Skip to main content
Log in

Recommendations and Considerations for the Use of Biologics in Orthopedic Surgery

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Reconstruction of extensive bone defects remains technically challenging and has considerable medical and financial impact on our society. Surgical procedures often require a bone/substitute graft to enhance and accelerate bone repair. Bone autografts are associated with morbidity related to bone harvesting and are limited in quantity. Alternatively, bone allografts expose the patient to the risk of transmission of infectious disease. Synthetic bone graft substitutes, such as calcium sulfates, hydroxyapatite, tricalcium phosphate, and combinations, circumvent some of the disadvantages of auto- and allografts, but have limited indications. Biomedical research has made possible the stimulation of the body’s own healing mechanisms, either by delivering exogenous growth factors locally, or by stimulating their local production by gene transfer. Among all known factors having osteoinductive properties, only two bone morphogenetic proteins (for specific indications) and demineralized bone matrix have been approved for clinical use. In addition, ongoing research is exploring the efficacy of cell therapy and tissue engineering. The present report examines the composition, biological properties, indications, clinical experience and regulations of several of the biotherapeutics employed for bone reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Khan SN, Cammisa Jr FP, Sandhu HS, et al. The biology of bone grafting. J Am Acad Orthop Surg 2005 Feb; 13(1): 77–86

    PubMed  Google Scholar 

  2. Kappe T, Cakir B, Mattes T, et al. Infections after bone allograft surgery: a prospective study by a hospital bone bank using frozen femoral heads from living donors. Cell Tissue Bank 2010 Aug; 11(3): 253–9

    Article  PubMed  Google Scholar 

  3. Goldberg VM, Akhavan S. Biology of bone grafts. In: Lieberman JR, Friedlaender GE, editors. Bone regeneration and repair: biology and clinical applications. Totowa (NJ): Humana Press, 2005: 57–65

    Google Scholar 

  4. Ullmark G, Obrant KJ. Histology of impacted bone-graft incorporation. J Arthroplasty 2002 Feb; 17(2): 150–7

    Article  PubMed  CAS  Google Scholar 

  5. van der Donk S, Buma P, Slooff TJ, et al. Incorporation of morselized bone grafts: a study of 24 acetabular biopsy specimens. Clin Orthop Relat Res 2002 Mar; (396): 131–41

    Article  PubMed  Google Scholar 

  6. Hamer AJ, Suvarna SK, Stockley I. Histologic evidence of cortical allograft bone incorporation in revision hip surgery. J Arthroplasty 1997 Oct; 12(7): 785–9

    Article  PubMed  CAS  Google Scholar 

  7. Hooten Jr JP, Engh CA, Heekin RD, et al. Structural bulk allografts in acetabular reconstruction: analysis of two grafts retrieved at post-mortem. J Bone Joint Surg Br 1996 Mar; 78(2): 270–5

    PubMed  Google Scholar 

  8. Enneking WF, Mindell ER. Observations on massive retrieved human allografts. J Bone Joint Surg Am 1991 Sep; 73(8): 1123–42

    PubMed  CAS  Google Scholar 

  9. Schreurs BW, Slooff TJ, Buma P, et al. Acetabular reconstruction with impacted morsellised cancellous bone graft and cement: a 10- to 15-year follow-up of 60 revision arthroplasties. J Bone Joint Surg Br 1998 May; 80(3): 391–5

    Article  PubMed  CAS  Google Scholar 

  10. Azuma T, Yasuda H, Okagaki K, et al. Compressed allograft chips for acetabular reconstruction in revision hip arthroplasty. J Bone Joint Surg Br 1994 Sep; 76(5): 740–4

    PubMed  CAS  Google Scholar 

  11. Berry DJ, Müller ME. Revision arthroplasty using an anti-protrusio cage for massive acetabular bone deficiency. J Bone Joint Surg Br 1992 Sep; 74(5): 711–5

    PubMed  CAS  Google Scholar 

  12. Gill TJ, Sledge JB, Müller ME. The Bürch-Schneider anti-protrusio cage in revision total hip arthroplasty: indications, principles and long-term results. J Bone Joint Surg Br 1998 Nov; 80(6): 946–53

    Article  PubMed  CAS  Google Scholar 

  13. Gie GA, Linder L, Ling RS, et al. Impacted cancellous allografts and cement for revision total hip arthroplasty. J Bone Joint Surg Br 1993 Jan; 75(1): 14–21

    PubMed  CAS  Google Scholar 

  14. Rogers BA, Sternheim A, Backstein D, et al. Proximal femoral allograft for major segmental femoral bone loss: a systematic literature review. Adv Orthop 2011; 2011: 257572

    PubMed  CAS  Google Scholar 

  15. Martin WR, Sutherland CJ. Complications of proximal femoral allografts in revision total hip arthroplasty. Clin Orthop Relat Res 1993 Oct; (295): 161–7

    PubMed  Google Scholar 

  16. Clatworthy MG, Ballance J, Brick GW, et al. The use of structural allograft for uncontained defects in revision total knee arthroplasty: a minimum five-year review. J Bone Joint Surg Am 2001 Mar; 83–A(3): 404–11

    PubMed  Google Scholar 

  17. Engh GA, Ammeen DJ. Use of structural allograft in revision total knee arthroplasty in knees with severe tibial bone loss. J Bone Joint Surg Am 2007 Dec; 89(12): 2640–7

    Article  PubMed  Google Scholar 

  18. Backstein D, Safir O, Gross A. Management of bone loss: structural grafts in revision total knee arthroplasty. Clin Orthop Relat Res 2006 May; 446:104–12

    Article  PubMed  Google Scholar 

  19. Mnaymneh W, Emerson RH, Borja F, et al. Massive allografts in salvage revisions of failed total knee arthroplasties. Clin Orthop Relat Res 1990 Nov; (260): 144–53

    PubMed  Google Scholar 

  20. An HS, Lynch K, Toth J. Prospective comparison of autograft vs. allograft for adult posterolateral lumbar spine fusion: differences among freeze-dried, frozen, and mixed grafts. J Spinal Disord 1995 Apr; 8(2): 131–5

    Article  PubMed  CAS  Google Scholar 

  21. Gibson S, McLeod I, Wardlaw D, et al. Allograft versus autograft in instrumented posterolateral lumbar spinal fusion: a randomized control trial. Spine 2002 Aug; 27(15): 1599–603

    Article  PubMed  Google Scholar 

  22. Gitelis S, Piasecki P, Turner T, et al. Use of a calcium sulfate-based bone graft substitute for benign bone lesions. Orthopedics 2001 Feb; 24(2): 162–6

    PubMed  CAS  Google Scholar 

  23. Kelly CM, Wilkins RM, Gitelis S, et al. The use of a surgical grade calcium sulfate as a bone graft substitute: results of a multicenter trial. Clin Orthop Relat Res 2001 Jan; (382): 42–50

    Article  PubMed  Google Scholar 

  24. Niu C-C, Tsai T-T, Fu T-S, et al. A comparison of posterolateral lumbar fusion comparing autograft, autogenous laminectomy bone with bone marrow aspirate, and calcium sulphate with bone marrow aspirate: a prospective randomized study. Spine 2009 Dec; 34(25): 2715–9

    Article  PubMed  Google Scholar 

  25. Ray RD, Ward Jr AA. A preliminary report on studies of basic calcium phosphate in bone replacement. Surg Forum 1951; 429–34

  26. Guillemin G, Patat JL, Fournie J, et al. The use of coral as a bone graft substitute. J Biomed Mater Res 1987 May; 21(5): 557–67

    Article  PubMed  CAS  Google Scholar 

  27. Eggli PS, Müller W, Schenk RK. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits: a comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin Orthop Relat Res 1988 Jul; (232): 127–38

    PubMed  CAS  Google Scholar 

  28. Holmes RE, Bucholz RW, Mooney V. Porous hydroxyapatite as a bone graft substitute in diaphyseal defects: a histometric study. J Orthop Res 1987; 5(1): 114–21

    Article  PubMed  CAS  Google Scholar 

  29. Le Huec JC, Clément D, Brouillaud B, et al. Evolution of the local calcium content around irradiated beta-tricalcium phosphate ceramic implants: in vivo study in the rabbit. Biomaterials 1998 May; 19(7–9): 733–8

    Article  PubMed  Google Scholar 

  30. Le Huec JC, Schaeverbeke T, Clement D, et al. Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress. Biomaterials 1995 Jan; 16(2): 113–8

    Article  PubMed  Google Scholar 

  31. Bohner M, Baumgart F. Theoretical model to determine the effects of geometrical factors on the resorption of calcium phosphate bone substitutes. Biomaterials 2004 Aug; 25(17): 3569–82

    Article  PubMed  CAS  Google Scholar 

  32. Oonishi H, Iwaki Y, Kin N, et al. Hydroxyapatite in revision of total hip replacements with massive acetabular defects: 4- to 10-year clinical results. J Bone Joint Surg Br 1997 Jan; 79(1): 87–92

    Article  PubMed  CAS  Google Scholar 

  33. Oonishi H, Kadoya Y, Iwaki H, et al. Hydroxyapatite granules interposed at bone-cement interface in total hip replacements: histological study of retrieved specimens. J Biomed Mater Res 2000; 53(2): 174–80

    Article  PubMed  CAS  Google Scholar 

  34. Schwartz C, Bordei R. Biphasic phospho-calcium ceramics used as bone substitutes are efficient in the management of severe acetabular bone loss in revision total hip arthroplasties. Eur J Orthop Surg Traumatol 2005 Jun; 15(3): 191–6

    Article  Google Scholar 

  35. Kärrholm J, Hultmark P, Carlsson L, et al. Subsidence of a non-polished stem in revisions of the hip using impaction allograft. Evaluation with radiostereometry and dual-energy X-ray absorptiometry. J Bone Joint Surg Br 1999 Jan; 81(1): 135–42

    Article  PubMed  Google Scholar 

  36. Eldridge JD, Smith EJ, Hubble MJ, et al. Massive early subsidence following femoral impaction grafting. J Arthroplasty 1997 Aug; 12(5): 535–40

    Article  PubMed  CAS  Google Scholar 

  37. Nich C, Sedel L. Bone substitution in revision hip replacement. Int Orthop 2006 Dec; 30(6): 525–31

    Article  PubMed  CAS  Google Scholar 

  38. Passuti N, Daculsi G, Rogez JM, et al. Macroporous calcium phosphate ceramic performance in human spine fusion. Clin Orthop Relat Res 1989 Nov; (248): 169–76

    PubMed  Google Scholar 

  39. Gaasbeek RDA, Toonen HG, van Heerwaarden RJ, et al. Mechanism of bone incorporation of beta-TCP bone substitute in open wedge tibial osteotomy in patients. Biomaterials 2005 Nov; 26(33): 6713–9

    Article  PubMed  CAS  Google Scholar 

  40. Hernigou P, Roussignol X, Flouzat-Lachaniette CH, et al. Opening wedge tibial osteotomy for large varus deformity with Ceraver resorbable beta tricalcium phosphate wedges. Int Orthop 2010 Feb; 34(2): 191–9

    Article  PubMed  Google Scholar 

  41. Schwartz C, Liss P, Jacquemaire B, et al. Biphasic synthetic bone substitute use in orthopaedic and trauma surgery: clinical, radiological and histological results. J Mater Sci Mater Med 1999 Dec; 10(12): 821–5

    Article  PubMed  CAS  Google Scholar 

  42. Jiang S-D, Jiang L-S, Dai L-Y. Surgical treatment of calcaneal fractures with use of beta-tricalcium phosphate ceramic grafting. Foot Ankle Int 2008 Oct; 29(10): 1015–9

    Article  PubMed  Google Scholar 

  43. Scheer JH, Adolfsson LE. Tricalcium phosphate bone substitute in corrective osteotomy of the distal radius. Injury 2009 Mar; 40(3): 262–7

    Article  PubMed  Google Scholar 

  44. Uchida A, Araki N, Shinto Y, et al. The use of calcium hydroxyapatite ceramic in bone tumour surgery. J Bone Joint Surg Br 1990 Mar; 72(2): 298–302

    PubMed  CAS  Google Scholar 

  45. Yamamoto T, Onga T, Marui T, et al. Use of hydroxyapatite to fill cavities after excision of benign bone tumours: clinical results. J Bone Joint Surg Br 2000 Nov; 82(8): 1117–20

    Article  PubMed  CAS  Google Scholar 

  46. Galois L, Mainard D, Delagoutte JP. Beta-tricalcium phosphate ceramic as a bone substitute in orthopaedic surgery. Int Orthop 2002; 26(2): 109–15

    Article  PubMed  CAS  Google Scholar 

  47. Schindler OS, Cannon SR, Briggs TWR, et al. Composite ceramic bone graft substitute in the treatment of locally aggressive benign bone tumours. J Orthop Surg 2008 Apr; 16(1): 66–74

    CAS  Google Scholar 

  48. Zhang Y, Zhang M. Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. J Biomed Mater Res 2001 Jun 5; 55(3): 304–12

    Article  PubMed  CAS  Google Scholar 

  49. Ding S-J. Preparation and properties of chitosan/calcium phosphate composites for bone repair. Dent Mater J 2006 Dec; 25(4): 706–12

    Article  PubMed  CAS  Google Scholar 

  50. Ito M, Hidaka Y, Nakajima M, et al. Effect of hydroxyapatite content on physical properties and connective tissue reactions to a chitosan-hydroxyapatite composite membrane. J Biomed Mater Res 1999 Jun; 45(3): 204–8

    Article  PubMed  CAS  Google Scholar 

  51. Brown W, Chow LC. A new calcium phosphate, water-setting cement. In: Brown PW, editor. Cements Research Progress 1986. Westerville, Ohio: American Ceramic Society, 1987: 352–79

    Google Scholar 

  52. Frayssinet P, Rouquet N, Mathon D, et al. Histological integration of allogeneic cancellous bone tissue treated by supercritical CO2 implanted in sheep bones. Biomaterials 1998 Dec; 19(24): 2247–53

    Article  PubMed  CAS  Google Scholar 

  53. Xu HHK, Quinn JB, Takagi S, et al. Synergistic reinforcement of in situ hardening calcium phosphate composite scaffold for bone tissue engineering. Biomaterials 2004 Mar; 25(6): 1029–37

    Article  PubMed  CAS  Google Scholar 

  54. Xu HHK, Quinn JB, Takagi S, et al. Processing and properties of strong and non-rigid calcium phosphate cement. J Dent Res 2002 Mar; 81(3): 219–24

    Article  PubMed  CAS  Google Scholar 

  55. Sanchez-Sotelo J, Munuera L, Madero R. Treatment of fractures of the distal radius with a remodellable bone cement: a prospective, randomised study using Norian SRS. J Bone Joint Surg Br 2000 Aug; 82(6): 856–63

    Article  PubMed  CAS  Google Scholar 

  56. Lobenhoffer P, Gerich T, Witte F, et al. Use of an injectable calcium phosphate bone cement in the treatment of tibial plateau fractures: a prospective study of twenty-six cases with twenty-month mean follow-up. J Orthop Trauma 2002 Mar; 16(3): 143–9

    Article  PubMed  CAS  Google Scholar 

  57. Thordarson DB, Hedman TP, Yetkinler DN, et al. Superior compressive strength of a calcaneal fracture construct augmented with remodelable cancellous bone cement. J Bone Joint Surg Am 1999 Feb; 81(2): 239–46

    PubMed  CAS  Google Scholar 

  58. Schildhauer TA, Bauer TW, Josten C, et al. Open reduction and augmentation of internal fixation with an injectable skeletal cement for the treatment of complex calcaneal fractures. J Orthop Trauma 2000 Jul; 14(5): 309–17

    Article  PubMed  CAS  Google Scholar 

  59. Welkerling H, Raith J, Kastner N, et al. Painful soft-tissue reaction to injectable Norian SRS calcium phosphate cement after curettage of enchondromas. J Bone Joint Surg Br 2003 Mar; 85(2): 238–9

    Article  PubMed  Google Scholar 

  60. Maus U, Andereya S, Gravius S, et al. BMP-2 incorporated in a tricalcium phosphate bone substitute enhances bone remodeling in sheep. J Biomater Appl 2008 May; 22(6): 559–76

    Article  PubMed  CAS  Google Scholar 

  61. Hench LL, Paschall HA. Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J Biomed Mater Res 1973; 7(3): 25–42

    Article  PubMed  CAS  Google Scholar 

  62. Xynos ID, Edgar AJ, Buttery LD, et al. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J Biomed Mater Res 2001 May; 55(2): 151–7

    Article  PubMed  CAS  Google Scholar 

  63. Kaufmann EA, Ducheyne P, Shapiro IM. Effect of varying physical properties of porous, surface modified bioactive glass 45S5 on osteoblast proliferation and maturation. J Biomed Mater Res 2000 Dec; 52(4): 783–96

    Article  PubMed  CAS  Google Scholar 

  64. Bosetti M, Vernè E, Brovarone CV, et al. Fluoroapatite glass-ceramic coating on alumina: surface behavior with biological fluids. J Biomed Mater Res A 2003 Sep; 66(3): 615–21

    Article  PubMed  CAS  Google Scholar 

  65. Hattar S, Berdal A, Asselin A, et al. Behaviour of moderately differentiated osteoblast-like cells cultured in contact with bioactive glasses. Eur Cell Mater 2002 Dec; 4: 61–9

    PubMed  CAS  Google Scholar 

  66. Nakamura T, Yamamuro T, Higashi S, et al. A new glass-ceramic for bone replacement: evaluation of its bonding to bone tissue. J Biomed Mater Res 1985 Aug; 19(6): 685–98

    Article  PubMed  CAS  Google Scholar 

  67. Kitsugi T, Yamamuro T, Nakamura T, et al. Bone bonding behavior of three kinds of apatite containing glass ceramics. J Biomed Mater Res 1986 Dec; 20(9): 1295–307

    Article  PubMed  CAS  Google Scholar 

  68. Ono K, Yamamuro T, Nakamura T, et al. Quantitative study on osteoconduction of apatite-wollastonite containing glass ceramic granules, hydroxyapatite granules, and alumina granules. Biomaterials 1990 May; 11(4): 265–71

    Article  PubMed  CAS  Google Scholar 

  69. Kasai Y, Takegami K, Uchida A. Mixture ratios of local bone to artificial bone in lumbar posterolateral fusion. J Spinal Disord Tech 2003 Feb; 16(1): 31–7

    Article  PubMed  Google Scholar 

  70. Schepers E, de Clercq M, Ducheyne P, et al. Bioactive glass particulate material as a filler for bone lesions. J Oral Rehabil 1991 Sep; 18(5): 439–52

    Article  PubMed  CAS  Google Scholar 

  71. Oréfice R, West J, Latorre G, et al. Effect of long-term in vitro testing on the properties of bioactive glass-polysulfone composites. Biomacromolecules 2010 Mar; 11(3): 657–65

    Article  PubMed  CAS  Google Scholar 

  72. Ramay HRR, Zhang M. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials 2004 Sep; 25(21): 5171–80

    Article  PubMed  CAS  Google Scholar 

  73. Webster TJ, Ergun C, Doremus RH, et al. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res 2000 Sep; 51(3): 475–83

    Article  PubMed  CAS  Google Scholar 

  74. Dalby MJ, Riehle MO, Johnstone H, et al. In vitro reaction of endothelial cells to polymer demixed nanotopography. Biomaterials 2002 Jul; 23(14): 2945–54

    Article  PubMed  CAS  Google Scholar 

  75. Schneider OD, Loher S, Brunner TJ, et al. Cotton wool-like nanocomposite biomaterials prepared by electrospinning: in vitro bioactivity and osteogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res Part B Appl Biomater 2008 Feb; 84(2): 350–62

    Article  PubMed  CAS  Google Scholar 

  76. Bernhardt A, Lode A, Boxberger S, et al. Mineralised collagen: an artificial, extracellular bone matrix-improves osteogenic differentiation of bone marrow stromal cells. J Mater Sci Mater Med 2008 Jan; 19(1): 269–75

    Article  PubMed  CAS  Google Scholar 

  77. Jie W, Hua H, Lan W, et al. Preliminary investigation of bioactivity of nano biocomposite. J Mater Sci Mater Med 2007 Mar; 18(3): 529–33

    Article  PubMed  CAS  Google Scholar 

  78. Itoh S, Kikuchi M, Koyama Y, et al. Development of a hydroxyapatite/collagen nanocomposite as a medical device. Cell Transplant 2004; 13(4): 451–61

    Article  PubMed  Google Scholar 

  79. Dimitriou R, Jones E, McGonagle D, et al. Bone regeneration: current concepts and future directions. BMC Med 2011; 9: 66

    Article  PubMed  Google Scholar 

  80. Bishop GB, Einhorn TA. Current and future clinical applications of bone morphogenetic proteins in orthopaedic trauma surgery. Int Orthop 2007 Dec; 31(6): 721–7

    Article  PubMed  Google Scholar 

  81. Betz OB, Betz VM, Abdulazim A, et al. The repair of critical size bone defects using expedited, autologous BMP-2 gene activated fat implants. Tissue Eng Part A 2010 Mar; 16(3): 1093–101

    Article  PubMed  CAS  Google Scholar 

  82. Jones AL, Bucholz RW, Bosse MJ, et al. Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects: a randomized, controlled trial. J Bone Joint Surg Am 2006 Jul; 88(7): 1431–41

    Article  PubMed  Google Scholar 

  83. Govender S, Csimma C, Genant HK, et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am 2002 Dec; 84-A(12): 2123–34

    PubMed  Google Scholar 

  84. Aro HT, Govender S, Patel AD, et al. Recombinant human bone morphogenetic protein-2: a randomized trial in open tibial fractures treated with reamed nail fixation. J Bone Joint Surg Am 2011 May; 93(9): 801–8

    Article  PubMed  Google Scholar 

  85. Calori GM, D’Avino M, Tagliabue L, et al. An ongoing research for evaluation of treatment with BMPs or AGFs in long bone non-union: protocol description and preliminary results. Injury 2006 Sep; 37 Suppl. 3: 43–50

    Article  Google Scholar 

  86. Ekrol I, Hajducka C, Court-Brown C, et al. A comparison of RhBMP-7 (OP-1) and autogenous graft for metaphyseal defects after osteotomy of the distal radius. Injury 2008 Sep; 39 Suppl. 2: 73–82

    Article  Google Scholar 

  87. Friedlaender GE, Perry CR, Cole JD, et al. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am 2001; 83-A Suppl. 1 (Pt 2): 151–8

    Google Scholar 

  88. Geesink RG, Hoefnagels NH, Bulstra SK, et al. Osteogenic activity of OP-1 bone morphogenetic protein (BMP-7) in a human fibular defect. J Bone Joint Surg Br 1999 Jul; 81(4): 710–8

    Article  PubMed  CAS  Google Scholar 

  89. Slosar PJ, Josey R, Reynolds J. Accelerating lumbar fusions by combining rhBMP-2 with allograft bone: a prospective analysis of interbody fusion rates and clinical outcomes. Spine J 2007 Jun; 7(3): 301–7

    Article  PubMed  Google Scholar 

  90. Villavicencio AT, Burneikiene S, Nelson EL, et al. Safety of transforaminal lumbar interbody fusion and intervertebral recombinant human bone morphogenetic protein-2. J Neurosurg Spine 2005 Dec; 3(6): 436–43

    Article  PubMed  Google Scholar 

  91. Garrison KR, Shemilt I, Donell S, et al. Bone morphogenetic protein (BMP) for fracture healing in adults. Cochrane Database Syst Rev 2010; (6): CD006950

    PubMed  Google Scholar 

  92. Helgeson MD, Lehman Jr RA, Patzkowski JC, et al. Adjacent vertebral body osteolysis with bone morphogenetic protein use in transforaminal lumbar interbody fusion. Spine J 2011 Jun; 11(6): 507–10

    Article  PubMed  Google Scholar 

  93. Baas J, Elmengaard B, Jensen TB, et al. The effect of pretreating morselized allograft bone with rhBMP-2 and/or pamidronate on the fixation of porous Ti and HA-coated implants. Biomaterials 2008 Jul; 29(19): 2915–22

    Article  PubMed  CAS  Google Scholar 

  94. Al-Zube L, Breitbart EA, O’Connor JP, et al. Recombinant human plateletderived growth factor BB (rhPDGF-BB) and beta-tricalcium phosphate/collagen matrix enhance fracture healing in a diabetic rat model. J Orthop Res 2009 Aug; 27(8): 1074–81

    Article  PubMed  CAS  Google Scholar 

  95. Lee J-Y, Kim K-H, Shin S-Y, et al. Enhanced bone formation by transforming growth factor-beta1-releasing collagen/chitosan microgranules. J Biomed Mater Res A 2006 Mar; 76(3): 530–9

    PubMed  Google Scholar 

  96. Granero-Moltó F, Myers TJ, Weis JA, et al. Mesenchymal stem cells expressing insulin-like growth factor-I (MSCIGF) promote fracture healing and restore new bone formation in Irs1 knockout mice: analyses of MSCIGF autocrine and paracrine regenerative effects. Stem Cells 2011 Oct; 29(10): 1537–48

    Article  PubMed  CAS  Google Scholar 

  97. Beamer B, Hettrich C, Lane J. Vascular endothelial growth factor: an essential component of angiogenesis and fracture healing. HSS J. Epub 2009 Sep 9

  98. Willems WF, Larsen M, Giusti G, et al. Revascularization and bone remodeling of frozen allografts stimulated by intramedullary sustained delivery of FGF-2 and VEGF. J Orthop Res 2011 Sep; 29(9): 1431–6

    Article  PubMed  CAS  Google Scholar 

  99. Castillo TN, Pouliot MA, Kim HJ, et al. Comparison of growth factor and platelet concentration from commercial platelet-rich plasma separation systems. Am J Sports Med 2011 Feb; 39(2): 266–71

    Article  PubMed  Google Scholar 

  100. Vater C, Kasten P, Stiehler M. Culture media for the differentiation of mesenchymal stromal cells. Acta Biomater 2011 Feb; 7(2): 463–77

    Article  PubMed  CAS  Google Scholar 

  101. Berghoff WJ, Pietrzak WS, Rhodes RD. Platelet-rich plasma application during closure following total knee arthroplasty. Orthopedics 2006 Jul; 29(7): 590–8

    PubMed  Google Scholar 

  102. Hartmann EK, Heintel T, Morrison RH, et al. Influence of platelet-rich plasma on the anterior fusion in spinal injuries: a qualitative and quantitative analysis using computer tomography. Arch Orthop Trauma Surg 2010 Jul; 130(7): 909–14

    Article  PubMed  Google Scholar 

  103. Sanchez M, Anitua E, Cugat R, et al. Nonunions treated with autologous preparation rich in growth factors. J Orthop Trauma 2009 Jan; 23(1): 52–9

    Article  PubMed  Google Scholar 

  104. Nin JRV, Gasque GM, Azcárate AV, et al. Has platelet-rich plasma any role in anterior cruciate ligament allograft healing? Arthroscopy 2009 Nov; 25(11): 1206–13

    Article  PubMed  Google Scholar 

  105. Filardo G, Kon E, Buda R, et al. Platelet-rich plasma intra-articular knee injections for the treatment of degenerative cartilage lesions and osteoarthritis. Knee Surg Sports Traumatol Arthrosc 2011 Apr; 19(4): 528–35

    Article  PubMed  Google Scholar 

  106. Mishra A, Pavelko T. Treatment of chronic elbow tendinosis with buffered platelet-rich plasma. Am J Sports Med 2006 Nov; 34(11): 1774–8

    Article  PubMed  Google Scholar 

  107. Gosens T, Peerbooms JC, van Laar W, et al. Ongoing positive effect of platelet-rich plasma versus corticosteroid injection in lateral epicondylitis: a double-blind randomized controlled trial with 2-year follow-up. Am J Sports Med 2011 Jun; 39(6): 1200–8

    Article  PubMed  Google Scholar 

  108. Gaweda K, Tarczynska M, Krzyzanowski W. Treatment of Achilles tendinopathy with platelet-rich plasma. Int J Sports Med 2010 Aug; 31(8): 577–83

    Article  PubMed  CAS  Google Scholar 

  109. de Jonge S, de Vos RJ, Weir A, et al. One-year follow-up of platelet-rich plasma treatment in chronic Achilles tendinopathy: a double-blind randomized placebo-controlled trial. Am J Sports Med 2011 Aug; 39(8): 1623–9

    Article  PubMed  Google Scholar 

  110. Mazzocca AD, McCarthy MBR, Chowaniec DM, et al. Platelet-rich plasma differs according to preparation method and human variability. J Bone Joint Surg Am 2012 Feb; 94(4): 308–16

    Article  PubMed  Google Scholar 

  111. Han B, Woodell-May J, Ponticiello M, et al. The effect of thrombin activation of platelet-rich plasma on demineralized bone matrix osteoinductivity. J Bone Joint Surg Am 2009 Jun; 91(6): 1459–70

    Article  PubMed  Google Scholar 

  112. Yuan T, Guo S-C, Han P, et al. Applications of leukocyte- and platelet-rich plasma (L-PRP) in trauma surgery. Curr Pharm Biotechnol. Epub 2011 Jul 8

  113. Saito N, Murakami N, Takahashi J, et al. Synthetic biodegradable polymers as drug delivery systems for bone morphogenetic proteins. Adv Drug Deliv Rev 2005 May; 57(7): 1037–48

    Article  PubMed  CAS  Google Scholar 

  114. Kanematsu A, Yamamoto S, Ozeki M, et al. Collagenous matrices as release carriers of exogenous growth factors. Biomaterials 2004 Aug; 25(18): 4513–20

    Article  PubMed  CAS  Google Scholar 

  115. Nagahama K, Ueda Y, Ouchi T, et al. Biodegradable shape-memory polymers exhibiting sharp thermal transitions and controlled drug release. Biomacromolecules 2009 Jul; 10(7): 1789–94

    Article  PubMed  CAS  Google Scholar 

  116. Go DP, Gras SL, Mitra D, et al. Multilayered microspheres for the controlled release of growth factors in tissue engineering. Biomacromolecules 2011 May; 12(5): 1494–503

    Article  PubMed  CAS  Google Scholar 

  117. Wildemann B, Sander A, Schwabe P, et al. Short term in vivo biocompatibility testing of biodegradable poly(D,L-lactide): growth factor coating for orthopaedic implants. Biomaterials 2005 Jun; 26(18): 4035–40

    Article  PubMed  CAS  Google Scholar 

  118. Haynesworth SE, Goshima J, Goldberg VM, et al. Characterization of cells with osteogenic potential from human marrow. Bone 1992; 13(1): 81–8

    Article  PubMed  CAS  Google Scholar 

  119. Bruder SP, Kurth AA, Shea M, et al. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res 1998 Mar; 16(2): 155–62

    Article  PubMed  CAS  Google Scholar 

  120. Arinzeh TL, Peter SJ, Archambault MP, et al. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J Bone Joint Surg Am 2003 Oct; 85–A (10): 1927–35

    PubMed  Google Scholar 

  121. Nishikawa M, Myoui A, Ohgushi H, et al. Bone tissue engineering using novel interconnected porous hydroxyapatite ceramics combined with marrow mesenchymal cells: quantitative and three-dimensional image analysis. Cell Transplant 2004; 13(4): 367–76

    Article  PubMed  Google Scholar 

  122. Kalia P, Blunn GW, Miller J, et al. Do autologous mesenchymal stem cells augment bone growth and contact to massive bone tumor implants? Tissue Eng 2006 Jun; 12_(6): 1617–26

    Article  Google Scholar 

  123. Korda M, Blunn G, Goodship A, et al. Use of mesenchymal stem cells to enhance bone formation around revision hip replacements. J Orthop Res 2008 Jun; 26(6): 880–5

    Article  PubMed  Google Scholar 

  124. Bernstein P, Bornhauser M, Gunther KP, et al. Bone tissue engineering in clinical application: assessment of the current situation. Orthopade 2009 Nov; 38(11): 1029–37

    Article  PubMed  CAS  Google Scholar 

  125. Giordano A, Galderisi U, Marino IR. From the laboratory bench to the patient’s bedside: an update on clinical trials with mesenchymal stem cells. J Cell Physiol 2007 Apr; 211(1): 27–35

    Article  PubMed  CAS  Google Scholar 

  126. Jäger M, Jelinek EM, Wess KM, et al. Bone marrow concentrate: a novel strategy for bone defect treatment. Curr Stem Cell Res Ther 2009 Jan; 4(1): 34–43

    Article  PubMed  Google Scholar 

  127. Gan Y, Dai K, Zhang P, et al. The clinical use of enriched bone marrow stem cells combined with porous beta-tricalcium phosphate in posterior spinal fusion. Biomaterials 2008 Oct; 29(29): 3973–82

    Article  PubMed  CAS  Google Scholar 

  128. Hernigou P, Beaujean F. Treatment of osteonecrosis with autologous bone marrow grafting. Clin Orthop Relat Res 2002 Dec; (405): 14–23

    Article  PubMed  Google Scholar 

  129. Wakitani S, Nawata M, Tensho K, et al. Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. J Tissue Eng Regen Med 2007 Feb; 1(1): 74–9

    Article  PubMed  Google Scholar 

  130. Horwitz EM, Prockop DJ, Fitzpatrick LA, et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 1999 Mar; 5(3): 309–13

    Article  PubMed  CAS  Google Scholar 

  131. Horwitz EM, Gordon PL, Koo WKK, et al. Isolated allogeneic bone marrowderived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci U S A 2002 Jun 25; 99(13): 8932–7

    Article  PubMed  CAS  Google Scholar 

  132. Bain BJ. Morbidity associated with bone marrow aspiration and trephine biopsy-a review of UK data for 2004. Haematologica 2006 Sep; 91(9): 1293–4

    PubMed  Google Scholar 

  133. Brittberg M, Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994 Oct 6; 331(14): 889–95

    Article  PubMed  CAS  Google Scholar 

  134. Strauss EJ, Fonseca LE, Shah MR, et al. Management of focal cartilage defects in the knee: is ACI the answer? Bull NYU Hosp Jt Dis 2011; 69(1): 63–72

    PubMed  Google Scholar 

  135. Bentley G, Biant LC, Carrington RWJ, et al. A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg Br 2003 Mar; 85(2): 223–30

    Article  PubMed  CAS  Google Scholar 

  136. Horas U, Pelinkovic D, Herr G, et al. Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint: a prospective, comparative trial. J Bone Joint Surg Am 2003 Feb; 85–A(2): 185–92

    PubMed  Google Scholar 

  137. Basad E, Ishaque B, Bachmann G, et al. Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: a 2-year randomised study. Knee Surg Sports Traumatol Arthrosc 2010 Apr; 18(4): 519–27

    Article  PubMed  Google Scholar 

  138. Knutsen G, Drogset JO, Engebretsen L, et al. A randomized trial comparing autologous chondrocyte implantation with microfracture: findings at five years. J Bone Joint Surg Am 2007 Oct; 89(10): 2105–12

    Article  PubMed  Google Scholar 

  139. Van Assche D, Staes F, Van Caspel D, et al. Autologous chondrocyte implantation versus microfracture for knee cartilage injury: a prospective randomized trial, with 2-year follow-up. Knee Surg Sports Traumatol Arthrosc 2010 Apr; 18(4): 486–95

    Article  PubMed  Google Scholar 

  140. Gangji V, De Maertelaer V, Hauzeur J-P. Autologous bone marrow cell implantation in the treatment of non-traumatic osteonecrosis of the femoral head: five year follow-up of a prospective controlled study. Bone 2011 Nov; 49(5): 1005–9

    Article  PubMed  Google Scholar 

  141. Gangji V, Hauzeur J-P. Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. Surgical technique. J Bone Joint Surg Am 2005 Mar; 87 Suppl. 1 (Pt 1): 106–12

    PubMed  Google Scholar 

  142. Ochs BG, Schmid U, Rieth J, et al. Acetabular bone reconstruction in revision arthroplasty: a comparison of freeze-dried, irradiated and chemicallytreated allograft vitalised with autologous marrow versus frozen non-irradiated allograft. J Bone Joint Surg Br 2008 Sep; 90(9): 1164–71

    PubMed  CAS  Google Scholar 

  143. Lee CH, Cook JL, Mendelson A, et al. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet 2010 Aug 7; 376(9739): 440–8

    Article  PubMed  CAS  Google Scholar 

  144. Urist MR. Bone: formation by autoinduction. Science 1965 Nov; 150(698): 893–9

    Article  PubMed  CAS  Google Scholar 

  145. Urist MR, Dowell TA. Inductive substratum for osteogenesis in pellets of particulate bone matrix. Clin Orthop Relat Res 1968 Dec; 61: 61–78

    Article  PubMed  CAS  Google Scholar 

  146. Urist MR, Silverman BF, Büring K, et al. The bone induction principle. Clin Orthop Relat Res 1967 Aug; 53: 243–83

    Article  PubMed  CAS  Google Scholar 

  147. Pacaccio DJ, Stern SF. Demineralized bone matrix: basic science and clinical applications. Clin Podiatr Med Surg 2005 Oct; 22(4): 599–606

    Article  PubMed  Google Scholar 

  148. Han B, Tang B, Nimni ME. Quantitative and sensitive in vitro assay for osteoinductive activity of demineralized bone matrix. J Orthop Res 2003 Jul; 21(4): 648–54

    Article  PubMed  CAS  Google Scholar 

  149. Ragni P, Lindholm TS. Interaction of allogeneic demineralized bone matrix and porous hydroxyapatite bioceramics in lumbar interbody fusion in rabbits. Clin Orthop Relat Res 1991 Nov; (272): 292–9

    PubMed  Google Scholar 

  150. Drosos GI, Kazakos KI, Kouzoumpasis P, et al. Safety and efficacy of commercially available demineralised bone matrix preparations: a critical review of clinical studies. Injury 2007 Sep; 38 Suppl. 4: 13–21

    Article  Google Scholar 

  151. Cammisa Jr FP, Lowery G, Garfin SR, et al. Two-year fusion rate equivalency between Grafton DBM gel and autograft in posterolateral spine fusion: a prospective controlled trial employing a side-by-side comparison in the same patient. Spine 2004 Mar; 29(6): 660–6

    Article  PubMed  Google Scholar 

  152. Sassard WR, Eidman DK, Gray PM, et al. Augmenting local bone with Grafton demineralized bone matrix for posterolateral lumbar spine fusion: avoiding second site autologous bone harvest. Orthopedics 2000 Oct; 23(10): 1059–65

    PubMed  CAS  Google Scholar 

  153. Kang J, An H, Hilibrand A, et al. Grafton® & local bone has comparable outcomes to iliac crest bone in instrumented single level lumbar fusions. Spine. Epub 2011 Nov 8

  154. Hierholzer C, Sama D, Toro JB, et al. Plate fixation of ununited humeral shaft fractures: effect of type of bone graft on healing. J Bone Joint Surg Am 2006 Jul; 88(7): 1442–7

    Article  PubMed  Google Scholar 

  155. Wang JC, Alanay A, Mark D, et al. A comparison of commercially available demineralized bone matrix for spinal fusion. Eur Spine J 2007 Aug; 16(8): 1233–40

    Article  PubMed  Google Scholar 

  156. Ferreira SD, Dernell WS, Powers BE, et al. Effect of gas-plasma sterilization on the osteoinductive capacity of demineralized bone matrix. Clin Orthop Relat Res 2001 Jul; (388): 233–9

    Article  PubMed  Google Scholar 

  157. Schwartz Z, Somers A, Mellonig JT, et al. Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation is dependent on donor age but not gender. J Periodontol 1998 Apr; 69(4): 470–8

    Article  PubMed  CAS  Google Scholar 

  158. Kinney RC, Ziran BH, Hirshorn K, et al. Demineralized bone matrix for fracture healing: fact or fiction? J Orthop Trauma 2010 Mar; 24 Suppl. 1: S52–5

    Article  PubMed  Google Scholar 

  159. Partridge KA, Oreffo ROC. Gene delivery in bone tissue engineering: progress and prospects using viral and nonviral strategies. Tissue Eng 2004 Feb; 10(1–2): 295–307

    Article  PubMed  CAS  Google Scholar 

  160. Caplan AI. Mesenchymal stem cells and gene therapy. Clin Orthop Relat Res 2000 Oct; (379 Suppl.): 67–70

    Article  Google Scholar 

  161. Pochampally RR, Horwitz EM, DiGirolamo CM, et al. Correction of a mineralization defect by overexpression of a wild-type cDNA for COL1 A1 in marrow stromal cells (MSCs) from a patient with osteogenesis imperfecta: a strategy for rescuing mutations that produce dominant-negative protein defects. Gene Ther 2005 Jul; 12(14): 1119–25

    Article  PubMed  CAS  Google Scholar 

  162. Evans C. Gene therapy for the regeneration of bone. Injury 2011 Jun; 42(6): 599–604

    Article  PubMed  Google Scholar 

  163. Tran GT, Pagkalos J, Tsiridis E, et al. Growth hormone: does it have a therapeutic role in fracture healing? Expert Opin Investig Drugs 2009 Jul; 18(7): 887–911

    Article  PubMed  CAS  Google Scholar 

  164. Peichl P, Holzer LA, Maier R, et al. Parathyroid hormone 1–84 accelerates fracture-healing in pubic bones of elderly osteoporotic women. J Bone Joint Surg Am 2011 Sep; 93(17): 1583–7

    Article  PubMed  Google Scholar 

  165. Aspenberg P, Genant HK, Johansson T, et al. Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-blind study of 102 postmenopausal women with distal radial fractures. J Bone Miner Res 2010 Feb; 25(2): 404–14

    Article  PubMed  CAS  Google Scholar 

  166. Arrighi I, Mark S, Alvisi M, et al. Bone healing induced by local delivery of an engineered parathyroid hormone prodrug. Biomaterials 2009 Mar; 30(9): 1763–71

    Article  PubMed  CAS  Google Scholar 

  167. Yu X, Wei M. Preparation and evaluation of parathyroid hormone incorporated CaP coating via a biomimetic method. J Biomed Mater Res Part B Appl Biomater 2011 May; 97(2): 345–54

    Article  PubMed  CAS  Google Scholar 

  168. Wroblewski BM. Professor Sir John Charnley (1911–1982). Rheumatology (Oxford) 2002 July; 41(7): 824–5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported in part by the Ellenburg Chair in Surgery, Stanford University. SBG holds stock/stock options from Biomimedica, Biomimetic Therapeutics, StemCor, Accelalox and Tibion. No competing financial interests exist for the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart B. Goodman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zwingenberger, S., Nich, C., Valladares, R.D. et al. Recommendations and Considerations for the Use of Biologics in Orthopedic Surgery. BioDrugs 26, 245–256 (2012). https://doi.org/10.1007/BF03261883

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03261883

Keywords

Navigation