Skip to main content
Log in

Finding Genes Influencing Susceptibility to Complex Diseases in the Post-Genome Era

  • Genomics in Human Disease
  • Published:
American Journal of Pharmacogenomics

Abstract

During the last decade, hundreds of genes that harbor mutations causing simple Mendelian disorders have been identified using a combination of linkage analysis and positional cloning techniques. Traditional approaches to gene mapping have been largely unsuccessful in mapping genes influencing so-called ‘complex’ genetic diseases, however, because of low power and other factors. Complex genetic diseases do not display simple Mendelian patterns of inheritance, although genes do have an influence and close relatives of probands consequently have an increased risk. These disorders are thought to be due to the combined effects of variation at multiple interacting genes and the environment. Complex diseases have a significant impact on human health because of their high population incidence (unlike simple Mendelian disorders, which tend to be rare). New techniques are being developed aimed specifically at mapping genes conferring susceptibility to complex diseases. A project aimed at mapping genes influencing susceptibility to a complex disease may be undertaken in several stages: establishing a genetic basis for the disease in one or more populations; measuring the distribution of gene effects; studying statistical power using models; carrying out marker-based mapping studies using linkage or association. Quantitative genetic models can be used to estimate the heritability of a complex (polygenic) disease, as well as to predict the distribution of gene effects and to test whether one or more quantitative trait loci (QTLs) exist. Such models can be used to predict the power of different mapping approaches, but are often unrealistic and therefore provide only approximate predictions. Linkage analyses, association studies and family-based association tests are all hindered by low power and other specific problems. Association studies tend to be more powerful but can generate spurious associations due to population admixture. Alternative strategies for association mapping include the use of recent founder populations or unique isolated populations that are genetically homogeneous, and the use of unlinked markers (so-called genomic controls) to assign different regions of the genome of an admixed individual to particular source populations. Linkage disequilibrium observed in a sample of unrelated affected and normal individuals can also be used to fine-map a disease susceptibility locus in a candidate region. New Bayesian strategies make use of an annotated human genome sequence to further refine the position of a candidate disease susceptibility locus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lander ES, Schork NJ. Genetic dissection of complex traits. Science 1994; 265: 2037–48

    Article  PubMed  CAS  Google Scholar 

  2. Vogel F, Motulsky AG. Human genetics: problems and approaches. 3rd ed. New York: Springer, 1997

    Google Scholar 

  3. Risch N. Searching for genetic determinance in the New Millenium. Nature 2000; 405: 847–56

    Article  PubMed  CAS  Google Scholar 

  4. Falconer DS. Introduction to quantitative genetics. 2nd ed. New York: John Wiley and Sons, Inc., 1981

    Google Scholar 

  5. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996; 273: 1516–17

    Article  PubMed  CAS  Google Scholar 

  6. Guo S-W. Gene-environment interaction and the mapping of complex traits: Some statistical models and their implications. Hum Hered 2000; 50: 286–303

    Article  PubMed  CAS  Google Scholar 

  7. Corder EH, Saunders AM, Strittmatter WJ, et al. Apolipoprotein E4 gene dose and the risk of Alzheimer disease in late-onset families. Science 1993; 261: 921–23

    Article  PubMed  CAS  Google Scholar 

  8. Roses AD. A model for susceptibility polymorphisms for complex diseases: Apolipoprotein E and Alzheimer disease. J Neurogenet 1997; 1(1): 3–11

    Article  CAS  Google Scholar 

  9. Weiss KM, Terwilliger JD. How many diseases does it take to map a gene with SNPs? Nat Genet 2000 Oct; 26: 151–7

    Article  PubMed  CAS  Google Scholar 

  10. Falconer DS, Mackay TFC. Introduction to quantitative genetics. 4th ed. New York: John Wiley and Sons, Inc., 1996

  11. Lynch M, Walsh B. Genetics and analysis of quantitative traits. Sunderland, Massachusetts: Sinauer Associates, 1998

    Google Scholar 

  12. Darwin C. The origin of species by means of natural selection. London: Murray, 1859

    Google Scholar 

  13. Galton F. Natural inheritance. London: Macmillan, 1889

    Book  Google Scholar 

  14. Pearson K. Mathematical contributions to the theory of evolution. XI. On the influence of natural selection on the variability and correlation of organs. Philos Trans R Soc Lond B Biol Sci 1903; A200: 1–66

    Google Scholar 

  15. Pearson K. Mathematical contributions to the theory of evolution. XII. On a generalized theory of alternative inheritance, with special reference to Mendel’s laws. Philos Trans R Soc Lond B Biol Sci 1904; A203: 53–86

    Google Scholar 

  16. Fisher RA. The genetical theory of natural selection. Oxford: Clarendon Press, 1930

  17. Fisher RA. The correlation between relatives on the supposition of Mendelian inheritance. Trans of the R Soc Edinburgh 1918; 52: 399–433

    Google Scholar 

  18. Wright S. An analysis of variability of the number of digits in an inbred strain of Guinea pigs. Genetics 1934; 19: 506–36

    PubMed  CAS  Google Scholar 

  19. Dempster ER, Lerner IM. Heritability of threshold characters. Genetics 1950; 35: 212

    PubMed  CAS  Google Scholar 

  20. Curnow RN, Smith C. Multifactorial models for familial diseases in man. J R Statist Soc 1975 A (Pt 2); 138: 131–169

    Google Scholar 

  21. Edwards JH. Familial predisposition in man. Br Med Bull 1969; 25: 58

    PubMed  CAS  Google Scholar 

  22. Mendell NR, Elston RC. Multifactorial qualitative traits: Genetic analysis and prediction of recurrence risks. Biometrics 1974; 30(1): 41–57

    Article  PubMed  CAS  Google Scholar 

  23. Risch N, Zhang H. Extreme discordant sib pairs for mapping quantitative trait loci in humans. Science 1995; 268: 1584–89

    Article  PubMed  CAS  Google Scholar 

  24. Gu C, Todorov AA, Rao DC. Genome screening using extremely discordant and extremely concordant sib pairs. Genet Epidemiol 1997; 14: 791–96

    Article  PubMed  CAS  Google Scholar 

  25. Allison DB, Heo M, Schork NJ, et al. Extreme selection strategies in gene mapping studies of oligogenic quantitative traits do not always increase power. Hum Hered 1998; 48: 97–107

    Article  PubMed  CAS  Google Scholar 

  26. Slatkin M. Disequilibrium mapping of a quantitative-trait locus in an expanding population. Am J Hum Genet 1999; 64: 1765–73

    Article  CAS  Google Scholar 

  27. Amos CI. Robust variance-components approach for assessing genetic linkage in pedigrees. Am J Hum Genet 1994; 54: 535–43

    PubMed  CAS  Google Scholar 

  28. Almasy L, Blangero J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 1998; 62: 1198–211

    Article  PubMed  CAS  Google Scholar 

  29. Hopper JL. Variance components for statistical genetics: Applications in medical research to characteristics related to human diseases and health. Stat Methods Med Res 1993; 2: 199–223

    Article  PubMed  CAS  Google Scholar 

  30. MacGregor AJ, Snieder H, Schork NJ. Twins. Novel uses to study complex traits and genetic diseases. Trends Genet 2000 Mar; 16(3): 13–4

    Article  Google Scholar 

  31. Lange K. Mathematical and Statistical Methods for Genetic Analysis. Berlin: Springer, 1997

  32. Commuzzie AG, Allison DB. The search for human obesity genes. Science 1998; 280: 1374–7

    Article  Google Scholar 

  33. Elston RC, Stewart J. A general model for the analysis of pedigree data. Hum Hered 1971; 21: 523–42

    Article  PubMed  CAS  Google Scholar 

  34. Morton NE, Maclean CJ. Analysis of family resemblance. 3. Complex segregation of quantitative traits. Am J Hum Genet 1974; 26: 489–503

    PubMed  CAS  Google Scholar 

  35. Thompson EA, Lin S, Olshen AB, et al. Monte Carlo analysis on a large pedigree. Genet Epidemiol 1993; 10: 677–82

    Article  PubMed  CAS  Google Scholar 

  36. MacLean CJ, Morton NE, Lew R. Analysis of family resolutions. IV. Operational characteristics of segregation analysis. Am J Hum Genet 1975; 27: 365–84

    PubMed  CAS  Google Scholar 

  37. Morton NE. Trials of segregation analysis by deterministic and macro simulation. In: Chakravarti A, editor. Human Population Genetics: The Pittsburgh Symposium. New York: Van Nostrand Reinhold, 1984: 83–107

    Google Scholar 

  38. Eaves LJ. The resolution of genotypes X environment interaction in segregation analysis of nuclear families. Genet Epidemiol 1984; 1: 215–28

    Article  PubMed  CAS  Google Scholar 

  39. Tiret L, Abel L, Rakotovao R. Effect of ignoring genotype-environmental interaction on segregation analysis of quantitative traits. Genet Epidemiol 1993; 10: 581–6

    Article  PubMed  CAS  Google Scholar 

  40. Risch N. Linkage strategies for genetically complex traits. II. The power of affected relative pairs. Am J Hum Genet 1990; 46: 229–41

    PubMed  CAS  Google Scholar 

  41. Dupuis J, Brown PO, Siegmund D. Statistical methods for linkage analysis of complex traits from high-resolution maps of identity by descent. Genetics 1995; 140: 843–85

    PubMed  CAS  Google Scholar 

  42. Schork NJ, Nath SK, Fallin D, et al. Linkage disequilibrium analysis of biallelic DNA markers, human quantitative trait loci, and threshold-defined case and control subjects. Am J Hum Genet 2000; 67: 1208–18

    Article  PubMed  CAS  Google Scholar 

  43. Risch N. Linkage strategies for genetically complex traits. I. Multilocus models. Am J Hum Genet 1990; 46: 222–8

    PubMed  CAS  Google Scholar 

  44. James JW. Frequency in relatives for an all-or-none trait. Ann Hum Genet 1971; 35: 47–8

    Article  PubMed  CAS  Google Scholar 

  45. Strieker C, Fernando RL, Elston RC. Linkage analysis with an alternative formulation for the mixed model of inheritance: The finite polygenic mixed model. Genetics 1995; 141: 1651–6

    Google Scholar 

  46. Haidane JBS. The combination of linkage values and the calculation of distances between the loci of linked factors. J Genet 1919; 8: 299–309

    Google Scholar 

  47. Bailey NTJ. The mathematical theory of genetic linkage. Oxford: Clarendon Press, 1961

    Google Scholar 

  48. Collins A, Frézal J, Teague J, et al. A metric map of humans: 23,500 loci in 850 bands. Proc Natl Acad Sci U S A 1996; 93: 14771–5

    Article  PubMed  CAS  Google Scholar 

  49. Ott J. Analysis of human genetic linkage. 3rd ed. Baltimore: The Johns Hopkins University Press, 1999

    Google Scholar 

  50. Bell J, Haldane JBS. The linkage between the genes for colour-blindness and haemophilia in man. Proc R Soc Lond B Biol Sci 1937; 123: 119–50

    Article  Google Scholar 

  51. Haldane JBS, Smith CAB. A new estimate of the linkage between the genes for colour-blindness and haemophilia in man. Ann Eugen 1947; 14: 10–31

    Article  PubMed  CAS  Google Scholar 

  52. Smith CAB. Some comments on the statistical methods used in linkage investigations. Am J Hum Genet 1959; 11: 289–304

    PubMed  CAS  Google Scholar 

  53. Boehnke M. Limits of resolution of genetic linkage studies. Am J Hum Genet 1994; 55: 379–90

    PubMed  CAS  Google Scholar 

  54. Penrose LS. The detection of autosomal linkage in data which consists of pairs of brothers and sisters of unspecified parentage. Ann Eugen 1935; 6: 133–8

    Article  Google Scholar 

  55. Knapp M. The affected sib pair method for linkage analysis. In: Pawlowitzki I-H, Edwards JH, Thompson EA, editors. Genetic mapping of disease genes. New York: Academic Press, 1997: 147–57

    Google Scholar 

  56. Kruglyak L, Lander E. High-resolution genetic mapping of complex traits. Am J Hum Genet 1995; 56: 1212–23

    PubMed  CAS  Google Scholar 

  57. Lander E, Kruglyak L. Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nat Genet 1995 Nov; 11: 241–7

    Article  PubMed  CAS  Google Scholar 

  58. Morton NE. Sequential tests for the detection of linkage. Am J Hum Genet 1955; 7: 277–318

    PubMed  CAS  Google Scholar 

  59. Kruglyak L. The use of a genetic map of biallelic markers in linkage studies. Nat Genet 1997 Sep; 17: 21–4

    Article  PubMed  CAS  Google Scholar 

  60. Thomson G. Significance levels in genome scans. Adv Genet 2001; 42: 475–86

    Article  PubMed  CAS  Google Scholar 

  61. Ewens WJ, Spielman RS. The transmission/disequilibrium test: History, subdivision, and admixture. Am J Hum Genet 1995 Aug; 57(2): 455–64

    PubMed  CAS  Google Scholar 

  62. Kaplan NL, Martin ER, Weir BS. Power studies for the transmission/disequilibrium tests with multiple alleles. Am J Hum Genet 1997; 60: 691–702

    PubMed  CAS  Google Scholar 

  63. Sheffield VC, Stone EM, Carmy R, et al. Use of isolated inbred human populations for identification of disease genes. Trends Genet 1998; 14: 391–6

    Article  PubMed  CAS  Google Scholar 

  64. Wright AF, Carothers AD, Pirastu M. Population choice in mapping genes for complex diseases. Nat Genet 1999; 23(4): 397–404

    Article  PubMed  CAS  Google Scholar 

  65. Boehnke M. A look at linkage disequilibrium. Nat Genet 2000; 25(3): 246–7

    Article  PubMed  CAS  Google Scholar 

  66. de la Chapelle A, Wright FA. Linkage disequilibrium mapping in isolated populations: The example of Finland revisited. Proc Natl Acad Sci U S A 1998; 95: 12416–23

    Article  PubMed  Google Scholar 

  67. Enserink M. Human genetics: Start-up claims piece of Iceland’s gene pie. Science 2000; 287: 951

    Article  PubMed  CAS  Google Scholar 

  68. Science. A genetic bounty. Science 2000; 288: 1735

    Google Scholar 

  69. Rannala B, Mountain J. Detecting immigrants by using multilocus genotypes. Proc Natl Acad Sci U S A 1997; 94: 9197–9201

    Article  PubMed  CAS  Google Scholar 

  70. Devlin B, Roeder K. Genomic control for association studies. Biometrics 1999; 55: 997–1004

    Article  PubMed  CAS  Google Scholar 

  71. Pritchard JK, Rosenberg NA. Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet 1999; 65(1): 220–8

    Article  PubMed  CAS  Google Scholar 

  72. Bacanu SA, Devlin B, Roeder K. The power of genomic control. Am J Hum Genet 2000; 66(6): 1933–44

    Article  PubMed  CAS  Google Scholar 

  73. Lander ES, Botstein D. Mapping complex genetic traits in humans: New methods using a complete RFLP linkage map. Cold Spring Harbor Symp Quant Biol 1986b; 51: 49–62

    Article  PubMed  Google Scholar 

  74. Kaplan NL, Hill WG, Weir BF, et al. Likelihood methods for locating disease genes in nonequilibrium populations. Am J Hum Genet 1995; 56: 18–32

    PubMed  CAS  Google Scholar 

  75. Graham J, Thompson EA. Disequilibrium likelihoods for fine-scale mapping of a rare allele. Am J Hum Genet 1998; 63: 1517–30

    Article  PubMed  CAS  Google Scholar 

  76. Rannala B, Slatkin M. Likelihood of disequilibrium mapping and related problems. Am J Hum Genet 1998; 62: 459–73

    Article  PubMed  CAS  Google Scholar 

  77. Hästbacka J, de la Chapelle A, Kaitila I, et al. Linkage disequilibrium mapping in isolated founder populations. Nat Genet 1992; 2: 204–11

    Article  PubMed  Google Scholar 

  78. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001; 409: 860–921

    Article  PubMed  CAS  Google Scholar 

  79. Venter JC, Adams MD, Myers EW, et al. The sequencing of the human genome. Science 2001; 291: 1304–51

    Article  PubMed  CAS  Google Scholar 

  80. Collins FS, Guyer MS, Chakravarti A. Variations on a theme: Cataloging human DNA sequence variation. Science 1997; 278: 1580–1

    Article  PubMed  CAS  Google Scholar 

  81. Xiong M, Jin L. Combined linkage and linkage disequilibrium mapping for genome screens. Genet Epidemiol 2000; 19(3): 211–34

    Article  PubMed  CAS  Google Scholar 

  82. Wu R, Zeng Z. Joint linkage and linkage disequilibrium mapping in natural populations. Genetics 2001; 157: 899–909

    PubMed  CAS  Google Scholar 

  83. Kingman JC. On the genealogy of large populations. Journal of Applied Probability 1982; 19A: 27–41

    Article  Google Scholar 

  84. Hudson RR. Gene genealogies and coalescent process. Oxford Surveys in Evolutionary Biology 1990; 7: 1–44

    Google Scholar 

  85. Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet 1999; 22(2): 139–44

    Article  PubMed  CAS  Google Scholar 

  86. Huttley GA, Smith MW, Carrington M, et al. A scan for linkage disequilibrium across the human genome. Genetics 1999; 152(4): 1711–22

    PubMed  CAS  Google Scholar 

  87. Reich DE, Cargill M, Bolk S, et al. Linkage disequilibrium in the human genome. Nature 2001; 411: 199–204

    Article  PubMed  CAS  Google Scholar 

  88. Martin ER, Gilbert JR, Lai EH, et al. Analysis of association at SNPs in the APOE region. Genomics 2000; 63: 7–12

    Article  PubMed  CAS  Google Scholar 

  89. Martin ER, Lai EH, Gilbert JR, et al. SNPing away at complex diseases: Analysis of single-nucleotide polymorphisms around APOE in Alzheimer disease. Am J Hum Genet 2000; 67(2): 383–94

    Article  PubMed  CAS  Google Scholar 

  90. Kaplan NL, Hudson RR, Langley CH. The ‘hitchhiking effect’ revisited. Genetics 1989; 123(4): 887–99

    PubMed  CAS  Google Scholar 

  91. Kimura M. A model of a genetic system which leads to closer linkage by natural selection. Evolution; 1956 10: 278–87

    Article  Google Scholar 

  92. Collins A, Lonjou C, Morton NE. Genetic epidemiology of single-nucleotide polymorphisms. Proc Natl Acad Sci U S A 1999; 96: 15173–7

    Article  PubMed  CAS  Google Scholar 

  93. Barcellos LF, Klitz W, Field LL, et al. Association mapping of disease loci, by use of a pooled DNA genomic screen. Am J Hum Genet 1997; 61: 734–47

    Article  PubMed  CAS  Google Scholar 

  94. Lewontin RC. The interaction of selection and linkage. I. Genetic considerations: heterotic models. Genetics 1964; 49: 49–67

    PubMed  CAS  Google Scholar 

  95. Rannala B, Reeve JP. High-resolution multipoint linkage-disequilibrium mapping in the context of a human genome sequence. Am J Hum Genet 2001; 69: 159–78

    Article  PubMed  CAS  Google Scholar 

  96. Sobel E, Lange K. Descent graphs in pedigree analysis: Applications to haplotyping, location scores, and marker-sharing statistics. Am J Hum Genet 1996; 58: 1323–37

    PubMed  CAS  Google Scholar 

  97. Slatkin M, Excoffier L. Testing for linkage disequilibrium in genotype data using the Expectation-Maximization algorithm. Heredity 1996; 76: 377–83

    Article  PubMed  Google Scholar 

  98. Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001; 68: 978–89

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Support for this research was provided by NIH grant HG01988 to the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Rannala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rannala, B. Finding Genes Influencing Susceptibility to Complex Diseases in the Post-Genome Era. Am J Pharmacogenomics 1, 203–221 (2001). https://doi.org/10.2165/00129785-200101030-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200101030-00005

Keywords

Navigation