Skip to main content
Log in

Interpretation of Analytical Toxicology Results in Life and at Postmortem

  • Review Article
  • Published:
Toxicological Reviews

Abstract

Interpretation of analytical toxicology results from live patients is sometimes difficult. Possible factors may be related to: (i) the nature of the poison(s) present; (ii) sample collection, transport and storage; (iii) the analytical methodology used; (iv) the circumstances of exposure; (v) mechanical factors such as trauma or inhalation of stomach contents; and (vi) pharmacological factors such as tolerance or synergy. In some circumstances, detection of a drug or other poison may suffice to prove exposure. At the other extreme, the interpretation of individual measurements may be simplified by regulation. Examples here include whole blood alcohol (ethanol) in regard to driving a motor vehicle and blood lead assays performed to assess occupational exposure. With pharmaceuticals, the plasma or serum concentrations of drugs and metabolites attained during treatment often provide a basis for the interpretation of quantitative measurements. With illicit drugs, comparative information from casework may be all that is available. Postmortem toxicology is an especially complex area since changes in the composition of fluids such as blood depending on the site of collection from the body and the time elapsed since death, amongst other factors, may influence the result obtained. This review presents information to assist in the interpretation of analytical results, especially regarding postmortem toxicology. Collection and analysis of not only peripheral blood, but also other fluids/tissues is usually important in postmortem work. Alcohol, for example, can be either lost from, or produced in, blood especially if there has been significant trauma, hence measurements in urine or vitreous humour are needed to confirm the reliability of a blood result. Measurement of metabolites may also be valuable in individual cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Table I.
Fig. 2.
Table II.
Table III.

Similar content being viewed by others

References

  1. Flanagan RJ. Role of the laboratory in the diagnosis and management of poisoning. In: Dart RC, editor. Medical toxicology. 3rd ed. Baltimore (MD): Lippincott Williams & Wilkins, 2003: 337–58

    Google Scholar 

  2. Leikin JB, Watson WA. Post-mortem toxicology: what the dead can and cannot tell us. J Toxicol Clin Toxicol 2003; 41: 47–56

    Article  PubMed  CAS  Google Scholar 

  3. Drummer OH, Gerostamoulos J. Postmortem drug analysis: analytical and toxicological aspects. Ther Drug Monit 2002; 24: 199–209

    Article  PubMed  CAS  Google Scholar 

  4. Flanagan RJ, Ruprah M. HPLC measurement of chlorophenoxy herbicides, bromoxynil and ioxynil in biological specimens to aid the diagnosis of acute poisoning. Clin Chem 1989; 35: 1342–7

    PubMed  CAS  Google Scholar 

  5. Campbell DB. The development of chiral drugs. Acta Pharm Nord 1990; 2: 217–26

    PubMed  CAS  Google Scholar 

  6. Williams ML, Wainer IW. Role of chiral chromatography in therapeutic drug monitoring and in clinical and forensic toxicology. Ther Drug Monit 2002; 24: 290–6

    Article  PubMed  CAS  Google Scholar 

  7. Stewart MJ, Steenkamp V, Zuckerman M. The toxicology of African herbal remedies. Ther Drug Monit 1998; 20: 510–6

    Article  PubMed  CAS  Google Scholar 

  8. Bogusz MJ, al Tufail M, Hassan H. How natural are ‘natural herbal remedies’? A Saudi perspective. Adverse Drug React Toxicol Rev 2002; 21: 219–29

    PubMed  CAS  Google Scholar 

  9. Taylor A. Antimony, cot mattresses, and SIDS [letter]. Lancet 1996; 347: 616

    Article  PubMed  CAS  Google Scholar 

  10. Dine T, Luyckx M, Cazin M, et al. Rapid determination by high performance liquid chromatography of di-2-ethylhexyl phthalate in plasma stored in plastic bags. Biomed Chromatogr 1991; 5: 94–7

    Article  PubMed  CAS  Google Scholar 

  11. Pfleger K, Maurer HH, Weber A. Mass spectral and GC data of drugs, poisons, pesticides, pollutants and their metabolites, parts I–IV. 2nd ed. New York: Wiley, 2000

    Google Scholar 

  12. Wennig R. Laboratory diagnosis of poisonings. In: Descotes J, editor. Human toxicology. Amsterdam: Elsevier, 1996: 25–236

    Chapter  Google Scholar 

  13. Flanagan RJ. Guidelines for the interpretation of analytical toxicology results and unit of measurement conversion factors. Ann Clin Biochem 1998; 35: 261–7

    PubMed  CAS  Google Scholar 

  14. Flanagan RJ. Some drug/poison concentrations and mass/amount concentration conversion factors. In: Dart RC, editor. Medical toxicology. 3rd ed. Baltimore (MD): Lippincott Williams & Wilkins, 2003: 1796–814

    Google Scholar 

  15. Baselt RC. Disposition of toxic drugs and chemicals in man. 7th ed. Foster City (CA): Biomedical Publications, 2004

    Google Scholar 

  16. Schulz M, Schmoldt A. Therapeutic and toxic blood concentrations of more than 800 drugs and other xenobiotics. Pharmazie 2003; 58: 447–74

    PubMed  CAS  Google Scholar 

  17. Chiou WL. The phenomenon and rationale of marked dependence of drug concentration on blood sampling site: implications in pharmacokinetics, pharmacodynamics, toxicology and therapeutics — part I. Clin Pharmacokinet 1989; 17: 175–99

    Article  PubMed  CAS  Google Scholar 

  18. Chiou WL. The phenomenon and rationale of marked dependence of drug concentration on blood sampling site. Implications in pharmacokinetics, pharmacodynamics, toxicology and therapeutics — part II. Clin Pharmacokinet 1989; 17: 275–90

    Article  PubMed  CAS  Google Scholar 

  19. Drayer DE. Pharmacologically active metabolites of drugs and other foreign compounds: clinical, pharmacological, therapeutic and toxicological considerations. Drugs 1982; 24: 519–42

    Article  PubMed  CAS  Google Scholar 

  20. Garattini S. Active drug metabolites: an overview of their relevance in clinical pharmacokinetics. Clin Pharmacokinet 1985; 10: 216–27

    Article  PubMed  CAS  Google Scholar 

  21. Fraser AD, Coffin L, Worth D. Drug and chemical metabolites in clinical toxicology investigations: the importance of ethylene glycol, methanol and cannabinoid metabolite analyses. Clin Biochem 2002; 35: 501–11

    Article  PubMed  CAS  Google Scholar 

  22. Lane EA, Guthrie S, Linnoila M. Effects of ethanol on drug and metabolite pharmacokinetics. Clin Pharmacokinet 1985; 10: 228–47

    Article  PubMed  CAS  Google Scholar 

  23. Tanaka E. Toxicological interactions between alcohol and benzodiazepines. J Toxicol Clin Toxicol 2002; 40: 69–75

    Article  PubMed  CAS  Google Scholar 

  24. Tanaka E. Toxicological interactions involving psychiatric drugs and alcohol: an update. J Clin Pharm Ther 2003; 28: 81–95

    Article  PubMed  CAS  Google Scholar 

  25. Buratti S, Lavine JE. Drugs and the liver: advances in metabolism, toxicity, and therapeutics. Curr Opin Pediatr 2002; 14: 601–7

    Article  PubMed  Google Scholar 

  26. Koski A, Ojanperä I, Vuori E. Interaction of alcohol and drugs in fatal poisonings. Hum Exp Toxicol 2003; 22: 281–7

    Article  PubMed  Google Scholar 

  27. Bernstein G, Jehle D, Bernaski E, et al. Failure of gastric emptying and charcoal administration in fatal sustained-release theophylline overdose: pharmacobezoar formation. Ann Emerg Med 1992; 21: 1388–90

    Article  PubMed  CAS  Google Scholar 

  28. Logan BK, Weiss EL, Harruff RC. Case report: distribution of methamphetamine in a massive fatal ingestion. J Forensic Sci 1996; 41: 322–3

    PubMed  CAS  Google Scholar 

  29. Krishna S, White NJ. Pharmacokinetics of quinine, chloroquine and amodiaquine. Clinical implications. Clin Pharmacokinet 1996; 30: 263–99

    Article  PubMed  CAS  Google Scholar 

  30. Israili ZH, Dayton PG. Human alpha-1-glycoprotein and its interactions with drugs. Drug Metab Rev 2001; 33: 161–235

    Article  PubMed  CAS  Google Scholar 

  31. Health and Safety Executive. EH40/2005. Occupational exposure limits 2005. Sudbury: HSE Books, 2005

    Google Scholar 

  32. Flanagan RJ, Streete PJ, Ramsey JD. Volatile substance abuse: practical guidelines for analytical investigation of suspected cases and interpretation of results. Vienna: United Nations International Drug Control Programme, 1997 [online]. Available from URL: http://www.undcp.org/odccp/technical_series_1997-01-01_l.html [Accessed 2005 Apr 15]

    Google Scholar 

  33. Druid H, Holmgren P. A compilation of fatal and control concentrations of drugs in postmortem femoral blood. J Forensic Sci 1997; 42: 79–87

    PubMed  Google Scholar 

  34. Anderson WH, Prouty RW. Postmortem redistribution of drugs. In: Baselt RC, editor. Advances in analytical toxicology. Vol. 2. Chicago (IL): Year Book Medical, 1989: 70–102

    Google Scholar 

  35. Prouty RW, Anderson WH. The forensic science implications of site and temporal influences on postmortem blood-drug concentrations. J Forensic Sci 1990; 35: 243–70

    PubMed  CAS  Google Scholar 

  36. Pounder DJ, Jones GR. Post-mortem drug redistribution: a toxicological nightmare. Forensic Sci Int 1990; 45: 253–63

    Article  PubMed  CAS  Google Scholar 

  37. Kuhlman Jr JJ, Mayes RW, Levine B, et al. Chloroquine distribution in postmortem cases. J Forensic Sci 1991; 36: 1572–9

    PubMed  CAS  Google Scholar 

  38. Hilberg T, Rogde S, Morland J. Postmortem drug redistribution: human cases related to results in experimental animals. J Forensic Sci 1999; 44: 3–9

    PubMed  CAS  Google Scholar 

  39. Moriya F, Hashimoto Y. Redistribution of basic drugs into cardiac blood from surrounding tissues during early-stages postmortem. J Forensic Sci 1999; 44: 10–6

    PubMed  CAS  Google Scholar 

  40. Dalpe-Scott M, Degouffe M, Garbutt D, et al. A comparison of drug concentrations in postmortem cardiac and peripheral blood in 320 cases. Can Soc Forensic Sci J 1995; 28: 113–21

    Google Scholar 

  41. Jones GR, Pounder DJ. Site dependence of drug concentrations in postmortem blood: a case study. J Anal Toxicol 1987; 11: 186–90

    PubMed  CAS  Google Scholar 

  42. Miyazaki T, Kojima T, Yashiki M, et al. Site dependence of methamphetamine concentrations in blood samples collected from cadavers of people who had been methamphetamine abusers. Am J Forensic Med Pathol 1993; 14: 121–4

    Article  PubMed  CAS  Google Scholar 

  43. Pounder DJ, Davies JI. Zopiclone poisoning: tissue distribution and potential for postmortem diffusion. Forensic Sci Int 1994; 65: 177–83

    Article  PubMed  CAS  Google Scholar 

  44. Fuke C, Berry CL, Pounder DJ. Postmortem diffusion of ingested and aspirated paint thinner. Forensic Sci Int 1996; 78: 199–207

    Article  PubMed  CAS  Google Scholar 

  45. Flanagan RJ, Connally G, Evans JM. Analytical toxicology: guidelines for sample collection post mortem. Toxicol Rev 2005; 24: 63–71

    Article  PubMed  CAS  Google Scholar 

  46. Pounder DJ, Owen V, Quigley C. Postmortem changes in blood amitriptyline concentration. Am J Forensic Med Pathol 1994; 15: 224–30

    Article  PubMed  CAS  Google Scholar 

  47. Langford AM, Pounder DJ. Possible markers for postmortem drug redistribution. J Forensic Sci 1997; 42: 88–92

    PubMed  CAS  Google Scholar 

  48. Yonemitsu K, Pounder DJ. Postmortem changes in blood tranylcypromine concentration: competing redistribution and degradation effects. Forensic Sci Int 1993; 59: 177–84

    Article  PubMed  CAS  Google Scholar 

  49. Martin A, Pounder DJ. Post-mortem toxico-kinetics of trazodone. Forensic Sci Int 1992; 56: 201–7

    Article  PubMed  CAS  Google Scholar 

  50. Pounder D, Davies J. Zopiclone poisoning. J Anal Toxicol 1996; 20: 273–4

    PubMed  CAS  Google Scholar 

  51. Hearn WL, Keran EE, Wei HA, et al. Site-dependent postmortem changes in blood cocaine concentrations. J Forensic Sci 1991; 36: 673–84

    PubMed  CAS  Google Scholar 

  52. de Groot G, Wubs KL. A simple enzymic digestion procedure of intact tissue samples in pharmacokinetic drug analysis. J Anal Toxicol 1987; 11: 175–8

    PubMed  Google Scholar 

  53. Shankar V, Damodaran C, Sekharan PC. Comparative evaluation of some enzymic digestion procedures in the release of basic drugs from tissue. J Anal Toxicol 1987; 11: 164–7

    PubMed  CAS  Google Scholar 

  54. Apple FS. Postmortem tricyclic antidepressant concentrations: assessing cause of death using parent drug to metabolite ratio. J Anal Toxicol 1989; 13: 197–8

    PubMed  CAS  Google Scholar 

  55. Langford AM, Taylor KK, Pounder DJ. Drug concentration in selected skeletal muscles. J Forensic Sci 1998; 43: 22–7

    PubMed  CAS  Google Scholar 

  56. Pounder DJ, Adams E, Fuke C, et al. Site to site variability of postmortem drug concentrations in liver and lung. J Forensic Sci 1996; 41: 927–32

    PubMed  CAS  Google Scholar 

  57. Cirimele V, Kintz P, Gosselin O, et al. Clozapine dose-concentration relationships in plasma, hair and sweat specimens of schizophrenic patients. Forensic Sci Int 2000; 107: 289–300

    Article  PubMed  CAS  Google Scholar 

  58. Clausen J, Bickel MH. Prediction of drug distribution in distribution dialysis and in vivo from binding to tissues and blood. J Pharm Sci 1993; 82: 345–9

    Article  PubMed  CAS  Google Scholar 

  59. Forrest ARW. Obtaining samples at post-mortem examination for toxicological and biochemical analysis. J Clin Pathol 1993; 46: 292–6

    Article  PubMed  CAS  Google Scholar 

  60. Jones AW, Pounder DJ. Measuring blood alcohol concentration for clinical and forensic purposes. In: Karch S, editor. Handbook of drug abuse. Boca Raton (FL): CRC Press, 1998

    Google Scholar 

  61. Corry JE. A review: possible sources of ethanol ante- and post-mortem: its relationship to the biochemistry and microbiology of decomposition. J Appl Bacteriol 1978; 44: 1–56

    Article  PubMed  CAS  Google Scholar 

  62. Moriya F, Hashimoto Y. Endogenous ethanol production in trauma victims associated with medical treatment. Jpn J Legal Med 1996; 50: 263–7

    CAS  Google Scholar 

  63. Briglia EJ, Bidanset JH, Dal Cortivo LA. The distribution of ethanol in postmortem blood specimens. J Forensic Sci 1992; 37: 991–8

    PubMed  CAS  Google Scholar 

  64. Marraccini JV, Carroll T, Grant S, et al. Differences between multisite postmortem ethanol concentrations as related to agonal events. J Forensic Sci 1990; 35: 1360–6

    PubMed  CAS  Google Scholar 

  65. Wigmore JG. The distribution of ethanol in postmortem blood samples. J Forensic Sci 1993; 38: 1019–21

    PubMed  CAS  Google Scholar 

  66. Pounder DJ. Dead sober or dead drunk? BMJ 1998; 316: 87

    Article  PubMed  CAS  Google Scholar 

  67. Garriott JC. Skeletal muscle as an alternative specimen for alcohol and drug analysis. J Forensic Sci 1991; 36: 60–9

    PubMed  CAS  Google Scholar 

  68. Alexander W. Postmortem urinary alcohol is unreliable in diabetes. BMJ 1998; 317: 206

    Article  PubMed  CAS  Google Scholar 

  69. Mayes R, Levine B, Smith ML, et al. Toxicological findings in the USS Iowa disaster. J Forensic Sci 1992; 37: 1352–7

    PubMed  CAS  Google Scholar 

  70. Levine B, Smith ML, Smialek JE, et al. Interpretation of low postmortem concentrations of ethanol. J Forensic Sci 1993; 38: 663–7

    PubMed  CAS  Google Scholar 

  71. Cox DE, Sadler DW, Pounder DJ. Alcohol estimation at necropsy. J Clin Pathol 1997; 50: 197–201

    Article  PubMed  CAS  Google Scholar 

  72. Jones AW, Holmgren P. Uncertainty in estimating blood ethanol concentrations by analysis of vitreous humour. J Clin Pathol 2001; 54: 699–702

    Article  PubMed  CAS  Google Scholar 

  73. Stohlmacher P. Formation of so-called byproducts (propanols, butanols, et al.) from ethanol by microorganisms [in German]. Blutalkohol 1996; 33: 113–41

    PubMed  CAS  Google Scholar 

  74. Prouty RW, Anderson WH. A comparison of postmortem heart blood and femoral blood ethyl alcohol concentrations. J Anal Toxicol 1987; 11: 191–7

    PubMed  CAS  Google Scholar 

  75. Wurst FM, Kempter C, Metzger J, et al. Ethyl glucuronide: a marker of recent alcohol consumption with clinical and forensic implications. Alcohol 2000; 20: 111–6

    Article  PubMed  CAS  Google Scholar 

  76. Alt A, Janda I, Scidl S, et al. Determination of ethyl glucuronide in hair samples. Alcohol Alcohol 2000; 35: 313–4

    PubMed  CAS  Google Scholar 

  77. Wurst FM, Schuttler R, Kempter C, et al. Can ethyl glucuronide be determined in post-mortem body fluids and tissues? Alcohol Alcohol 1999; 34: 262–3

    PubMed  CAS  Google Scholar 

  78. Hanzlick R. Postmortem tricyclic antidepressant concentrations: lethal versus nonlethal levels. Am J Forensic Med Pathol 1989; 10: 326–9

    Article  PubMed  CAS  Google Scholar 

  79. Arinobu T, Hattori H, Iwai M, et al. Liquid chromatographic-mass spectrometric determination of haloperidol and its metabolites in human plasma and urine. J Chromatogr B 2002; 776: 107–13

    Article  CAS  Google Scholar 

  80. Berna M, Ackermann B, Ruterbories K, et al. Determination of olanzapine in human blood by liquid chromatography-tandem mass spectrometry. J Chromatogr B 2002; 767: 163–8

    Article  CAS  Google Scholar 

  81. Lakso HA. Instability of olanzapine in calf serum. Ther Drug Monit 2001; 23: 454–5

    Article  PubMed  CAS  Google Scholar 

  82. Burns MJ. The pharmacology and toxicology of atypical antipsychotic agents. J Toxicol Clin Toxicol 2001; 39: 1–14

    Article  PubMed  CAS  Google Scholar 

  83. Stollberger C, Finsterer J. Cardiorespiratory findings in sudden unexplained/unexpected death in epilepsy (SUDEP). Epilepsy Res 2004; 59: 51–60

    Article  PubMed  Google Scholar 

  84. Rosh A, Sampson BA, Hirsch CS. Schizophrenia as a cause of death. J Forensic Sci 2003; 48: 164–7

    PubMed  Google Scholar 

  85. Flanagan RJ, Spencer EP, Morgan PE, et al. Suspected clozapine poisoning in the UK/Eire, 1992–2003. Forensic Sci Int. Epub 2005 Dec 25

    Google Scholar 

  86. Holt DW, Benstead JG. Postmortem assay of digoxin by radioimmunoassay. J Clin Pathol 1975; 28: 483–6

    Article  PubMed  CAS  Google Scholar 

  87. Vorpahl TE, Coe JI. Correlation of antemortem and postmortem digoxin levels. J Forensic Sci 1978; 23: 329–34

    PubMed  CAS  Google Scholar 

  88. Koren G, MacLeod SM. Postmortem redistribution of digoxin in rats. J Forensic Sci 1985; 30: 92–6

    PubMed  CAS  Google Scholar 

  89. Johnston A, Till JA, McCarthy P, et al. Post-mortem flecainide concentrations: a cautionary tale [abstract]. Ther Drug Monit 1993; 15: 168

    Article  Google Scholar 

  90. O’Sullivan JJ, McCarthy PT, Wren C. Differences in amiodarone, digoxin, flecainide and sotalol concentrations between antemortem serum and femoral postmortem blood. Hum Exp Toxicol 1995; 14: 605–8

    Article  PubMed  Google Scholar 

  91. Toennes SW, Kauert GF. Importance of vacutainer selection in forensic toxicological analysis of drugs of abuse. J Anal Toxicol 2001; 25: 339–43

    PubMed  CAS  Google Scholar 

  92. Moriya F, Hashimoto Y. Postmortem stability of cocaine and cocaethylene in blood and tissues of humans and rabbits. J Forensic Sci 1996; 41: 612–6

    PubMed  CAS  Google Scholar 

  93. Logan BK, Smirnow D, Gullberg RG. Lack of predictable site-dependent differences and time-dependent changes in postmortem concentrations of cocaine, benzoylecgonine, and cocaethylene in humans. J Anal Toxicol 1997; 21: 23–31

    PubMed  CAS  Google Scholar 

  94. Hernandez A, Andollo W, Hearn WL. Analysis of cocaine and metabolites in brain using solid phase extraction and full-scanning gas chromatography/ion trap mass spectrometry. Forensic Sci Int 1994; 65: 149–56

    Article  PubMed  CAS  Google Scholar 

  95. McKinney PE, Phillips S, Gomez HF, et al. Vitreous humor cocaine and metabolite concentrations: do postmortem specimens reflect blood levels at the time of death? J Forensic Sci 1995; 40: 102–7

    PubMed  CAS  Google Scholar 

  96. Kerrigan S. In vitro production of gamma-hydroxybutyrate in antemortem urine samples. J Anal Toxicol 2002; 26: 571–4

    PubMed  CAS  Google Scholar 

  97. Logan BK, Smirnow D. Postmortem distribution and redistribution of morphine in man. J Forensic Sci 1996; 41: 221–9

    PubMed  CAS  Google Scholar 

  98. Marks V. Murder by insulin. Med Led J 1999; 67: 147–63

    Article  CAS  Google Scholar 

  99. Schifano F, Oyefeso A, Corkery J, et al. Death rates from ecstasy (MDMA, MDA) and polydrug use in England and Wales 1996–2002. Hum Psychopharmacol 2003; 18: 519–24

    Article  PubMed  CAS  Google Scholar 

  100. Forrest ARW. Dataset on deaths related to taking ecstasy looks incomplete. BMJ 2003; 326: 823

    Article  PubMed  CAS  Google Scholar 

  101. Milroy CM, Forrest AR. Methadone deaths: a toxicological analysis. J Clin Pathol 2000; 53: 277–81

    Article  PubMed  CAS  Google Scholar 

  102. Wolff K. Characterization of methadone overdose: clinical considerations and the scientific evidence. Ther Drug Monit 2002; 24: 457–70

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Flanagan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flanagan, R.J., Connally, G. Interpretation of Analytical Toxicology Results in Life and at Postmortem. Toxicol Rev 24, 51–62 (2005). https://doi.org/10.2165/00139709-200524010-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00139709-200524010-00004

Keywords

Navigation