Skip to main content
Log in

New Insights Into the Pathogenesis of Cystic Fibrosis

Pivotal Role of Glutathione System Dysfunction and Implications for Therapy

  • Leading Article
  • Published:
Treatments in Respiratory Medicine

Abstract

The cystic fibrosis transmembrane regulator (CFTR) should no longer be viewed primarily as a ‘chloride channel’ but recognized as a channel that also controls the efflux of other physiologically important anions, such as glutathione (GSH) and bicarbonate. More effective approaches to cystic fibrosis treatment may result from this reconceptualization of the CFTR by researchers and clinicians. For example, oxidant damage in cystic fibrosis has been assumed to be a significant part of the pathophysiology of the disease. Generally speaking, antioxidant status in cystic fibrosis is compromised. However, until recently this was seen as secondary to the excessive chemoattraction of neutrophils in this disease caused by mutation of the CFTR protein, leading to a high oxidant burden. New findings suggest that the cystic fibrosis mutations in fact cause a primary dysfunction in the system of one of the body’s most important antioxidant and immune-signaling substances: the reduced GSH system. Cystic fibrosis mutations significantly decrease GSH efflux from cells without redundant channels to the CFTR; this leads to deficiency of GSH in the epithelial lining fluid of the lung, as well as in other compartments, including immune system cells and the gastrointestinal tract. This deficiency is exaggerated over time as the higher-than-normal oxidant burden of cystic fibrosis leads to successively larger decrements in GSH without the normal opportunity to fully recover physiologic levels. This GSH system dysfunction may be the trigger for initial depletion of other antioxidants and may also play a role in initiating the over-inflammation characteristic of cystic fibrosis. Proper GSH system functioning also affects immune system competence and mucus viscosity, both of relevance to cystic fibrosis pathophysiology. In a way, cystic fibrosis may be thought of as the first identified disease with GSH system dysfunction.

This overview provides a review of the most pertinent recent research findings in this area. Exogenous augmentation of GSH in the lung epithelial lining fluid is possible, and therapeutic approaches include administration of aerosolized buffered GSH, intravenous GSH, and oral GSH. However, it is important to remember that the pathophysiology of cystic fibrosis is multifactorial, and rectification of GSH system dysfunction in patients with cystic fibrosis will not eliminate all harmful effects of the disease. The promising results of two clinical trials of aerosolized buffered GSH in cystic fibrosis patients have been published or accepted for publication at the time of this writing. GSH depletion in lung epithelial lining fluid has also been noted in other respiratory diseases such as COPD, idiopathic pulmonary fibrosis, and adult respiratory distress syndrome, and therapies to augment GSH may also be contemplated in these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. 1 The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Khan TZ, Wagener JS, Bost T, et al. Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med 1995 Apr; 151(4): 1075–82

    PubMed  CAS  Google Scholar 

  2. Balough K, McCubbin M, Weinberger M, et al. The relationship between infection and inflammation in the early stages of lung disease from cystic fibrosis. Pediatr Pulmonol 1995 Aug; 20(2): 63–70

    PubMed  CAS  Google Scholar 

  3. Muhlebach MS, Stewart PW, Leigh MW, et al. Quantitation of inflammatory responses to bacteria in young cystic fibrosis and control patients. Am J Respir Crit Care Med 1999 Jul; 160(1): 186–91

    PubMed  CAS  Google Scholar 

  4. Noah TL, Black HR, Cheng PW, et al. Nasal and bronchoalveolar lavage fluid cytokines in early cystic fibrosis. J Infect Dis 1997 Mar; 175(3): 638–47

    PubMed  CAS  Google Scholar 

  5. Osika E, Cavaillon JM, Chadelat K, et al. Distinct sputum cytokine profiles in cystic fibrosis and other chronic inflammatory airway diseases. Eur Respir J 1999 Aug; 14(2): 339–46

    PubMed  CAS  Google Scholar 

  6. Tabary O, Escotte S, Couetil JP, et al. Genistein inhibits constitutive and inducible NFkappaB activation and decreases IL-8 production by human cystic fibrosis bronchial gland cells. Am J Pathol 1999 Aug; 155(2): 473–81

    PubMed  CAS  Google Scholar 

  7. Dai Y, Dean TP, Church MK, et al. Desensitisation of neutrophil responses by systemic interleukin 8 in cystic fibrosis. Thorax 1994 Sep; 49(9): 867–71

    PubMed  CAS  Google Scholar 

  8. Bonfield TL, Konstan MW, Berger M. Altered respiratory epithelial cell cytokine production in cystic fibrosis. J Allergy Clin Immunol 1999; 104(1): 72–8

    PubMed  CAS  Google Scholar 

  9. Pilewski JM, Frizzell RA. Role of CFTR in airway disease. Physiol Rev 1999 Jan; 79Suppl. 1: S215–55

    PubMed  CAS  Google Scholar 

  10. van der Vliet A, Eiserich JP, Marelich GP, et al. Oxidative stress in cystic fibrosis: does it occur and does it matter? Adv Pharmacol 1997; 38: 491–513

    PubMed  Google Scholar 

  11. Tamada T, Hug M, Peters K, et al. Bicarbonate secretion in airway serous cells. Pediatr Pulmonol 2001 Oct; 22: 119–20

    Google Scholar 

  12. Coakley RD. Regulation of airway surface liquid pH in cystic fibrosis. Pediatr Pulmonol 2001 Oct; 22: 120–1

    Google Scholar 

  13. McShane D, Davies JC, Davies MG, et al. Airway surface pH in subjects with cystic fibrosis. Eur Respir J 2003; 21(1): 37–42

    PubMed  CAS  Google Scholar 

  14. Jayaraman S, Joo NS, Reitz B, et al. Submucosal gland secretions in airways from cystic fibrosis patients have normal [NA(+)] and pH but elevated viscosity. Proc Natl Acad Sci U S A 2001; 98(14): 8119–23

    PubMed  CAS  Google Scholar 

  15. Jayaraman S, Song Y, Verkman AS. Airway surface liquid pH regulation in well-differentiated airway epithelial cell cultures and mouse trachea. Am J Physiol Cell Physiol 2001; 281(5): C1504–11

    PubMed  CAS  Google Scholar 

  16. Hudson VM. Rethinking cystic fibrosis pathology: the critical role of abnormal reduced glutathione (GSH) transport caused by CFTR mutation. Free Radic Biol Med 2001; 30(12): 1440–61

    PubMed  CAS  Google Scholar 

  17. Benabdeslam H, Abidi H, Garcia I, et al. Lipid peroxidation and antioxidant defenses in cystic fibrosis patients. Clin Chem Lab Med 1999 May; 37(5): 511–6

    PubMed  CAS  Google Scholar 

  18. Stocker R, Bowry VW, Frei B, et al. Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does alpha-tocopherol. Proc Natl Acad Sci U S A 1991 Mar; 88: 1646–50

    PubMed  CAS  Google Scholar 

  19. Thomas SR, Neuzil J, Stocker R. Cosupplementation with coenzyme Q prevents the prooxidant effect of alpha-tocopherol and increases the resistance of LDL to transition metal-dependent oxidation initiation. Aterioscler Thromb Vasc Biol 1996 May; 16(5): 687–96

    CAS  Google Scholar 

  20. Thanislass J, Raveendran M, Devaraj H. Buthionine sulfoximine-induced glutathione depletion: its effect on antioxidants, lipid peroxidation and calcium homeostasis in the lung. Biochem Pharmacol 1995 Jul 17; 50(2): 229–34

    PubMed  CAS  Google Scholar 

  21. Leedle RA, Aust SD. The effect of glutathione on the vitamin E requirement for inhibition of liver microsomal lipid peroxidation. Lipids 1990 May; 25(5): 241–5

    PubMed  CAS  Google Scholar 

  22. Higuchi Y, Matsukawa S. Glutathione depletion induces giant DNA and high-molecular-weight DNA fragmentation associated with apoptosis through lipid peroxidation and protein kinase C activation in C6 glioma cells. Arch Biochem Biphys 1999 Mar 1; 363(1): 33–42

    CAS  Google Scholar 

  23. Scholz RW, Reddy PV, Wynn MK, et al. Glutathione-dependent factors and inhibition of rat liver microsomal lipid peroxidation. Free Radic Biol Med 1997; 23(5): 815–28

    PubMed  CAS  Google Scholar 

  24. Hagiwara K, Naito K, Kurokawa Y, et al. Kidney injury induced by lipid peroxide produced by vitamin E deficiency and GSH depletion in rats. J Nutr Sci Vitaminol (Tokyo) 1991 Feb; 37(1): 99–107

    CAS  Google Scholar 

  25. Angelini P, Cirelli F, Quarticelli A, et al. Administration of glutathione and lipid peroxidation induced during fasting. Boll Soc Ital Biol Sper 1990 Nov; 66(11): 1097–104

    PubMed  CAS  Google Scholar 

  26. Rosenblat M, Aviram M. Macrophage glutathione content and glutathione peroxidase activity are inversely related to cell-mediated oxidation of LDL: in vitro and in vivo studies. Free Radic Biol Med 1998 Jan 15; 24(2): 305–17

    PubMed  CAS  Google Scholar 

  27. Chen Q, Galleano M, Cederbaum AI. Cytotoxicity and apoptosis produced by arachidonic acid in Hep G2 cells overexpressing human cytochrome P4502E1. J Biol Chem 1997 Jun 6; 272(23): 14532–41

    PubMed  CAS  Google Scholar 

  28. Klatt P, Lamas S. Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Eur J Biochem 2000 Aug; 267(16): 4928–44

    PubMed  CAS  Google Scholar 

  29. Thomas JA, Mallis RJ. Aging and oxidation of reactive protein sulfhydryls. Exp Gerontol 2001 Sep; 36(9): 1519–26

    PubMed  CAS  Google Scholar 

  30. Buhl R, Meyer A, Vogelmeier C. Oxidant-protease interaction in the lung: prospects for antioxidant therapy. Chest 1996 Dec; 110(6 Suppl.): 267S–72S

    PubMed  CAS  Google Scholar 

  31. Gillissen A, Birrer P, McElvaney NG, et al. Recombinant secretory leukoprotease inhibitor augments glutathione levels in lung epithelial lining fluid. J Appl Physiol 1993 Aug; 75(2): 825–32

    PubMed  CAS  Google Scholar 

  32. Vogelmeier C, Biedermann T, Maier K, et al. Comparative loss of activity of recombinant secretory leukoprotease inhibitor and alpha 1-protease inhibitor caused by different forms of oxidative stress. Eur Respir J 1997 Sep; 10(9): 2114–9

    PubMed  CAS  Google Scholar 

  33. Barbero GJ. Therapeutic approaches to cystic fibrosis. Bull World Health Organ 1994; 72(3): 341–52

    Google Scholar 

  34. Brenneisen P, Briviba K, Wlaschek M, et al. Hydrogen peroxide (H2O2) increases the steady-state mRNA levels of collagenase/MMP-1 in human dermal fibroblasts. Free Radic Biol Med 1997; 22(3): 515–24

    PubMed  CAS  Google Scholar 

  35. Ogino T, Packer L, Maguire JJ. Neutrophil antioxidant capacity during the respiratory burst: loss of glutathione induced by chloramines. Free Radic Biol Med 1997; 23(3): 445–52

    PubMed  CAS  Google Scholar 

  36. Bilzer M, Lauterberg BH. Glutathione metabolism in activated human neutrophils: stimulation of glutathione synthesis and consumption of glutathione by reactive oxygen species. Eur J Clin Invest 1991 Jun; 21(3): 316–22

    PubMed  CAS  Google Scholar 

  37. Vanglarik CJ, Giron-Calle J, Matalon S, et al. Extracellular glutathione protects airway epithelial cells against oxidative damage caused by hypochlorous acid exposure. Pediatr Pulmonol 2001 Oct; 22: 276–7

    Google Scholar 

  38. Freeman ML, Huntley SA, Meredith MJ, et al. Destabilization and denaturation of cellular protein by glutathione depletion. Cell Stress Chaperones 1997 Sep; 2(3): 191–8

    PubMed  CAS  Google Scholar 

  39. Calabreses V, Testa G, Ravagna A, et al. HSP70 induction in the brain following ethanol administration in the rat: regulation by glutathione redox state. Biochem Biophys Res Commun 2000 Mar 16; 269(2): 397–400

    Google Scholar 

  40. Liu H, Lightfoot R, Stevens JL. Activation of heat shock factor by alkylating agents is triggered by glutathione depletion and oxidation of protein thiols. J Biol Chem 1996 Mar 1; 271(9): 4805–12

    PubMed  CAS  Google Scholar 

  41. Wilhelm D, Bender K, Knebel A, et al. The level of intracellular glutathione is a key regulator for the induction of stress-activated signal transduction pathways including Jun N-terminal protein kinases and p38 kinase by alkylating agents. Mol Cell Biol 1997 Aug; 17(8): 4792–800

    PubMed  CAS  Google Scholar 

  42. Kirlin WG, Cai J, Thompson SA, et al. Glutathione redox potential in response to differentiation and enzyme inducers. Free Radic Biol Med 1999 Dec; 27(11-12): 1208–18

    PubMed  CAS  Google Scholar 

  43. Lertratanangkoon K, Savaraj N, Scimeca JM, et al. Glutathione depletion-induced thymidylate insufficiency for DNA repair synthesis. Biochem Biophys Res Commun 1997 May 19; 234(2): 470–5

    PubMed  CAS  Google Scholar 

  44. Asensi M, Garcia-Espana A, Pallardo FV, et al. Effect of nonprotein thiols on protein synthesis in isolated rat hepatocytes. Experientia 1996 Feb 15; 52(2): 111–4

    PubMed  CAS  Google Scholar 

  45. Fussell JC, Kelly FJ. Effects of dexamethasone on lung protein turnover. Biochem J 1991 Jan 1; 273 (Pt 1): 93–7

    PubMed  CAS  Google Scholar 

  46. Murthy MR. Protein synthesis in growing-rat tissues: II. Polyribosome concentration of brain and liver as a function of age. Biochim Biophys Acta 1966 Jun 22; 119(3): 599–613

    PubMed  CAS  Google Scholar 

  47. Thanislass J, Raveendran M, Sivasithamparam N, et al. Effect of chronic glutathione deficiency on rat lung mitochondrial function. Pulm Pharmacol 1996 Apr; 9(2): 119–22

    PubMed  CAS  Google Scholar 

  48. Rojas E, Valverde M, Kala SV, et al. Accumulation of DNA damage in the organs of mice deficient in gamma-glutamyltranspeptidase. Mutat Res 2000 Feb 14; 447(2): 305–16

    PubMed  CAS  Google Scholar 

  49. Gilmont RR, Dardano A, Young M, et al. Effects of glutathione depletion on oxidant-induced endothelial cell injury. J Surg Res 1998 Nov; 80(1): 62–8

    PubMed  CAS  Google Scholar 

  50. Fiorentini C, Falzano L, Rivabene R, et al. N-acetylcysteine protects epithelial cells against the antioxidant imbalance due to Clostridium difficile toxins. FEBS Lett 1999 Jun 18; 453(1-2): 124–8

    PubMed  CAS  Google Scholar 

  51. Kamei H. Cystine starvation induces reversible large-body formation from nuclear bodies in T24 cells. Exp Cell Res 1997 Nov 25; 237(1): 207–16

    PubMed  CAS  Google Scholar 

  52. Zuelke KA, Jones DP, Perreault SD. Glutathione oxidation is associated with altered microtubule function and disrupted fertilization in mature hamster oocytes. Biol Reprod 1997 Dec; 57(6): 1413–9

    PubMed  CAS  Google Scholar 

  53. Jain A, Martensson J, Mehta T, et al. Ascorbic acid prevents oxidative stress in glutathione deficient mice: effects on lung type 2 cell lamellar bodies, lung surfactant, and skeletal muscle. Proc Natl Acad Sci U S A 1992 Jun; 89(11): 5093–7

    PubMed  CAS  Google Scholar 

  54. Shaheen SO, Sterne JA, Songhurst CE, et al. Frequent paracetamol use and asthma in adults. Thorax 2000 Apr; 55(4): 266–70

    PubMed  CAS  Google Scholar 

  55. Li XY, Donaldson K, Rahman I, et al. An investigation of the role of glutathione in increased epithelial permeability induced by cigarette smoke in vivo and in vitro. Am J Respir Crit Care Med 1994 Jun; 149(6): 1518–25

    PubMed  CAS  Google Scholar 

  56. Remiao F, Carmo H, Carvalho FD, et al. Inhibition of glutathione reductase by isoproterenol oxidation products. J Enzyme Inhib 2000; 15(1): 47–61

    PubMed  CAS  Google Scholar 

  57. Barker JE, Heales SJ, Cassidy A, et al. Depletion of brain glutathione results in a decrease of glutathione reductase activity: an enzyme susceptible to oxidative damage. Brain Res 1996 Apr 15; 16(1-2): 118–22

    Google Scholar 

  58. van Klaveren RJ, Hoet PH, Pype JL, et al. Increase in gamma-glutamyltransferase by glutathione depletion in rat type II pneumocytes. Free Radic Biol Med 1997; 22(3): 525–34

    PubMed  Google Scholar 

  59. Smith CV, Jones DP, Guenthner TM, et al. Compartmentation of glutathione: implications for the study of toxicity and disease. Toxicol Appl Pharmacol 1996; 140: 1–12

    PubMed  CAS  Google Scholar 

  60. Houtmeyers E, Gosselink R, Gayan-Ramirez G, et al. Regulation of mucociliary clearance in health and disease. Eur Respir J 1999 May; 13(5): 1177–88

    PubMed  CAS  Google Scholar 

  61. King M, Rubin BK. Mucus-controlling agents: past and present. Respir Care Clin N Am 1999 Dec; 5(4): 575–94

    PubMed  CAS  Google Scholar 

  62. Houtmeyers E, Gosselink R, Gayan-Ramirez G, et al. Effects of drugs on mucus clearance. Eur Respir J 1999 Aug; 14(2): 452–67

    PubMed  CAS  Google Scholar 

  63. Connolly MA. Mucolytics and the critically ill patient: help or hindrance? AACN Clin Issues 1995 May; 6(2): 307–15

    PubMed  CAS  Google Scholar 

  64. Clarke SW. Rationale of airway clearance. Eur Respir J Suppl 1989 Jul; 7: 599s–603s

    PubMed  CAS  Google Scholar 

  65. Jiang N, Dreher KL, Dye JA, et al. Residual oil fly ash induces cytotoxicity and mucin secretion by guinea pig tracheal epithelial cells via an oxidant-mediated mechanism. Toxicol Appl Pharmacol 2000 Mar 15; 163(3): 221–30

    PubMed  CAS  Google Scholar 

  66. Li JD, Feng W, Gallup M, et al. Activation of NF-kappaB via a Src-dependent Ras-MAPK-pp90rsk pathway is required for Pseudomonas aeruginosa-induced mucin overproduction in epithelial cells. Proc Natl Acad Sci U S A 1998; 95(10): 5718–23

    PubMed  CAS  Google Scholar 

  67. Fischer B, Voynow J. Neutrophil elastase induces MUC5AC messenger RNA expression by an oxidant-dependent mechanism. Chest 2000 May; 117 (5 Suppl. 1): 317S–20S

    PubMed  CAS  Google Scholar 

  68. Day BJ, van Heeckeren A, Velsor LW. Elevation of lung CFTR, MRP-2, and epithelial lining fluid glutathione in mice with Pseudomonas aeruginosa lung infection [abstract]. Am J Respir Crit Care Med 2003 Apr; 167(7): A916

    Google Scholar 

  69. Day BJ, van Heeckeren AM, Min E, et al. Role for cystic fibrosis transmembrane conductance regulator protein in a glutathione response to bronchopulmonary pseudomonas infection. Infect Immun 2004 Apr; 72(4): 2045–51

    PubMed  CAS  Google Scholar 

  70. Boxer LA, Oliver JM, Speilberg SP, et al. Protection of granulocytes by vitamin E in glutathione synthetase deficiency. N Engl J Med 1979 Oct 25; 301(17): 901–5

    PubMed  CAS  Google Scholar 

  71. Cho S, Urata Y, Ilada T, et al. Glutathione downregulates the phosphorylation of I kappa-B: autoloop regulation of the NF-kappa B-mediated expression of NF-kappa B subunits by TNF-alpha in mouse vascular endothelial cells. Biochem Biophys Res Commun 1998; 253(1): 104–8

    PubMed  CAS  Google Scholar 

  72. Droge W, Eck HP, Gmunder H, et al. Modulation of lymphocyte functions and immune responses by cysteine and cysteine derivatives. Am J Med 1991 Sep 30; 91(3C): 140–3

    Google Scholar 

  73. Sen CK, Khanna S, Reznick AZ, et al. Glutathione regulation of tumor necrosis factor-alpha-induced NF-kappa B activation in skeletal muscle-derived L6 cells. Biochem Biophys Res Commun 1997 Aug 28; 237(3): 645–9

    PubMed  CAS  Google Scholar 

  74. Desai A, Huang X, Warren JS. Intracellular glutathione redox status modulates MCP-1 expression in pulmonary granulomatous vasculitis. Lab Invest 1999 Jul; 79(7): 837–47

    PubMed  CAS  Google Scholar 

  75. Luo Y, Hattori A, Munoz J, et al. Intrastriatal dopamine injection induces apoptosis through oxidation-involved activation of transcription factors AP-1 and NF-kappaB in rats. Mol Pharmacol 1999 Aug; 56(2): 254–64

    PubMed  CAS  Google Scholar 

  76. Haddad JJ, Olver RE, Land SC. Antioxidant/pro-oxidant equilibrium regulates HIF-1alpha and NF-kappaB redox sensitivity: evidence for inhibition by glutathione oxidation in alveolar epithelial cells. J Biol Chem 2000; 275(28): 21130–9

    PubMed  CAS  Google Scholar 

  77. Tanaka C, Kamata H, Takeshita H, et al. Redox regulation of lipopolysaccharide (LPS)-induced interleukin-8 (IL-8) gene expression mediated by NF kappa B and AP-1 in human astrocytoma U373 cells. Biochem Biophys Res Commun 1997 Mar 17; 232(2): 568–73

    PubMed  CAS  Google Scholar 

  78. Rahman I, MacNee W. Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches. Free Radic Biol Med 2000 May 1; 28(9): 1405–20

    PubMed  CAS  Google Scholar 

  79. Christman JW, Sadikot RT, Blackwell TS. The role of nuclear factor-kappa B in pulmonary diseases. Chest 2000; 117(5): 1482–7

    PubMed  CAS  Google Scholar 

  80. Gosset P, Wallaert B, Tonnel AB, et al. Thiol regulation of the production of TNF-alpha, IL-6 and IL-8 by human alveolar macrophages. Eur Respir J 1999 Jul; 14(1): 98–105

    PubMed  CAS  Google Scholar 

  81. Hashimoto S, Gon Y, Matsumoto K, et al. Regulation by intracellular glutathione of TNF-alpha-induced p38 MAP kinase activation and RANTES production by human pulmonary vascular endothelial cells. Allergy 2000 May; 55(5): 463–9

    PubMed  CAS  Google Scholar 

  82. Yamauchi N, Watanabe N, Kuriyama H, et al. Suppressive effects of intracellular glutathione on hydroxyl radical production induced by tumor necrosis factor. Int J Cancer 1990 Nov 15; 46(5): 884–8

    PubMed  CAS  Google Scholar 

  83. Peristeris P, Clark BD, Gatti S, et al. N-acetylcysteine and glutathione as inhibitors of tumor necrosis factor production. Cell Immunol 1992 Apr; 140(2): 390–9

    PubMed  CAS  Google Scholar 

  84. Rovin BH, Dickerson JA, Tan LC, et al. Modulation of IL-1-induced chemokine expression in human mesangial cells through alterations in redox status. Cytokine 1997 Mar; 9(3): 178–86

    PubMed  CAS  Google Scholar 

  85. Pena LR, Hill DB, McClain CJ. Treatment with glutathione precursor decreases cytokine activity. JPEN J Parenter Enteral Nutr 1999 Jan–Feb; 23(1): 1–6

    PubMed  CAS  Google Scholar 

  86. Watson RW, Rotstein OD, Nathens AB, et al. Thiol-mediated redox regulation of neutrophil apoptosis. Surgery 1996 Aug; 120(2): 150–7

    PubMed  CAS  Google Scholar 

  87. Nakatani T, Tawaramoto M, Opare Kennedy D, et al. Apoptosis induced by chelation of intracellular zinc is associated with depletion of cellular reduced glutathione level in rat hepatocytes. Chem Biol Interact 2000 Mar 15; 125(3): 151–63

    PubMed  CAS  Google Scholar 

  88. Coppola S, Ghibelli L. GSH extrusion and the mitochondrial pathway of apoptotic signalling. Biochem Soc Trans 2000 Feb; 28(2): 56–61

    PubMed  CAS  Google Scholar 

  89. Colell A, Garcia-Ruiz C, Miranda M, et al. Selective glutathione depletion of mitochondria by ethanol sensitizes hepatocytes to tumor necrosis factor. Gastroenterology 1998 Dec; 115(6): 1541–51

    PubMed  CAS  Google Scholar 

  90. Nicole A, Santiard-Baron D, Ceballos-Picot I. Direct evidence for glutathione as mediator of apoptosis in neuronal cells. Biomed Pharmacother 1998; 52(9): 349–55

    PubMed  CAS  Google Scholar 

  91. Rosenfeld ME. Inflammation, lipids, and free radicals: lessons learned from the atherogenic process. Semin Reprod Endrocrinol 1998; 16(4): 249–61

    CAS  Google Scholar 

  92. Hardwick SJ, Carpenter KL, Allen EA, et al. Glutathione (GSH) and the toxicity of oxidised low-density lipoprotein to human monocyte-macrophages. Free Radic Res 1999 Jan; 30(1): 11–9

    PubMed  CAS  Google Scholar 

  93. Aoshiba K, Yasui S, Nishimura K, et al. Thiol depletion induces apoptosis in cultured lung fibroblasts. Am J Respir Cell Mol Biol 1999 Jul; 21(1): 54–64

    PubMed  CAS  Google Scholar 

  94. Vahrmeijer AL, van Dierendonck JH, Schutrups J, et al. Effect of glutathione depletion on inhibition of cell cycle progression and induction of apoptosis by melphalan (L-phenylalanine mustard) in human colorectal cancer cells. Biochem Pharmacol 1999 Aug 15; 58(4): 655–64

    PubMed  CAS  Google Scholar 

  95. Yang CF, Shen HM, Ong CN. Ebselen induces apoptosis in HepG (2) cells through rapid depletion of intracellular thiols. Arch Biochem Biophys 2000 Feb 15; 374(2): 142–52

    PubMed  CAS  Google Scholar 

  96. Li Y, Maher P, Schubert D. A role for 12-lipoxygenase in nerve cell death caused by glutathione depletion. Neuron 1997 Aug; 19(2): 453–63

    PubMed  CAS  Google Scholar 

  97. Iwata S, Hori T, Sato N, et al. Adult T cell leukemia (ATL)-derived factor/human thioredoxin prevents apoptosis of lymphoid cells induced by L-cystine and glutathione depletion: possible involvement of thiol-mediated redox regulation in apoptosis caused by pro-oxidant state. J Immunol 1997 Apr; 158(7): 3108–17

    PubMed  CAS  Google Scholar 

  98. Wedner HJ, Simchowitz L, Stenson WF, et al. Inhibition of human polymorphonuclear leukocyte function by 2-cyclohexene-1-one: A role for glutathione in cell activation. J Clin Invest 1981 Aug; 68(2): 535–43

    PubMed  CAS  Google Scholar 

  99. Aziz AS, Klesius PH, Frandsen JC. Effects of selenium on polymorphonuclear leukocyte function in goats. Am J Vet Res 1984 Sep; 45(9): 1715–8

    PubMed  CAS  Google Scholar 

  100. Voetman AA, Loos JA, Roos D. Changes in the levels of glutathione in phagocytosing human neutrophils. Blood 1980 May; 55(5): 741–7

    PubMed  CAS  Google Scholar 

  101. Peterson JD, Herzenberg LA, Vasquez K, et al. Glutathione levels in antigen-presenting cells modulate Th1 versus Th2 response patterns. Proc Natl Acad Sci U S A 1998 Mar 17; 95(6): 3071–6

    PubMed  CAS  Google Scholar 

  102. Nathens AB, Rotstein OD, Dackiw AP, et al. The glutathione depleting agent diethylmaleate prolong renal allograft survival. J Surg Res 1998 Jun; 77(1): 75–9

    PubMed  CAS  Google Scholar 

  103. Robinson MK, Rodrick ML, Jacobs DO, et al. Glutathione depletion in rats impairs T-cell and macrophage immune function. Arch Surg 1993 Jan; 128(1): 29–34

    PubMed  CAS  Google Scholar 

  104. Ginn-Pease ME, Whisler RL. Optimal NF kappa B mediated transcriptional responses to Jurkat T cells exposed to oxidative stress are dependent on intracellular glutathione and costimulatory signals. Biochem Biophys Res Commun 1996 Sep 24; 226(3): 695–702

    PubMed  CAS  Google Scholar 

  105. Jeannin P, Delneste Y, Lecoanet-Henchoz S, et al. Thiols decrease human interleukin (IL) 4 production and IL-4-induced immunoglobulin synthesis. J Exp Med 1995 Dec 1; 182(6): 1785–92

    PubMed  CAS  Google Scholar 

  106. Rigacci S, Iantomasi T, Marraccini P, et al. Evidence for glutathione involvement in platelet-derived growth-factor-mediated signal. Biochem J 1997 Jun 15; 324 (Pt 3): 791–6

    PubMed  CAS  Google Scholar 

  107. Smyth MJ. Glutathione modulates activation-dependent proliferation of human peripheral blood lymphocyte populations without regulating their activated function. J Immunol 1991 Mar 15; 146(6): 1921–7

    PubMed  CAS  Google Scholar 

  108. Romero DL, Mounho BJ, Lauer FT, et al. Depletion of glutathione by benzo (a)pyrene metabolites, ionomycin, thapsigargin, and phorbol myristate in human peripheral blood mononuclear cells. Toxicol Appl Pharmacol 1997 May; 144(1): 62–9

    PubMed  CAS  Google Scholar 

  109. Liang SM, Liang CM, Hargrove ME, et al. Regulation by glutathione of the effect of lymphokines on differentiation of primary activated lymphocytes: influence of glutathione on cytotoxic activity of CD3-AK-. J Immunol 1991 Mar 15; 146(6): 1909–13

    PubMed  CAS  Google Scholar 

  110. Gmunder H, Droge W. Differential effects of glutathione depletion on T cell subsets. Cell Immunol 1991 Nov; 138(1): 229–37

    PubMed  CAS  Google Scholar 

  111. Ting CC, Hargrove HE, Liang SM, et al. Dichotomy of glutathione regulation of the activation of resting and preactivated lymphocytes. Cell Immunol 1992 Jun; 142(1): 40–53

    PubMed  CAS  Google Scholar 

  112. Gmunder H, Eck HP, Benninghoff B, et al. Macrophages regulate intracellular glutathione levels of lymphocytes: evidence for an immunoregulatory role of cysteine. Cell Immunol 1990 Aug; 129(1): 32–46

    PubMed  CAS  Google Scholar 

  113. Galietta LJV, Folli C, Marchetti C, et al. Modification of transepithelial ion transport in human cultured bronchial epithelial cells by interferon-gamma. Am J Physiol Lung Cell Mol Physiol 2000 Jun; 278(6): L1186–94

    PubMed  CAS  Google Scholar 

  114. van der Meide PH, de Labie MC, Botman CA, et al. Mercuric chloride down-regulates T cell interferon-gamma production in brown Norway but not in Lewis rats: role of glutathione. Eur J Immunol 1993 Mar; 23(3): 675–81

    PubMed  Google Scholar 

  115. Sprietsma JE. Zinc-controlled Th1/Th2 switch significantly determines development of disease. Med Hypotheses 1997 Jul; 49(1): 1–14

    PubMed  CAS  Google Scholar 

  116. Sprietsma JE. Cysteine, glutathione (GSH) and zinc and copper ions together are effective, natural, intracellular inhibitors of (AIDS) viruses. Med Hypotheses 1999 Jun; 52(6): 529–38

    PubMed  CAS  Google Scholar 

  117. Spriestma JE. Modern diets and diseases: NO-zinc balance: under Th1, zinc and nitrogen monoxide (NO) collectively protect against viruses, AIDS, autoimmunity, diabetes, allergies, asthma, infectious diseases, atherosclerosis and cancer. Med Hypotheses 1999 Jul; 53(1): 6–16

    Google Scholar 

  118. Moser C, Johansen HK, Song Z, et al. Chronic pseudomonas aeruginosa lung infection is more severe in Th2 responding BALB/c mice compared to Th1 responding C3H/HeN mice. APMIS 1997 Nov; 105(11): 838–42

    PubMed  CAS  Google Scholar 

  119. Chen G, Wang SH, Warner TD. Regulation of iNOS mRNA levels in endothelial cells by glutathione, a double-edged sword. Free Radic Res 2000 Mar; 32(3): 223–34

    PubMed  CAS  Google Scholar 

  120. Kang KW, Pak YM, Kim ND. Diethylmaleate and buthionine sulfoximine, glutathione-depleting agents, differentially inhibit expression of inducible nitric oxide synthase in endotoxemic mice. Nitric Oxide 1999 Jun; 3(3): 265–71

    PubMed  CAS  Google Scholar 

  121. Vos TA, Goor H, Tuyt L, et al. Expression of inducible nitric oxide synthase in endotoxemic rat hepatocytes is dependent on the cellular glutathione status. Hepatology 1999 Feb; 29(2): 421–6

    PubMed  CAS  Google Scholar 

  122. Wang F, Wang LY, Wright D, et al. Redox imbalance differentially inhibits lipopolysaccharide-induced macrophage activation in the mouse liver. Infect Immun 1999 Oct; 67(10): 5409–16

    PubMed  CAS  Google Scholar 

  123. Davidson CA, Kaminski PM, Wolin MS. NO elicits prolonged relaxation of bovine pulmonary arteries via endogenous peroxynitrite generation. Am J Physiol 1997 Aug; 273 (2 Pt 1): L437–44

    PubMed  CAS  Google Scholar 

  124. Singh SP, Wishnok JS, Keshive M, et al. The chemistry of the S-nitrosoglutathione/glutathione system. Proc Natl Acad Sci U S A 1996 Dec; 93: 14428–33

    PubMed  CAS  Google Scholar 

  125. D’Emilia DM, Lipton SA. Ratio of S-nitrosohomocyst(e)ine or other thiols determines neurotoxicity in rat cerebrocortical cultures. Neurosci Lett 1999; 265: 103–6

    PubMed  Google Scholar 

  126. Stefanelli C, Pignatti C, Tantani B, et al. Nitric oxide can function as either a killer molecule or an antiapoptotic effector in cardiomyocytes. Biochim Biophys Acta 1999 Jul 8; 1450(3): 406–13

    PubMed  CAS  Google Scholar 

  127. Rosenberg PA, Li Y, Ai S, et al. Intracellular redox state determines whether nitric oxide is toxic or protective to rat oligodendrocytes in culture. J Neurochem 1999 Aug; 73(2): 476–84

    PubMed  CAS  Google Scholar 

  128. Chiueh CC, Rauhala P. The redox pathway of S-nitrisoglutathione, glutathione and nitric oxide in cell to neuron communications. Free Radic Res 1999 Dec; 31(6): 641–50

    PubMed  CAS  Google Scholar 

  129. Jones KL, Bryan TW, Jinkins PA, et al. Superoxide released from neutrophils causes a reduction in nitric oxide gas. Am J Physiol 1998 Dec; 275(6): L1120–6

    PubMed  CAS  Google Scholar 

  130. Zavodnik IB, Lapshina EA, Rekawiecka K, et al. Membrane effects of nitrite-induced oxidation of human red blood cells. Biochim Biophys Acta 1999 Oct 15; 1421(2): 306–16

    PubMed  CAS  Google Scholar 

  131. Kelley TJ, Drumm ML. Inducible nitric oxide synthase expression is reduced in cystic fibrosis murine and human airway epithelial cell lines. J Clin Invest 1998 Sep; 102(6): 1200–7

    PubMed  CAS  Google Scholar 

  132. Mayer B, Pfeiffer S, Schrammel A, et al. A new pathway of nitric oxide cyclic GMP signalling involving s-nitrosoglutathione. J Biol Chem 1998 Feb 6; 273(6): 3264–70

    PubMed  CAS  Google Scholar 

  133. Belvisi MG, Ward JK, Mitchell JA, et al. Nitric oxide as a neurotransmitter in human airways. Arch Int Pharmacodyn Ther 1995 Jan–Feb; 329(1): 97–110

    PubMed  CAS  Google Scholar 

  134. Gaston B, Drazen JM, Jansen A, et al. Relaxation of human bronchial smooth muscle by S-nitrosothiols in vitro. J Pharmacol Exp Ther 1994 Feb; 268(2): 978–84

    PubMed  CAS  Google Scholar 

  135. Kamosinska B, Radomski MW, Duszyk M, et al. Nitric oxide activates chloride currents in human lung epithelial cells. Am J Physiol 1997 Jun; 272 (6 Pt 1): L1098–104

    PubMed  CAS  Google Scholar 

  136. Dong YJ, Chao AC, Kouyama K, et al. Activation of CFTR chloride current by nitric oxide in human T lymphocytes. EMBO J 1995 Jun 15; 14(12): 2700–7

    PubMed  CAS  Google Scholar 

  137. Runer T, Lindberg S. Ciliostimulatory effects mediated by nitric oxide. Acta Otolaryngol 1999; 119(7): 821–5

    PubMed  CAS  Google Scholar 

  138. Linsdell P, Hanrahan JW. Glutathione permeability of CFTR. Am J Physiol 1998 Jul; 44(1): C323–6

    Google Scholar 

  139. Gao L, Kim KJ, Yankaskas JR, et al. Abnormal glutathione transport in cystic fibrosis airway epithelia. Am J Physiol 1999 Jul; 277(1): L113–8

    PubMed  CAS  Google Scholar 

  140. Velsor LW, van Heeckeren A, Day BJ. Antioxidant imbalance in the lungs of cystic fibrosis transmembrane conductance regulator protein mutant mice. Am J Physiol Lung Cell Mol Physiol 2001 Jul; 281(1): L31–8

    PubMed  CAS  Google Scholar 

  141. Kogan I, Ramjeesingh M, Kidd J, et al. Characterization of glutathione permeability through the CFTR channel pore. Pediatr Pulmonol 2002 Oct; 24: 189–90

    Google Scholar 

  142. Kogan I, Ramjessingh M, Li C, et al. CFTR directly mediates nucleotide-regulated glutathione flux. EMBO J 2003 May 1; 22(9): 1981–9

    PubMed  CAS  Google Scholar 

  143. Finder JD, Engman CL, Kagan VE, et al. Bronchoalveolar lavage fluid from patients with cystic fibrosis have diminished levels of reduced glutathione [abstract]. Ped Pulm 2003; 239Suppl. 25: A158

    Google Scholar 

  144. Hull J, Vervaart P, Grimwood K, et al. Pulmonary oxidative stress response in young children with cystic fibrosis. Thorax 1997; 52: 557–60

    PubMed  CAS  Google Scholar 

  145. Tirouvanziam R. CFTR, glutathione, and neutrophil function [online]. Available from URL: http://63.193.197.190/Subsets/tirouv/index.htm [Accessed 1999 Nov 13]

  146. Neefjes VM, Evelo CT, Baars LG, et al. Erythrocyte glutathione S transferase as a marker of oxidative stress at birth. Arch Dis Child Fetal Neonatal Ed 1999 Sep; 81(2): F130–3

    PubMed  CAS  Google Scholar 

  147. Brown RK, Wyatt H, Price JF, et al. Pulmonary dysfunction in cystic fibrosis is associated with oxidative stress. Eur Respir J 1996; 9: 334–9

    PubMed  CAS  Google Scholar 

  148. Roum JH, Buhl R, McElvaney NG, et al. Systemic deficiency of glutathione in cystic fibrosis. J Appl Physiol 1993 Dec; 75(6): 2419–24

    PubMed  CAS  Google Scholar 

  149. Tirouvanziam RM, Tjioe I, Moss RB, et al. Multiparameter study of CF blood and lung leukocytes using 3-laser, 11-color cytometry. Pediatr Pulmonol 2001 Oct; 22: 271–2

    Google Scholar 

  150. Abraham EH, Sterling KM, Kim RJH, et al. Erythrocyte membrane ATP binding cassette (ABC) proteins: MRP1 and CFTR as well as CD39 (ectoapyrase) involved in RBC ATP transport and elevated blood plasma ATP of cystic fibrosis. Blood Cells Mol Dis 2001 Jan–Feb; 27(1): 165–80

    PubMed  CAS  Google Scholar 

  151. Dominguez C, Gartner S, Linan S, et al. Enhanced oxidative damage in cystic fibrosis patients. Biofactors 1998; 8(1-2): 149–53

    PubMed  CAS  Google Scholar 

  152. Lloyd-Still JD, Ganther HE. Selenium and glutathione peroxidase levels in cystic fibrosis. Pediatrics 1980; 65: 1010–2

    PubMed  CAS  Google Scholar 

  153. Carmagnol F, Sinet PM, Lenoir G, et al. Absence of modifications of the enzyme defense system against oxygen toxicity in cystic fibrosis. Pediatr Res 1983; 17: 181–2

    PubMed  CAS  Google Scholar 

  154. Konstan MW, Berger M. Current understanding of the inflammatory process in cystic fibrosis: onset and etiology. Pediatr Pulmnol 1997 Aug; 24(2): 137–42

    CAS  Google Scholar 

  155. Tirouvanziam R, Khazaal I, Peault B. Primary inflammation in human cystic fibrosis small airways. Am J Physiol Lung Cell Mol Physiol 2002 Aug; 283(2): L445–51

    PubMed  CAS  Google Scholar 

  156. Tirouvanziam R, de Bentzmann S, Hubeau C, et al. Inflammation and infection in naive human cystic fibrosis airway grafts. Am J Respir Cell Mol Biol 2000 Aug; 23(2): 121–7

    PubMed  CAS  Google Scholar 

  157. Escotte S, Laplace V, Benoit S, et al. Basal KC production in tracheal surface liquid of CF mice engrafted in nude mice [abstract]. Pediatr Pulmonol 2001 Oct; 22: 227

    Google Scholar 

  158. Lancellotti L, D’Orazio C, Mastella G, et al. Deficiency of vitamins E and A in cystic fibrosis is independent of pancreatic function and current enzyme and vitamin supplementation. Eur J Pediatr 1996 Apr; 155(4): 281–5

    PubMed  CAS  Google Scholar 

  159. Portal BC, Richard MJ, Faure HS, et al. Altered antioxidant status and increased lipid peroxidation in children with cystic fibrosis. Am J Clin Nutr 1995 Apr; 61(4): 843–7

    PubMed  CAS  Google Scholar 

  160. Winklhofer-Roob BM, Ellemunter H, Fruhwirth M, et al. Plasma vitamin C concentrations in patients with cystic fibrosis: evidence of associations with lung inflammation. Am J Clin Nutr 1997 Jun; 65(6): 1858–66

    PubMed  CAS  Google Scholar 

  161. Wood LG, Fitzgerald DA, Gibson PG, et al. Oxidative stress in cystic fibrosis: dietary and metabolic factors. Am Coll Nutr 2001 Apr; 20(2 Suppl.): 157–65

    CAS  Google Scholar 

  162. Madarasi A, Lugassi A, Greiner E, et al. Antioxidant status in patients with cystic fibrosis. Ann Nutr Metab 2000; 44(5-6): 207–11

    PubMed  CAS  Google Scholar 

  163. Isabelle D, Puget M, Bellon G, et al. Antioxidant and peroxidative status in 312 patients with cystic fibrosis. Pediatr Pulmonol 2002 Oct; 24: 339

    Google Scholar 

  164. Birrer P, McElvaney NG, Rudeberg A, et al. Protease-antiprotease imbalance in the lungs of children with cystic fibrosis. Am J Respir Crit Care Med 1994 Jul; 150(1): 207–13

    PubMed  CAS  Google Scholar 

  165. Griese M, Birrer P, Demirsoy A. Pulmonary surfactant in cystic fibrosis. Eur Respir J 1997 Sep; 10(9): 1983–8

    PubMed  CAS  Google Scholar 

  166. DiMango E, Tabibi S, Ratner A, et al. Activation of NF-kappaB by adherent Pseudomonas aeruginosa in normal cystic fibrosis respiratory epithelial cells. J Clin Investig 1998; 101(11): 2598–605

    PubMed  CAS  Google Scholar 

  167. Weber A, Nguyen B, Bryan R, et al. Effects of CFTR mutations on epithelial cytokine expression [abstract]. Pediatr Pulmonol 1999 Sep; Suppl. 19: 309–10

    Google Scholar 

  168. Elborn JS, Cordon SM, Western PJ, et al. Tumor necrosis-factor-alpha, resting energy expenditure and cachexia in cystic fibrosis. Clin Sci (Colch) 1993 Nov; 85(5): 563–8

    CAS  Google Scholar 

  169. Pfeffer KD, Huecksteadt TP, Hoidal JR. Expression and regulation of tumor necrosis factor in macrophages from cystic fibrosis patients. Am J Respir Cell Mol Biol 1993 Nov; 9(5): 511–9

    PubMed  CAS  Google Scholar 

  170. Greally P, Hussain MJ, Vergani D, et al. Serum interleukin-1 alpha and soluble interleukin-2 receptor concentrations in cystic fibrosis. Arch Dis Child 1993 Jun; 68(6): 785–7

    PubMed  CAS  Google Scholar 

  171. Wilmott RW, Frenzke M, Kociela V, et al. Plasma interleukin-1 alpha and beta, tumor necrosis factor-alpha, and lipopolysaccharide concentrations during pulmonary exacerbations of cystic fibrosis. Pediatr Pulmonol 1994 Jul; 18(1): 21–7

    PubMed  CAS  Google Scholar 

  172. Lundberg JO, Nordvall SL, Weitzberg E, et al. Exhaled nitric oxide in paediatric asthma and cystic fibrosis. Arch Dis Child 1996; 75: 323–6

    PubMed  CAS  Google Scholar 

  173. Kroesbergen A, Jobsis Q, Bel EH, et al. Flow-dependency of exhaled nitric oxide in children with asthma and cystic fibrosis. Eur Respir J 1999 Oct; 14(4): 871–5

    PubMed  CAS  Google Scholar 

  174. Grasemann H, Michler E, Wallot M, et al. Decreased concentration of exhaled nitric oxide (NO) in patients with cystic fibrosis. Pediatr Pulmonol 1997; 24: 173–7

    PubMed  CAS  Google Scholar 

  175. Balfour-Lynn IM, Laverty A, Dinwiddie R. Reduced upper airway nitric oxide in cystic fibrosis. Arch Dis Child 1996; 75: 319–22

    PubMed  CAS  Google Scholar 

  176. Dotsch J, Demirakca S, Terbrack HG, et al. Airway nitric oxide in asthmatic children and patients with cystic fibrosis. Eur Respir J 1996; 9: 2537–40

    PubMed  CAS  Google Scholar 

  177. Thomas SR, Kharitonov SA, Scott SF, et al. Nasal and exhaled nitric oxide is reduced in adult patients with cystic fibrosis and does not correlate with cystic fibrosis genotype. Chest 2000 Apr; 117(4): 1085–9

    PubMed  CAS  Google Scholar 

  178. Ho LP, Innes JA, Greening AP. Nitrite levels in breath condensate of patients with cystic fibrosis is elevated in contrast to exhaled nitric oxide. Thorax 1998 Aug; 53(8): 680–4

    PubMed  CAS  Google Scholar 

  179. Andersson C, Gaston B, Roomans G. S-Nitrosoglutathione induces functional deltaF508-CFTR in airway epithelial cells. Biochem Biophys Res Commun 2002 Sep 27; 297(3): 552–7

    PubMed  CAS  Google Scholar 

  180. Snyder AH, McPherson ME, Hunt JF, et al. Acute effects of aerosolized S-nitrosoglutathione in cystic fibrosis. Am J Respir Crit Care Med 2002 Apr 1; 165(7): 922–6

    PubMed  Google Scholar 

  181. Jungas T, Motta I, Duffieux F, et al. Glutathione levels and BAX activation during apoptosis due to oxidative stress in cells expressing wild-type and mutant cystic fibrosis transmembrane conductance regulator. J Biol Chem 2002 Aug 2; 277(31): 27912–8

    PubMed  CAS  Google Scholar 

  182. Hosseini Nia T, Kubow S, Grey V, et al. Inhibition of Pseudomonas aeroginosa-mediated mortality and weight loss via ingestion of whey treated by hyperbaric pressure [abstract]. Pediatr Pulmonol 2002 Oct; 24: 276

    Google Scholar 

  183. Buhl R, Vogelmeier C, Critenden M, et al. Augmentation of the glutathione in the fluid lining the epithelium of the lower respiratory tract by directly administering glutathione. Proc Natl Acad Sci U S A 1990 Jun; 87: 4063–7

    PubMed  CAS  Google Scholar 

  184. Buhl R, Holroyd K, Borok Z, et al. Reversal of the glutathione deficiency in the lower respiratory tract of HIV-seropositive individuals by glutathione aerosol therapy [abstract]. Clin Res 1990; 38(2): 596A

    Google Scholar 

  185. Holroyd KJ, Buhl R, Borok Z, et al. Correction of glutathione deficiency in the lower respiratory tract of HIV seropositive individuals by glutathione aerosol treatment. Thorax 1993 Oct; 48(10): 985–9

    PubMed  CAS  Google Scholar 

  186. Borok Z, Buhl R, Grimes GJ, et al. Effect of glutathione aerosol on oxidant-antioxidant imbalance in idiopathic pulmonary fibrosis. Lancet 1991 Jul 17; 338: 215–6

    PubMed  CAS  Google Scholar 

  187. Marrades RM, Roca J, Barbera JA, et al. Nebulized glutathione induces bronchoconstriction in patients with mild asthma. Am J Respir Crit Care Med 1997; 156: 425–30

    PubMed  CAS  Google Scholar 

  188. Bernorio S, Pecis M, Zucchi A, et al. Glutathione in bronchial hyperresponsiveness. J Aerosol Med 1996; 9(2): 207–13

    Google Scholar 

  189. Testa B, Mesolella M, Testa D, et al. Glutathione in the upper respiratory tract. Ann Otol Rhinol Laryngol 1995; 104: 117–9

    PubMed  CAS  Google Scholar 

  190. Roum JH, Borok Z, McElvaney NG, et al. Glutathione aerosol suppresses lung epithelial surface inflammatory cell-derived oxidants in cystic fibrosis. J Appl Physiol 1999 Jul; 87(1): 438–43

    PubMed  CAS  Google Scholar 

  191. Bagnato GF, Gulli S, De Pasquale R, et al. Effect of inhaled glutathione on airway response to ‘Fog’ challenge in asthmatic patients. Respiration 1999 Nov-Dec; 66(6): 518–21

    PubMed  CAS  Google Scholar 

  192. Griese M, Ramakers J, Krasselt A, et al. Optimized aerosol delivery of glutathione (GSH) to patients with cystic fibrosis (CF) increases alveolar GSH concentration [abstract]. Am J Respir Crit Care Med 2003 Apr; 167(7): A919

    Google Scholar 

  193. Griese M, Ramakers J, Krasselt A, et al. Improvement of alveolar glutathione and lung function but not oxidative state in cystic fibrosis. Am J Respir Crit Care Med 2004 Apr 1; 169(7): 822–8

    PubMed  Google Scholar 

  194. Bishop C, Hudson VM, Hilton SC, et al. Effect of inhaled buffered glutathione (GSH) on the clinical status of cystic fibrosis patients [abstract]. Am J Respir Crit Care Med 2003 Apr; 167(7): A918

    Google Scholar 

  195. Bishop CT, Hudson VM, Hilton SC, Wilde C. A pilot study of the effect of inhaled buffered reduced glutathione on the clinical status of cystic fibrosis patients. Chest. In press

  196. Aw TY, Wierzbicka G, Jones DP. Oral glutathione increases tissue glutathione in rats. Chem Biol Interact 1991; 80(1): 89–97

    PubMed  CAS  Google Scholar 

  197. Iantomasi T, Favilli F, Marraccini P, et al. Glutathione transport system in human small intestine epithelial cells. Biochim Biophys Acta 1997 Dec 4; 1330(2): 274–83

    PubMed  CAS  Google Scholar 

  198. Hunjan MK, Evered DF. Absorption of glutathione from the gastro-intestinal tract. Biochim Biophys Acta 1985 May 14; 815(2): 184–8

    PubMed  CAS  Google Scholar 

  199. Favilli F, Marracini P, Iantomasi T, et al. Effect of orally administered glutathione on glutathione levels in some organs of rats: role of specific transporters. Br J Nutr 1997 Aug; 78(2): 293–300

    PubMed  CAS  Google Scholar 

  200. Hagen TM, Wierzbicka GT, Sillau AH, et al. Bioavailability of dietary glutathione: effect on plasma concentration. Am J Physiol 1990 Oct; 259 (4 Pt 1): G524–9

    PubMed  CAS  Google Scholar 

  201. Gao L, Broughman JR, Iwamoto T, et al. Synthetic chloride channel restores glutathione secretion in cystic fibrosis airway epithelia. Am J Physiol Lung Cell Mol Physiol 2001 Jul; 281(1): L24–30

    PubMed  CAS  Google Scholar 

  202. Ciuchi E, Odetti P, Prando R. The effect of acute glutathione treatment on sorbitol level in erythrocytes from diabetic patients. Diabetes Metab 1997 Feb; 23(1): 58–60

    PubMed  CAS  Google Scholar 

  203. Sechi G, Deledda MG, Bua G, et al. Reduced intravenous glutathione in the treatment of early Parkinson’s disease. Prog Neuropsychopharmacol Biol Psychiatry 1996 Oct; 20(7): 1159–70

    PubMed  CAS  Google Scholar 

  204. Visca AG. Adherence to treatment and self-prescription on new drugs: an emerging problem [abstract]. Pediatr Pulmonol 2002 Oct; 24: 347

    Google Scholar 

Download references

Acknowledgment

The authors have provided no information on sources of funding or conflicts of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie M. Hudson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hudson, V.M. New Insights Into the Pathogenesis of Cystic Fibrosis. Treat Respir Med 3, 353–363 (2004). https://doi.org/10.2165/00151829-200403060-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00151829-200403060-00003

Keywords

Navigation