Skip to main content
Log in

The Epithelial Sodium Channel in Hypertension

Genetic Heterogeneity and Implications for Treatment with Amiloride

  • Practical Pharmacogenomics
  • Published:
American Journal of Pharmacogenomics

Abstract

The epithelial sodium channel (ENaC) has a central role in sodium transport across membranes. It is expressed on the apical cell surface of renal tubular epithelia and also on other aldosterone-responsive epithelial cells. In the kidney, ENaC contributes to the regulation of blood pressure via changes in sodium balance and blood volume. Rare monogenetic disorders associated with hypertension have been described, such as Liddle syndrome, which gives rise to increased sodium reabsorption in the kidney via increased ENaC activity. There are many other variants in the genes encoding ENaC subunits, some of which occur with sufficient frequency as to be termed polymorphic variants. The Thr594Met polymorphism of the ENaC β-subunit gene SCNN1B occurs exclusively in Black individuals, with a frequency of 6–8% in those with hypertension. It increases cAMP mediated ENaC sodium current in affected B lymphocytes, and has been associated with hypertension in a Black South London population.

There is preliminary evidence that amiloride is effective as monotherapy in hypertensive individuals with the Thr594Met polymorphism and in patients with resistant hypertension, who have evidence of increased amiloride-sensitive sodium channel activity. If these preliminary studies are corroborated in larger studies, then amiloride may provide an important new strategy for blood pressure control in selected individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I

Similar content being viewed by others

References

  1. Shimkets RA, Warnock DG, Bositis CM, et al. Liddle’s syndrome: heritable human hypertension caused by mutations in the β subunit of the epithelial sodium channel. Cell 1994 Nov 4; 79(3): 407–14

    Article  PubMed  CAS  Google Scholar 

  2. Chang SS, Grunder S, Hanukoglu A, et al. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic alkalosis, psuedohy-poaldosteronism type 1. Nat Genet 1996 Mar; 12(3): 248–53

    Article  PubMed  CAS  Google Scholar 

  3. Hummler E, Barker P, Talbot C, et al. A mouse model for the renal salt-wasting syndrome pseudohypoaldosteronism. Proc Natl Acad Sci U S A 1997 Oct; 94(21): 11710–5

    Article  PubMed  CAS  Google Scholar 

  4. McDonald FJ, Yang B, Hrstka RF, et al. Disruption of the beta subunit of the epithelial Na+ channel in mice: hyperkalemia and neonatal death associated with a pseudohypoaldosteronism phenotype. Proc Natl Acad Sci U S A 1999 Feb 16; 96(4): 1727–31

    Article  PubMed  CAS  Google Scholar 

  5. Gombos EA, Freis ED, Moghadam A. Effects of MK-870 in normal subjects and hypertensive patients. N Engl J Med 1966 Dec; 275(22): 1215–20

    Article  PubMed  CAS  Google Scholar 

  6. Millar JA, Fraser R, Mason P, et al. Metabolic effects of high dose amiloride and spironolactone: a comparative study in normal subjects. Br J Clin Pharmacol 1984 Sep; 18(3): 369–75

    Article  PubMed  CAS  Google Scholar 

  7. Pratt JH, Eckert GJ, Newman S, et al. Blood pressure responses to small doses of amiloride and spironolactone in normotensive subjects. Hypertension 2001 Nov; 38(5): 1124–9

    Article  PubMed  CAS  Google Scholar 

  8. Baker EH, Ireson NJ, Carney C, et al. Transepithelial sodium absorption is increased in people of African origin. Hypertension 2001 Jul; 38(1): 76–80

    Article  PubMed  CAS  Google Scholar 

  9. Ambrosius WT, Bloem LJ, Zhou L, et al. Genetic variants in the epithelial sodium channel in relation to aldosterone and potassium excretion and risk for hypertension. Hypertension 1999 Oct; 34 (4 Pt 1): 631–7

    Article  PubMed  CAS  Google Scholar 

  10. Persu A, Barbry P, Bassilana F, et al. Genetic analysis of the beta subunit of the epithelial Na+ channel in essential hypertension. J Hypertens 1998 Jul; 32(1): 129–37

    Article  CAS  Google Scholar 

  11. Persu A, Coscoy S, Houot AM, et al. Polymorphisms of the gamma-subunit of the epithelial Na+ channel in essential hypertension. Hypertension 1999 May; 17(5): 639–45

    Article  CAS  Google Scholar 

  12. Rayner BL, Owen EP, King JA, et al. A new mutation, R563Q, of the beta subunit of the epithelial sodium channel associated with low-renin, low-aldosterone hypertension. J Hypertens 2003 May; 21(5): 921–6

    Article  PubMed  CAS  Google Scholar 

  13. Kellenberger S, Schild L. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 2002 Jul; 82(3): 735–67

    PubMed  CAS  Google Scholar 

  14. Canessa CM, Schild L, Beull G, et al. Amiloride-sensitive Na+ channel is made of three homologous subunits. Nature 1994 Feb 3; 367(6462): 463–7

    Article  PubMed  CAS  Google Scholar 

  15. Renard S, Lingueglia E, Voilley N, et al. Biochemical analysis of the membrane topology of the amiloride-sensitive Na+ channel. J Biol Chem 1994 Apr 29; 269(17): 12981–6

    PubMed  CAS  Google Scholar 

  16. Rossier BC, Pradervand S, Schild L, et al. Epithelial sodium channel and the control of sodium balance: interaction between genetic and environmental factors. Annu Rev Physiol 2002; 64: 877–97

    Article  PubMed  CAS  Google Scholar 

  17. Schild L, Schneeberger E, Gautschi I, et al. Identification of amino acid residues in the alpha, beta, and gamma subunits of the epithelial sodium channel (ENaC) involved in amiloride block and ion permeation. J Gen Physiol 1997 Jan; 109(1): 15–26

    Article  PubMed  CAS  Google Scholar 

  18. Firsov D, Gautschi I, Merillat AM, et al. The heterotetrameric architecture of the epithelial sodium channel (ENaC). EMBO J 1998 Jan 15; 17(2): 344–52

    Article  PubMed  CAS  Google Scholar 

  19. Kosari F, Sheng S, Li J, et al. Subunit stoichiometry of the epithelial sodium channel. J Biol Chem 1998 May 29; 273(22): 13469–74

    Article  PubMed  CAS  Google Scholar 

  20. Snyder PM, Cheng C, Prince LS, et al. Electrophysiological and biochemical evidence that DEG/ENaC cation channels are composed of nine subunits. J Biol Chem 1999 Jan 9; 273(2): 681–4

    Article  Google Scholar 

  21. Eskandari S, Snyder PM, Kreman M, et al. Number of subunits comprising the epithelial sodium channel. J Biol Chem 1999 Sep 17; 273(38): 27281–6

    Article  Google Scholar 

  22. Sheng S, Li J, McNulty KA, et al. Epithelial sodium channel pore region: structure and role in gating. J Biol Chem 2001 Jan 12; 276(2): 1326–34

    Article  PubMed  CAS  Google Scholar 

  23. McNicholas CM, Canessa CM. Diversity of channels generated by different combinations of epithelial sodium channel subunits. J Gen Physiol 1997 Jun; 109(6): 681–92

    Article  PubMed  CAS  Google Scholar 

  24. Kellenberger S, Hoffman-Pochon N, Gautschi I, et al. On the molecular basis of ion permeation in the epithelial Na+ channel. J Gen Physiol 1999 Jul; 114(1): 13–30

    Article  PubMed  CAS  Google Scholar 

  25. Kellenberger S, Gautschi I, Schild L. A single point mutation in the pore region of the epithelial Na+ channel changes ion selectivity by modifying molecular sieving. Proc Natl Acad Sci U S A 1999 Mar 30; 96(7): 4170–5

    Article  PubMed  CAS  Google Scholar 

  26. Staub O, Abriel H, Plant P, et al. Regulation of the epithelial sodium channel by Nedd4 and ubiquitinisation. Kidney Int 2000 Mar; 57(3): 809–15

    Article  PubMed  CAS  Google Scholar 

  27. Gormley K, Dong Y, Sagnella GA. Regulation of the epithelial sodium channel by accessory proteins. Biochem J 2003 Apr 1; 371 (Pt 1): 1–14

    Article  PubMed  CAS  Google Scholar 

  28. Lifton RP. Molecular genetics of human blood pressure variation. Science 1996 May 3; 272(5262): 676–80

    Article  PubMed  CAS  Google Scholar 

  29. Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell 2001 Feb 23; 104(4): 545–56

    Article  PubMed  CAS  Google Scholar 

  30. Liddle GW, Bledsoe T, Coppage WS. A familial renal disorder simulating primary aldosteronism but with negligable aldosterone secretion. Trans Assoc Am Physicians 1963; 76: 199–213

    CAS  Google Scholar 

  31. Botero-Velez M, Curtis JJ, Warnock DG. Brief report: Liddle’s Syndrome revisited: a disorder of sodium reabsorption in the distal tubule. N Engl J Med 1994 Jan 20; 330(3): 178–81

    Article  PubMed  CAS  Google Scholar 

  32. Gadallah MF, Abreo K, Work J. Liddle’s syndrome, an under recognised entity: a report of four cases, including the first report in black individuals. Am J Kidney Dis 1995 Jun; 25(6): 829–35

    Article  PubMed  CAS  Google Scholar 

  33. Hansson JH, Nelson-Williams C, Suzuki H, et al. Hypertension caused by a truncated epithelial sodium channel y subunit: genetic heterogeneity of Liddle syndrome. Nat Genet 1995 Sep; 11(1): 76–82

    Article  PubMed  CAS  Google Scholar 

  34. Tamura H, Schild L, Enomoto N, et al. Liddle disease caused by a missense mutation of β subunit of the epithelial sodium channel gene. J Clin Invest 1996 Apr 1; 97(7): 1780–4

    Article  PubMed  CAS  Google Scholar 

  35. Staub O, Dho S, Henry P, et al. WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle’s syndrome. EMBO J 1996 May 15; 15(10): 2371–80

    PubMed  CAS  Google Scholar 

  36. Snyder PM, Price MP, McDonald FJ, et al. Mechanism by which Liddle’s syndrome mutations increase activity of a human epithelial Na+ channel. Cell 1995 Dec 15; 83(6): 969–78

    Article  PubMed  CAS  Google Scholar 

  37. Saxena A, Hanukoglu I, Saxena D, et al. Novel mutations responsible for autosomal recessive multisystem psuedohypoaldosteronism and sequence variants in epithelial sodium channel alpha-, beta- and gamma-subunit genes. J Clin Metab 2002 Jul; 87(7): 3344–50

    Article  CAS  Google Scholar 

  38. Baker EH, Dong YB, Sagnella GA, et al. Association of hypertension with T594M mutation in β subunit of epithelial sodium channels in black people resident in London. Lancet 1998 May 9; 351(9113): 1388–92

    Article  PubMed  CAS  Google Scholar 

  39. Dong YB, Zhu HD, Baker EH, et al. T594M and G442V polymorphisms of the sodium channel β-subunit and hypertension in a black population. J Hum Hypertens 2001 Jun; 15(6): 425–30

    Article  PubMed  CAS  Google Scholar 

  40. Matsubara M, Ohkubo T, Michimata M, et al. Japanese individuals do not harbour the T594M mutation but do have the P592S mutation in the C-terminus of the β-subunit of the epithelial sodium channel: the Ohasama Study. J Hypertens 2000; 18: 861–6

    Article  PubMed  CAS  Google Scholar 

  41. Sugiyama T, Kato N, Ishinaga Y, et al. Evaluation of selected polymorphism s of the Mendelian hypertensive disease genes and the Japanese population. Hypertens Res 2001 Sep; 24(5): 515–21

    Article  PubMed  CAS  Google Scholar 

  42. Su YR, Rutkowski MP, Klanke CA, et al. A novel variant of the β-subunit of the amiloride-sensitive sodium channel in African Americans. J Am Soc Nephrol 1996 Dec; 7(12): 2543–9

    PubMed  CAS  Google Scholar 

  43. Cui Y, Su YR, Rutkowski MP, et al. Loss of protein kinase C inhibition in the β-T594M variant of the amiloride-sensitive Na+ channel. Proc Natl Acad Sci U S A 1997 Sep 2; 94(18): 9962–6

    Article  PubMed  CAS  Google Scholar 

  44. Su YR, Rutkowski MP, Klanke CA, et al. A novel variant of the β-subunit of the amiloride-sensitive sodium channel in African Americans. J Am Soc Nephrol 1996 Dec; 7(12): 2543–9

    PubMed  CAS  Google Scholar 

  45. Bubien JK, Warnock DG. Amiloride-sensitive sodium conductance in human B lymphoid cells. Am J Physiol 1993 Oct; 265 (4 Pt 1): C1175–83

    PubMed  CAS  Google Scholar 

  46. Bubien JK, Ismailov II, Berdiev BK, et al. Liddle’s disease: abnormal regulation of amiloride-sensitive Na+ channels by beta-subunit mutation. Am J Physiol 1996 Jan; 270 (1 Pt 1): C208–13

    PubMed  CAS  Google Scholar 

  47. Bubien JK, Watson B, Khan MA, et al. Expression and regulation of normal and polymorphic epithelial sodium channel by human lymphocytes. J Biol Chem 2001 Mar 16; 276(11): 8557–66

    Article  PubMed  CAS  Google Scholar 

  48. Oh Y, Warnock DG. Expression of the amiloride-sensitive sodium channel beta subunit gene in human B lymphocytes. J Am Soc Nephrol 1997 Jan; 8(1): 126–9

    PubMed  CAS  Google Scholar 

  49. Ottaviani E, Franchini A, Mandrioli M, et al. Amiloride-sensitive epithelial sodium channel subunits are expressed in human and mussel immunocytes. Dev Comp Immunol 2002 Jun; 26(5): 395–402

    Article  PubMed  CAS  Google Scholar 

  50. Tiago AD, Nkeh B, Candy GP, et al. Association study of eight candidate genes with renin status in mild-to-moderate hypertension in patients of African ancestry. Cardiovasc J S Afr 2001 Apr-May; 12(2): 75–80

    PubMed  CAS  Google Scholar 

  51. Findling JW, Raff H, Hansson JH, et al. Liddle’s syndrome: Prospective genetic screening and suppressed aldosterone secretion in an extended kindred. J Clin Endocrinol Metab 1997 Apr; 82(4): 1071–4

    Article  PubMed  CAS  Google Scholar 

  52. Blackwood AM, Baker EH, Dong YB, et al. The T594M mutation of the β-subunit of the amiloride sensitive sodium channel is associated with increased levels of urinary calcium excretion [abstract]. Hypertension 1998 Oct; 32: 793

    Google Scholar 

  53. Baker EH, Duggal A, Dong Y, et al. Amiloride, a specific drug for hypertension in black people with T594M variant? Hypertension 2002 Jul; 40(1): 13–7

    Article  PubMed  CAS  Google Scholar 

  54. Multicentre Diuretic Cooperative Study Group. Multiclinic comparison of amiloride, hydrochlorothiazide and hydrochlorothiazide plus amiloride in essential hypertension. Arch Intern Med 1981 Mar; 141(4): 482–6

    Article  Google Scholar 

  55. Katzman PL, Henningsen NC, Hulthen UL. Amiloride compared with nitrendipine in treatment of essential hypertension. J Hum Hypertens 1988 Oct; 2(3): 147–51

    PubMed  CAS  Google Scholar 

  56. Materson BJ, Reda DJ, Cushman WC, et al. Single-drug therapy for hypertension in men: a comparison of six antihypertensive agents with placebo: the Department of Veterans Affairs Cooperative Study Group on Antihypertensive Agents. N Engl J Med 1993 Apr; 328(13): 914–21

    Article  PubMed  CAS  Google Scholar 

  57. He FJ, Markandu ND, Sagnella GA, et al. Importance of the renin system in determining blood pressure fall with salt restriction in black and white hypertensives. Hypertension 1998 Nov; 32(5): 820–4

    Article  PubMed  CAS  Google Scholar 

  58. Lim PO, Dow E, Brennan G, et al. High prevalence of primary aldosteronism in the Tayside hypertension clinic. J Hum Hypertens 2000 May; 14(5): 311–5

    Article  PubMed  CAS  Google Scholar 

  59. Carter AR, Zhou ZH, Calhoun DA, et al. Hyperactive ENaC identifies hypertensive individuals amenable to amiloride therapy. Am J Physiol Cell Physiol 2001 Nov; 281(5): C1413–21

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the British Heart Foundation (BHF). There are no conflicts of interest for either Dr P.A. Swift or Professor G.A. MacGregor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline A. Swift.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swift, P.A., MacGregor, G.A. The Epithelial Sodium Channel in Hypertension. Am J Pharmacogenomics 4, 161–168 (2004). https://doi.org/10.2165/00129785-200404030-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200404030-00003

Keywords

Navigation