Skip to main content
Log in

Nervous System Effects of Antituberculosis Therapy

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Nervous system toxicity with current antituberculosis pharmacotherapy is relatively uncommon, although the frequency of the usage of antituberculosis therapy requires that physicians be aware of such toxicity. Antituberculosis therapy manifests both central and peripheral nervous system effects, which may compromise patient compliance. Among the traditional forms of first-line antituberculosis therapy, isoniazid is most often associated with nervous system effects, most prominently peripheral neuropathy, psychosis and seizures. Adverse events are reported with other antituberculosis therapies, the most prominent being optic neuropathy with ethambutol and ototoxicity and neuromuscular blockade with aminoglycosides. The second-line agent with the most adverse effects is cycloserine, with psychosis and seizures, the psychosis in particular limiting its usage. Fluoroquinolones are rare causes of seizures and delirium. Newer forms of therapy are under development, but to date no significant neurotoxicity is documented with these agents.

Future needs include the development of surveillance mechanisms to increase recognition of nervous system toxicities. It is also hoped that the development of new pharmacogenomic assays will help with the identification of patients at risk for these toxicities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I

Similar content being viewed by others

References

  1. World Health Organization. Global tuberculosis control: epidemiology, strategy, financing. Vol. 411. Geneva: World Health Organization Press, 2009: 9–12

    Google Scholar 

  2. Onyebujoh P, Zumla A, Ribeiro I, et al. Treatment of tuberculosis: present status and future prospects. Bull World Health Organ 2005; 83(11): 857–65

    PubMed  Google Scholar 

  3. Bosch EP, Smith BE. Disorders of peripheral nerves. In: Bradley WF, Daroff RB, Fenichel GM, editors. Neurology in clinical practice. Boston (MA): Butterworth-Heine-mann, 2004: 2384

    Google Scholar 

  4. Holdiness MR. Neurological manifestations and toxicities of the antituberculosis drugs: a review. Med Toxicol 1987; 2(1): 33–51

    Article  PubMed  CAS  Google Scholar 

  5. Ellard GA. The potential clinical significance of the isoniazid acetylator phenotype in the treatment of pulmonary tuberculosis. Tubercle 1984; 65(3): 211–27

    Article  PubMed  CAS  Google Scholar 

  6. Thompson JE. How safe is isoniazid? Med J Aust 1978; 1(3): 165–9

    PubMed  CAS  Google Scholar 

  7. Kinsella LJ. Vitamin deficiencies. In: Schapira AHV, editor. Neurology and clinical neuroscience. Philadelphia (PA): Mosby Elsevier, 2007: 1457–9

    Google Scholar 

  8. Pellock JM, Howell J, Kendig Jr EL, et al. Pyridoxine deficiency in children treated with isoniazid. Chest 1985; 87(5): 658–61

    Article  PubMed  CAS  Google Scholar 

  9. Blumberg HM, Burman WJ, Chaisson RE, et al. American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America: treatment of tuberculosis. Am J Respir Crit Care Med 2003; 167(4): 603–62

    Article  PubMed  Google Scholar 

  10. Siskind MS, Thienemann D, Kirlin L. Isoniazid-induced neurotoxicity in chronic dialysis patients: report of three cases and a review of the literature. Nephron 1993; 64(2): 303–6

    Article  PubMed  CAS  Google Scholar 

  11. Editorial (no authors listed). Psychiatric side effects of nonpsychiatric drugs. Semin Psychiatry 1971; 3 (4): 406-20

    Google Scholar 

  12. Iannaccone R, Sue YJ, Avner JR. Suicidal psychosis secondary to isoniazid. Pediatr Emerg Care 2002; 18(1): 25–7

    Article  PubMed  Google Scholar 

  13. Duncan H, Kerr D. Toxic psychosis due to isoniazid. Br J Dis Chest 1962; 56: 131–8

    Article  PubMed  CAS  Google Scholar 

  14. Alao AO, Yolles JC. Isoniazid-induced psychosis. Ann Pharmacother 1998; 32(9): 889–91

    Article  PubMed  CAS  Google Scholar 

  15. Wasik A. Mental disorders caused by isonicotinic acid hydrazide (INH) in the course of treatment of pulmonary tuberculosis. Pol Med J 1970; 9: 1498–503

    PubMed  CAS  Google Scholar 

  16. Shah BR, Santucci K, Sinert R, et al. Acute isoniazid neurotoxicity in an urban hospital. Pediatrics 1995; 95(5): 700–4

    PubMed  CAS  Google Scholar 

  17. Temmerman W, Dhondt A, Vandewoude K. Acute isoniazid intoxication: seizures, acidosis and coma. Acta Clin Belg 1999; 54(4): 211–6

    PubMed  CAS  Google Scholar 

  18. Thundiyil JG, Kearney TE, Olson KR. Evolving epidemiology of drug-induced seizures reported to a Poison Control Center System. J Med Toxicol 2007; 3(1): 15–9

    Article  PubMed  Google Scholar 

  19. Alvarez FG, Guntupalli KK. Isoniazid overdose: four case reports and review of the literature. Intensive Care Med 1995; 21(8): 641–4

    Article  PubMed  CAS  Google Scholar 

  20. Tibussek D, Mayatepek E, Distelmaier F, et al. Status epilepticus due to attempted suicide with isoniazid. Eur J Pediatr 2006; 165(2): 136–7

    Article  PubMed  Google Scholar 

  21. Baciewicz AM, et al. Update on rifampin and rifabutin drug interactions. Am J Med Sci 2008; 335(2): 126–36

    Article  PubMed  Google Scholar 

  22. Kreek MJ, Garfield JW, Gutjahr CL, et al. Rifampin-induced methadone withdrawal. N Engl J Med 1976; 294(20): 1104–6

    Article  PubMed  CAS  Google Scholar 

  23. Jenkins P, Emerson PA. Myopathy induced by rifampicin. Br Med J (Clin Res Ed) 1981; 283(6284): 105–6

    Article  CAS  Google Scholar 

  24. Pratt WB, Fekety R. The antimicrobial drugs. New York (NY): Oxford University Press, 1986: 293–4

    Google Scholar 

  25. Abramowicz M. Treatment guidelines from the Medical Letter: drugs for tuberculosis. Medical Letter 2007; 5(55): 15–21

    Google Scholar 

  26. Nair VS, LeBrun M, Kass I. Peripheral neuropathy associated with ethambutol. Chest 1980; 77(1): 98–100

    Article  PubMed  CAS  Google Scholar 

  27. Tugwell P, James SL. Peripheral neuropathy with ethambutol. Postgrad Med J 1972; 48(565): 667–70

    Article  PubMed  CAS  Google Scholar 

  28. Melamud A, Kosmorsky GS, Lee MS. Ocular ethambutol toxicity. Mayo Clin Proc 2003; 78(11): 1409–11

    Article  PubMed  Google Scholar 

  29. Griffith DE, Brown-Elliott BA, Shepherd S, et al. Ethambutol ocular toxicity in treatment regimens for Mycobacterium avium complex lung disease. Am J Respir Crit Care Med 2005; 172(2): 250–3

    Article  PubMed  Google Scholar 

  30. Seth V, Khosla PK, Semwal OP, et al. Visual evoked responses in tuberculous children on ethambutol therapy. Indian Pediatr 1991; 28(7): 713–7

    PubMed  CAS  Google Scholar 

  31. Yiannikas C, Walsh JC, McLeod JG. Visual evoked potentials in the detection of subclinical optic toxic effects secondary to ethambutol. Arch Neurol 1983; 40(10): 645–8

    Article  PubMed  CAS  Google Scholar 

  32. Kumar A, Sandramouli S, Verma L, et al. Ocular ethambutol toxicity: is it reversible? J Clin Neuroophthalmol 1993; 13(1): 15–7

    PubMed  CAS  Google Scholar 

  33. Menon V, Jain D, Saxena R, et al. Prospective evaluation of visual function for early detection of ethambutol toxicity. Br J Ophthalmol 2009; 93(9): 1251–4

    Article  PubMed  CAS  Google Scholar 

  34. Bhansali SA. Medication side effects. In: Goebel JA, editor. Practical management of the dizzy patient. Philadelphia (PA): Lippincott, Williams, and Wilkins, 2008: 46–8

    Google Scholar 

  35. Guthrie OW. Aminoglycoside induced ototoxicity. Toxicology 2008; 249(2-3): 91–6

    Article  PubMed  Google Scholar 

  36. Peloquin CA, Berning SE, Nitta AT, et al. Aminoglycoside toxicity: daily versus thrice-weekly dosing for treatment of mycobacterial diseases. Clin Infect Dis 2004; 38(11): 1538–44

    Article  PubMed  CAS  Google Scholar 

  37. Fischel-Ghodsian N. Genetic factors in aminoglycoside toxicity. Pharmacogenomics 2005; 6(1): 27–36

    Article  PubMed  CAS  Google Scholar 

  38. Bitner-Glindzicz M, Rahman S. Ototoxicity caused by aminoglycosides. BMJ 2007; 335(7624): 784–5

    Article  PubMed  Google Scholar 

  39. Pratt WB, Fekety R. The antimicrobial drugs. New York (NY): Oxford University Press, 1986: 172–5

    Google Scholar 

  40. Brazil OV, Corrado AP. The curariform action of streptomycin. J Pharmacol Exp Ther 1957; 120(4): 452–9

    PubMed  CAS  Google Scholar 

  41. Fiekers JF. Effects of the aminoglycoside antibiotics, streptomycin and neomycin, on neuromuscular transmission: II. Postsynaptic considerations. J Pharmacol Exp Ther 1983; 225(3): 496–502

    CAS  Google Scholar 

  42. Sokoll MD, Gergis SD. Antibiotics and neuromuscular function. Anesthesiology 1981; 55(2): 148–59

    Article  PubMed  CAS  Google Scholar 

  43. Pasquale TR, Tan JS. Nonantimicrobial effects of antibacterial agents. Clin Infect Dis 2005; 40(1): 127–35

    Article  PubMed  CAS  Google Scholar 

  44. Yamada S, Kuno Y, Iwanaga H. Effects of aminoglycoside antibiotics on the neuromuscular junction: part I. Int J Clin Pharmacol Ther Toxicol 1986; 24(3): 130–8

    PubMed  CAS  Google Scholar 

  45. Barrons RW. Drug-induced neuromuscular blockade and myasthenia gravis. Pharmacotherapy 1997; 17(6): 1220–32

    PubMed  CAS  Google Scholar 

  46. Storey PB, McLean RL. Some considerations of cycloserine toxicity. Am Rev Tuberc 1957; 75(3): 514–6

    PubMed  CAS  Google Scholar 

  47. Daddi G. Proceedings of the International Symposium on Cycloserine/organized with the cooperation of AB KABI, Stockholm, Sweden; FARMITALIA, Soc. Farmaceutici Italia An. p. Az. Milan, Italy; 1968 May 11–12; Milan. Scand J Respir Dis 1970; 71. Copenhagen: Munksgaard, 1970

  48. Helmy B. Side effects of cycloserine. Scand J Respir Dis Suppl 1970; 71: 220–5

    PubMed  CAS  Google Scholar 

  49. Pasargiklian M, Biondi L. Neurologic and behavioural reactions of tuberculous patients treated with cycloserine. Scand J Respir Dis Suppl 1970; 71: 201–8

    PubMed  CAS  Google Scholar 

  50. Jancik E, Bouckova I, Jancikova M, et al. Clinical and laboratory experiences with cycloserine. Scand J Respir Dis Suppl 1970; 71: 306–13

    PubMed  CAS  Google Scholar 

  51. Esteves Pinto E. Suicide of two patients during the postoperative course after pulmonary resection: possible effect of cycloserine. Scand J Respir Dis Suppl 1970; 71: 256–8

    PubMed  CAS  Google Scholar 

  52. Miyakawa T, Suzuki T, Nakamura K, et al. An autopsy case of cycloserine poisoning. Folia Psychiatr Neurol Jpn 1977; 31(2): 235–41

    PubMed  CAS  Google Scholar 

  53. Villar TG. Personal experience with cycloserine in 206 patients with pulmonary tuberculosis. Scand J Respir Dis Suppl 1970; 71: 196–200

    PubMed  CAS  Google Scholar 

  54. Evins AE, Amico E, Posever TA, et al. D-Cycloserine added to risperidone in patients with primary negative symptoms of schizophrenia. Schizophr Res 2002; 56(1–2): 19–23

    Article  PubMed  Google Scholar 

  55. Lane HY, Huang CL, Wu PL, et al. Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to clozapine for the treatment of schizophrenia. Biol Psychiatry 2006; 60(6): 645–9

    Article  PubMed  CAS  Google Scholar 

  56. Kontaxakis VP, Ferentinos PP, Havaki-Kontaxaki BJ, et al. Randomized controlled augmentation trials in clozapine-resistant schizophrenic patients: a critical review. Eur Psychiatry 2005; 20(5–6): 409–15

    Article  PubMed  Google Scholar 

  57. van Berckel BN, Lipsch C, Timp S, et al. Behavioral and neuroendocrine effects of the partial NMDA agonist D-cycloserine in healthy subjects. Neuropsychopharmacology 1997; 16(5): 317–24

    Article  PubMed  Google Scholar 

  58. Reznik SE, Vilderman AM. Use of pyridoxine in the treatment of side effects of antitubercular agents. Probl Tuberk 1963; 41: 76–7

    PubMed  CAS  Google Scholar 

  59. Nair S, Maguire W, Baron H, et al. The effect of cycloserine on pyridoxine-dependent metabolism in tuberculosis. J Clin Pharmacol 1976; 16(8–9): 439–43

    PubMed  CAS  Google Scholar 

  60. Pratt WB, Fekety R. The antimicrobial drugs. New York (NY): Oxford University Press, 1986: 299

    Google Scholar 

  61. Girling DJ. Adverse effects of antituberculosis drugs. Drugs 1982; 23(1–2): 56–74

    Article  PubMed  CAS  Google Scholar 

  62. Fox W, Robinson DK, Tall R, et al. A study of acute intolerance to ethionamide, including a comparison with prothionamide, and of the influence of a vitamin B-complex additive in prophylaxis. Tubercle 1969; 50(2): 125–43

    Article  PubMed  CAS  Google Scholar 

  63. Miller AB. Thiacetazone toxicity: a general review. Tubercle 1968; 49 Suppl. : 54–6

    Article  PubMed  Google Scholar 

  64. Poole GW, Schneeweiss J. Peripheral neuropathy due to ethioniamide. Am Rev Respir Dis 1961; 84: 890–2

    PubMed  CAS  Google Scholar 

  65. Pamra SP. A co-operative trial on the toxicity and efficacy of thiacetazone. Indian J Med Res 1971; 59(5): 683–98

    PubMed  CAS  Google Scholar 

  66. Webb AH. A thiacetazone toxicity trial in Sarawak. N Z Med J 1973; 78(502): 490–2

    PubMed  CAS  Google Scholar 

  67. Ziganshina LE, Squire SB. Fluoroquinolones for treating tuberculosis. Cochrane Database Syst Rev 2008; (1): CD004795

  68. Owens RC Jr, Ambrose PG. Antimicrobial safety: focus on fluoroquinolones. Clin Infect Dis 2005; 41 Suppl. 2: S144–57

    Article  PubMed  CAS  Google Scholar 

  69. Thomas RJ, Reagan DR. Association of a Tourette-like syndrome with ofloxacin. Ann Pharmacother 1996; 30(2): 138–41

    PubMed  CAS  Google Scholar 

  70. Schwartz MT, Calvert JF. Potential neurologic toxicity related to ciprofloxacin. DICP 1990; 24(2): 138–40

    PubMed  CAS  Google Scholar 

  71. Kushner JM, Peckman HJ, Snyder CR. Seizures associated with fluoroquinolones. Ann Pharmacother 2001; 35(10): 1194–8

    Article  PubMed  CAS  Google Scholar 

  72. Christie MJ, Wong K, Ting RH, et al. Generalized seizure and toxic epidermal necrolysis following levofloxacin exposure. Ann Pharmacother 2005; 39(5): 953–5

    Article  PubMed  Google Scholar 

  73. Walton GD, Hon JK, Mulpur TG. Ofloxacin-induced seizure. Ann Pharmacother 1997; 31(12): 1475–7

    PubMed  CAS  Google Scholar 

  74. Halliwell RF, Davey PG, Lambert JJ. Antagonism of GA-BAA receptors by 4-quinolones. J Antimicrob Chemother 1993; 31(4): 457–62

    Article  PubMed  CAS  Google Scholar 

  75. Karki SD, Bentley DW, Raghavan M. Seizure with ciprofloxacin and theophylline combined therapy. DICP 1990; 24(6): 595–6

    PubMed  CAS  Google Scholar 

  76. Pashko S, Simons WR, Sena MM, et al. Rate of exposure to theophylline-drug interactions. Clin Ther 1994; 16(6): 1068–77

    PubMed  CAS  Google Scholar 

  77. Stahlmann R, Lode H. Fluoroquinolones in the elderly: safety considerations. Drugs Aging 2003; 20(4): 289–302

    Article  PubMed  CAS  Google Scholar 

  78. Olsen PZ, Torning K. Psychological side-effects during long-term ambulatory chemotherapy with isoniazid and PAS. Acta Tuberc Scand 1959; 37: 89–103

    PubMed  CAS  Google Scholar 

  79. Brennan P, Young D, editors. Capreomycin, in tuberculosis. Edinburgh: Churchill Livingstone, 2008: 89–91

    Google Scholar 

  80. Liu XM, Xie JP. Action and resistance mechanisms of capreomycin: a functional genomic perspective. Yao Xue Xue Bao 2008; 43(8): 788–92

    PubMed  CAS  Google Scholar 

  81. Hoff DR, Caraway ML, Brooks EJ, et al. Metronidazole lacks antibacterial activity in guinea pigs infected with Mycobacterium tuberculosis. Antimicrob Agents Chemother 2008; 52(11): 4137–40

    Article  PubMed  CAS  Google Scholar 

  82. Klinkenberg LG, Sutherland LA, Bishai WR, et al. Metronidazole lacks activity against Mycobacterium tuberculosis in an in vivo hypoxic granuloma model of latency. J Infect Dis 2008; 198(2): 275–83

    Article  PubMed  CAS  Google Scholar 

  83. Freeman CD, Klutman NE, Lamp KC. Metronidazole: a therapeutic review and update. Drugs 1997; 54(5): 679–708

    Article  PubMed  CAS  Google Scholar 

  84. Riccardi G, Pasca MR, Buroni S. Mycobacterium tuberculosis: drug resistance and future perspectives. Future Microbiol 2009; 4: 597–614

    Article  PubMed  CAS  Google Scholar 

  85. Schaaf HS, Willemse M, Donald PR. Long-term linezolid treatment in a young child with extensively drug-resistant tuberculosis. Pediatr Infect Dis J 2009; 28(8): 748–50

    Article  PubMed  Google Scholar 

  86. Narita M, Tsuji BT, Yu VL. Linezolid-associated peripheral and optic neuropathy, lactic acidosis, and serotonin syndrome. Pharmacotherapy 2007; 27(8): 1189–97

    Article  PubMed  CAS  Google Scholar 

  87. Taylor JJ, Wilson JW, Estes LL. Linezolid and serotonergic drug interactions: a retrospective survey. Clin Infect Dis 2006; 43(2): 180–7

    Article  PubMed  CAS  Google Scholar 

  88. Deresinski S. Beta-lactam therapy of tuberculosis? Clin Infect Dis 2009; 49(10): iii

    Article  Google Scholar 

  89. Hugonnet JE, Tremblay LW, Boshoff HI, et al. Mero-penem-clavulanate is effective against extensively drug-resistant Mycobacterium tuberculosis. Science 2009; 323(5918): 1215–8

    Article  PubMed  CAS  Google Scholar 

  90. Check E. After decades of drought, new drug possibilities flood TB pipeline. Nat Med 2007; 13(3): 266

    Article  PubMed  CAS  Google Scholar 

  91. Jia L, Tomaszewski JE, Hanrahan C, et al. Pharmacodynamics and pharmacokinetics of SQ109, a new diamine-based antitubercular drug. Br J Pharmacol 2005; 144(1): 80–7

    Article  PubMed  CAS  Google Scholar 

  92. Manjunatha UH, Boshoff H, Dowd CS, et al. Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2006; 103(2): 431–6

    Article  PubMed  CAS  Google Scholar 

  93. Andries K, Verhasselt P, Guillemont J, et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 2005; 307(5707): 223–7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph S. Kass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kass, J.S., Shandera, W.X. Nervous System Effects of Antituberculosis Therapy. CNS Drugs 24, 655–667 (2010). https://doi.org/10.2165/11534340-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11534340-000000000-00000

Keywords

Navigation