and decreased daily insulin doses. Adverse effects such as poor gastrointestinal tolerability (metformin, acarbose) or potential acceleration of retinopathy (IGF-1) indicates the need for further studies of efficacy, safety, and patient selection before these adjunctive therapies can be widely recommended in type 1 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I

Similar content being viewed by others

References

  1. Bliss M. The discovery of insulin. Toronto (ON): McClelland and Stewart Ltd, 1982

    Google Scholar 

  2. DCCT Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus: the Diabetes Control and Complications Trial Research Group. N Engl J Med 1993; 30(14): 977–86

    Google Scholar 

  3. Mortensen HB, Hougaard P. Comparison of metabolic control in a cross-sectional study of 2,873 children and adolescents with IDDM from 18 countries. Diabetes Care 1997; 20(5): 714–20

    Article  PubMed  CAS  Google Scholar 

  4. Holl RW, Swift PG, Mortensen HB, et al. Insulin injection regimens and metabolic control in an international survey of adolescents with type 1 diabetes over 3 years: results from the Hvidore study group. Eur J Pediatr 2003; 162(1): 22–9

    Article  PubMed  Google Scholar 

  5. Hamilton J, Daneman D. Deteriorating diabetes control during adolescence: physiological or psychosocial? J Pediatr Endocrinol Metab 2002; 15(2): 115–26

    Article  PubMed  Google Scholar 

  6. Amiel S, Sherwin R, Simonson D, et al. Impaired insulin action in puberty: a contributing factor to poor glycemic control in adolescents with diabetes. N Engl J Med 1986; 315(4): 215–9

    Article  PubMed  CAS  Google Scholar 

  7. Moran A, Jacobs DRJ, Steinberger J, et al. Insulin resistance during puberty: results from clamp studies in 357 children. Diabetes 1999; 48(10): 2039–44

    Article  PubMed  CAS  Google Scholar 

  8. Arslanian SA, Heil BV, Becker DJ, et al. Sexual dimorphism in insulin sensitivity in adolescents with insulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1991; 72(4): 920–6

    Article  PubMed  CAS  Google Scholar 

  9. DCCT Research Group. Effect of intensive diabetes treatment on the development and progression of long-term complications in adolescents with insulin-dependent diabetes mellitus: Diabetes Control and Complications Trial. Diabetes Control and Complications Trial Research Group. J Pediatr 1994; 125(2): 177–88

    Article  Google Scholar 

  10. Daniel JR, Hagmeyer KO. Metformin and insulin: is there a role for combination therapy? Ann Pharmacother 1997; 31(4): 474–80

    PubMed  CAS  Google Scholar 

  11. Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108(8): 1167–74

    PubMed  CAS  Google Scholar 

  12. Musi N, Hirshman MF, Nygren J, et al. Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 2002; 51(7): 2074–81

    Article  PubMed  CAS  Google Scholar 

  13. Ferguson AW, de la Harpe PL, Farquhar JW. Dimethyldiguanide in the treatment of diabetic children. Lancet 1961 Jun 24; I: 1367–9

    Article  Google Scholar 

  14. Janssen M, Rillaerts E, De Leeuw I. Effects of metformin on haemorheology, lipid parameters and insulin resistance in insulin-dependent diabetic patients (IDDM). Biomed Pharmacother 1991; 45(8): 363–7

    Article  PubMed  CAS  Google Scholar 

  15. Meyer L, Guerci B. Metformin and insulin in type 1 diabetes: the first step. Diabetes Care 2003; 26(5): 1655–6

    Article  PubMed  Google Scholar 

  16. Meyer L, Bohme P, Delbachian I, et al. The benefits of metformin therapy during continuous subcutaneous insulin infusion treatment of type 1 diabetic patients. Diabetes Care 2002; 25(12): 2153–8

    Article  PubMed  CAS  Google Scholar 

  17. Hamilton J, Cummings E, Zdravkovic V, et al. Metformin as an adjunct therapy in adolescents with type 1 diabetes and insulin resistance: a randomized controlled trial. Diabetes Care 2003; 26(1): 138–43

    Article  PubMed  CAS  Google Scholar 

  18. Sarnblad B, Kroon M, Aman J. Metformin as additional therapy in adolescents with poorly controlled type 1 diabetes: randomised placebo-controlled trial with aspects on insulin sensitivity. Eur J Endocrinol 2003; 149(4): 323–9

    Article  PubMed  Google Scholar 

  19. Lacigova S, Rusavy Z, Jankovec Z, et al. Metformin in the treatment of type 1 diabetics: a placebo controlled study. Cas Lek Cesk 2001 May 24; 140(10): 302–6

    PubMed  CAS  Google Scholar 

  20. Gomez R, Mokhashi MH, Rao J, et al. Metformin adjunctive therapy with insulin improves glycemic control in patients with type 1 diabetes mellitus: a pilot study. J Pediatr Endocrinol Metab 2002; 15(8): 1147–51

    Article  PubMed  CAS  Google Scholar 

  21. Freemark M, Bursey D. The effects of metformin on body mass index and glucose tolerance in obese adolescents with fasting hyperinsulinemia and a family history of type 2 diabetes. Pediatrics 2001; 107(4): E55

    Article  PubMed  CAS  Google Scholar 

  22. Loverro G, Lorusso F, De Pergola G, et al. Clinical and endocrinological effects of 6 months of metformin treatment in young hyperinsulinemic patients affected by polycystic ovary syndrome. Gynecol Endocrinol 2002; 16(3): 217–24

    PubMed  CAS  Google Scholar 

  23. Kay JP, Alemzadeh R, Langley G, et al. Beneficial effects of metformin in normoglycemic morbidly obese adolescents. Metabolism 2001; 50(12): 1457–61

    Article  PubMed  CAS  Google Scholar 

  24. Glueck CJ, Wang P, Fontaine R, et al. Metformin to restore normal menses in oligo-amenorrheic teenage girls with polycystic ovary syndrome (PCOS). J Adolesc Health 2001; 29(3): 160–9

    Article  PubMed  CAS  Google Scholar 

  25. Lalau J-D, Race J-M. Metformin and lactic acidosis in diabetic humans. Diabetes Obes Metab 2000; 2: 131–7

    Article  PubMed  CAS  Google Scholar 

  26. Faichney JD, Tate PW. Metformin in type 1 diabetes [letter]. Diabetes Care 2003; 26(5): 1655

    Article  PubMed  Google Scholar 

  27. Hauner H. The mode of action of thiazolidinediones. Diabetes Metab Res Rev 2002; 18Suppl. 2: S10–5

    Article  PubMed  CAS  Google Scholar 

  28. Gegick CG, Altheimer MD. Comparison of effects of thiazolidinediones on cardiovascular risk factors: observations from a clinical practice. Endocr Pract 2001; 7(3): 162–9

    PubMed  CAS  Google Scholar 

  29. Hanefeld M, Koehler C, Schaper F, et al. Postprandial plasma glucose is an independent risk factor for increased carotid intima-media thickness in non-diabetic individuals. Atherosclerosis 1999; 144(1): 229–35

    Article  PubMed  CAS  Google Scholar 

  30. Kawamori R. Asymptomatic hyperglycaemia and early atherosclerotic changes. Diabetes Res Clin Pract 1998; 40 Suppl.: S35–42

    Article  PubMed  CAS  Google Scholar 

  31. Lecavalier L, Hamet P, Chiasson JL. The effects of sucrose meal on insulin requirement in IDDM and its modulation by acarbose. Diabetes Metab 1986; 12(3): 156–61

    CAS  Google Scholar 

  32. Dimitriadis G, Karaiskos C, Raptis S. Effects of prolonged (6 months) alpha-glucosidase inhibition on blood glucose control and insulin requirements in patients with insulin-dependent diabetes mellitus. Horm Metab Res 1986; 18(4): 253–5

    Article  PubMed  CAS  Google Scholar 

  33. Sels JP, Verdonk HE, Wolffenbuttel BH. Effects of acarbose (Glucobay) in persons with type 1 diabetes: a multicentre study. Diabetes Res Clin Pract 1998; 41(2): 139–45

    Article  PubMed  CAS  Google Scholar 

  34. Riccardi G, Giacco R, Parillo M, et al. Efficacy and safety of acarbose in the treatment of type 1 diabetes mellitus: a placebo-controlled, double-blind, multicentre study. Diabet Med 1999; 16(3): 228–32

    Article  PubMed  CAS  Google Scholar 

  35. Hollander P, Pi-Sunyer X, Coniff RF. Acarbose in the treatment of type I diabetes. Diabet Care 1997; 20(3): 248–53

    Article  CAS  Google Scholar 

  36. Sels JP, Kingma PJ, Wolffenbuttel BH, et al. Effect of miglitol (BAY m-1099) on fasting blood glucose in type 2 diabetes mellitus. Neth J Med 1994; 44(6): 198–201

    PubMed  CAS  Google Scholar 

  37. Edelman SV, Weyer MD. Unresolved challenges with insulin therapy in type 1 and type 2 diabetes: potential benefit of replacing amylin, a second beta-cell hormone. Diabetes Technol Ther 2002; 4(2): 175–89

    Article  PubMed  CAS  Google Scholar 

  38. Christopoulos G, Perry KJ, Morfis M, et al. Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. Mol Pharmacol 1999; 1(1): 235–42

    Google Scholar 

  39. Nyholm B, Orskov L, Hove KY, et al. The amylin analog pramlintide improves glycemic control and reduces postprandial glucagon concentrations in patients with type 1 diabetes mellitus. Metabolism 1999; 48(7): 935–41

    Article  PubMed  CAS  Google Scholar 

  40. Whitehouse F, Kruger DF, Fineman M, et al. A randomized study and open-label extension evaluating the long-term efficacy of pramlintide as an adjunct to insulin therapy in type 1 diabetes. Diabetes Care 2002; 3(1): 35–6

    Google Scholar 

  41. Ratner RE, Want LL, Fineman MS, et al. Adjunctive therapy with the amylin analogue pramlintide leads to a combined improvement in glycemic and weight control in insulin-treated subjects with type 2 diabetes. Diabetes Technol Ther 2002; 4(1): 51–61

    Article  PubMed  CAS  Google Scholar 

  42. Guler HP, Zapf J, Froesch ER. Short-term metabolic effects of recombinant human insulin-like growth factor I in healthy adults. N Engl J Med 1987; 317(3): 137–40

    Article  PubMed  CAS  Google Scholar 

  43. Acerini CL, Patton CM, Savage MO, et al. Randomised placebo-controlled trial of human recombinant insulin-like growth factor I plus intensive insulin therapy in adolescents with insulin-dependent diabetes mellitus. Lancet 1997; 350(9086): 1199–204

    Article  PubMed  CAS  Google Scholar 

  44. Carroll PV, Christ ER, Umpleby AM, et al. IGF-I treatment in adults with type 1 diabetes: effects on glucose and protein metabolism in the fasting state and during a hyperinsulinemic-euglycemic amino acid clamp. Diabetes 2000; 49(5): 789–96

    Article  PubMed  CAS  Google Scholar 

  45. Thrailkill KM, Quattrin T, Baker L, et al. Cotherapy with recombinant human insulin-like growth factor I and insulin improves glycemic control in type 1 diabetes: RhIGF-I in IDDM Study Group. Diabetes Care 1999; 22(4): 585–92

    Article  PubMed  CAS  Google Scholar 

  46. Flyvbjerg A. Role of growth hormone, insulin-like growth factors (IGFs) and IGF-binding proteins in the renal complications of diabetes. Kidney Int Suppl 1997; 60: S12–9

    PubMed  CAS  Google Scholar 

  47. Hyer SL, Sharp PS, Brooks RA, et al. Serum IGF-1 concentration in diabetic retinopathy. Diabet Med 1988; 5(4): 356–60

    Article  PubMed  CAS  Google Scholar 

  48. Krassowski J, Rogala H, Jeske W, et al. Inhibition of growth hormone (GH) response to GHRH in diabetes mellitus type 1 after blockade of the cholinergic system with pirenzepine. Pol Arch Med Wewn 1992; 88(1): 25–9

    PubMed  CAS  Google Scholar 

  49. Krassowski J, Szulc P, Makowska A, et al. Short term pirenzepine treatment is ineffective in suppressing 24-h growth hormone secretion in type 1 diabetes mellitus. Diabetes Res Clin Pract 1993; 19(3): 211–6

    Article  PubMed  CAS  Google Scholar 

  50. Martina V, Maccario M, Tagliabue M, et al. Chronic treatment with pirenzepine decreases growth hormone secretion in insulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1989; 68(2): 392–6

    Article  PubMed  CAS  Google Scholar 

  51. Halldin MU, Brismar K, Tuvemo T, et al. Insulin sensitivity and lipolysis in adolescent girls with poorly controlled type 1 diabetes: effect of anticholinergic treatment. Clin Endocrinol 2002; 57(6): 735–43

    Article  CAS  Google Scholar 

  52. Baron AD, Kim D, Weyer C. Novel peptides under development for the treatment of type 1 and type 2 diabetes mellitus. Curr Drug Targets Immune Endocr Metabol Disord 2002; 2(1): 63–82

    Article  PubMed  CAS  Google Scholar 

  53. Agerso H, Jensen LB, Elbrond B, et al. The pharmacokinetics, pharmacodynamics, safety and tolerability of NN2211, a new long-acting GLP-1 derivative, in healthy men. Diabetologia 2002; 45(2): 195–202

    Article  PubMed  CAS  Google Scholar 

  54. Zander M, Madsbad S, Madsen JL, et al. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet 2002 Mar 9; 359(9309): 824–30

    Article  PubMed  CAS  Google Scholar 

  55. Madsbad S, Schmitz O, Ranstam J, et al. Improved glycemic control with no weight increase in patients with type 2 diabetes after once-daily treatment with the long-acting glucagon-like peptide 1 analog liraglutide (NN2211): a 12-week, double-blind, randomized, controlled trial. Diabetes Care 2004 Jun; 27(6): 1335–42

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

D. Daneman and J. Hamilton are currently conducting a study of pioglitazone as adjunctive therapy in adolescents with type 1 diabetes mellitus, funded in part by an unrestricted grant from Eli-Lilly Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Daneman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jefferies, C.A., Hamilton, J. & Daneman, D. Potential Adjunctive Therapies in Adolescents with Type 1 Diabetes Mellitus. Mol Diag Ther 3, 337–343 (2004). https://doi.org/10.2165/00024677-200403060-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00024677-200403060-00002

Keywords

Navigation