Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Research Progress in Alpha-fetoprotein-induced Immunosuppression of Liver Cancer

Author(s): Kailiang Zhao, Xiaoquan Zhou, Yuchun Xiao, Yanni Wang and Lu Wen*

Volume 22, Issue 17, 2022

Published on: 14 April, 2022

Page: [2237 - 2243] Pages: 7

DOI: 10.2174/1389557522666220218124816

Price: $65

Abstract

Liver cancer is one of the most common malignant tumors, with limited treatment and 8.2% mortality. Liver cancer is the fourth leading cause of cancer-related deaths, which seriously endangers human life and health. Approximately 70% of liver cancer patients show increased serum Alpha- Fetoprotein (AFP) levels. AFP is the main diagnostic and prognostic indicator of liver cancer. AFP, a key marker of liver cancer, plays a crucial role in regulating the proliferation of tumor cells, apoptosis, and induction of cellular immune escape. High levels of AFP during embryonic development protect the embryos from maternal immune attack. AFP also promotes immune escape of liver cancer cells by inhibiting Tumor-Infiltrating Lymphocytes (TILs), Natural Killer cells (NK), Dendritic Cells (DC), and macrophages; thus, it is also used as a target antigen in immunotherapy for liver cancer. AFP is highly expressed in liver cancer cells. In addition to being used in the diagnosis of liver cancer, it has become a target of immunotherapy for liver cancer as a tumor-associated antigen. In immunotherapy, it was also confirmed that early AFP response was positively correlated with the efficacy of immunotherapy. Early AFP responders had longer PFS and OS than non-responders. At present, the methods of immunotherapy for liver cancer mainly include Adoptive Cell Transfer Therapy (ACT), tumor vaccine therapy, immune checkpoint inhibitors (ICIs) therapy, etc. A large number of studies have shown that AFP mainly plays a role in ACT and liver cancer vaccines. This review presents the research progress of AFP and immunosuppression of liver cancer.

Keywords: Alpha-fetoprotein, immunosuppression, liver cancer, cancer immune, immune escape, immunotherapy.

Graphical Abstract
[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Gerbes, A.; Zoulim, F.; Tilg, H.; Dufour, J.F.; Bruix, J.; Paradis, V.; Salem, R.; Peck-Radosavljevic, M.; Galle, P.R.; Greten, T.F.; Nault, J.C.; Avila, M.A. Gut roundtable meeting paper: Selected recent advances in hepatocellular carcinoma. Gut, 2018, 67(2), 380-388.
[http://dx.doi.org/10.1136/gutjnl-2017-315068] [PMID: 29150490]
[3]
Au, J.S.; Frenette, C.T. Management of hepatocellular carcinoma: Current status and future directions. Gut Liver, 2015, 9(4), 437-448.
[http://dx.doi.org/10.5009/gnl15022] [PMID: 26087860]
[4]
Galle, P.R.; Forner, A.; Llovet, J.M.; Mazzaferro, V.; Piscaglia, F.; Raoul, J-L.; Schirmacher, P.; Vilgrain, V. Management of hepatocellular carcinoma. J. Hepatol., 2018, 69(1), 182-236.
[http://dx.doi.org/10.1016/j.jhep.2018.03.019] [PMID: 29628281]
[5]
Sabir, F.; Zeeshan, M.; Laraib, U.; Barani, M.; Rahdar, A.; Cucchiarini, M.; Pandey, S. DNA based and stimuli-responsive smart nanocarrier for diagnosis and treatment of cancer: Applications and challenges. Cancers (Basel), 2021, 13(14), 13.
[http://dx.doi.org/10.3390/cancers13143396] [PMID: 34298610]
[6]
Barani, M.; Hosseinikhah, S.M.; Rahdar, A.; Farhoudi, L.; Arshad, R.; Cucchiarini, M.; Pandey, S. Nanotechnology in bladder cancer: Diagnosis and treatment. Cancers (Basel), 2021, 13(9), 13.
[http://dx.doi.org/10.3390/cancers13092214] [PMID: 34063088]
[7]
Barani, M.; Mukhtar, M.; Rahdar, A.; Sargazi, S.; Pandey, S.; Kang, M. Recent advances in nanotechnology-based diagnosis and treatments of human osteosarcoma. Biosensors (Basel), 2021, 11(2), 11.
[http://dx.doi.org/10.3390/bios11020055] [PMID: 33672770]
[8]
Abdel Ghafar, M.T.; Morad, M.A.; El-Zamarany, E.A.; Ziada, D.; Soliman, H.; Abd-Elsalam, S.; Salama, M. Autologous dendritic cells pulsed with lysate from an allogeneic hepatic cancer cell line as a treatment for patients with advanced hepatocellular carcinoma: A pilot study. Int. Immunopharmacol., 2020, 82, 106375.
[http://dx.doi.org/10.1016/j.intimp.2020.106375] [PMID: 32169808]
[9]
Zheng, Y.; Zhu, M.; Li, M. Effects of alpha-fetoprotein on the occurrence and progression of hepatocellular carcinoma. J. Cancer Res. Clin. Oncol., 2020, 146(10), 2439-2446.
[http://dx.doi.org/10.1007/s00432-020-03331-6] [PMID: 32725355]
[10]
Bai, D.S.; Zhang, C.; Chen, P.; Jin, S.J.; Jiang, G.Q. The prognostic correlation of AFP level at diagnosis with pathological grade, progression, and survival of patients with hepatocellular carcinoma. Sci. Rep., 2017, 7(1), 12870.
[http://dx.doi.org/10.1038/s41598-017-12834-1] [PMID: 28993684]
[11]
Galle, P.R.; Foerster, F.; Kudo, M.; Chan, S.L.; Llovet, J.M.; Qin, S.; Schelman, W.R.; Chintharlapalli, S.; Abada, P.B.; Sherman, M.; Zhu, A.X. Biology and significance of alpha-fetoprotein in hepatocellular carcinoma. Liver Int., 2019, 39(12), 2214-2229.
[http://dx.doi.org/10.1111/liv.14223] [PMID: 31436873]
[12]
Bergstrand, C.G.; Czar, B. Demonstration of a new protein fraction in serum from the human fetus. Scand. J. Clin. Lab. Invest., 1956, 8(2), 174.
[http://dx.doi.org/10.3109/00365515609049266] [PMID: 13351554]
[13]
Tsuchiya, N.; Sawada, Y.; Endo, I.; Saito, K.; Uemura, Y.; Nakatsura, T. Biomarkers for the early diagnosis of hepatocellular carcinoma. World J. Gastroenterol., 2015, 21(37), 10573-10583.
[http://dx.doi.org/10.3748/wjg.v21.i37.10573] [PMID: 26457017]
[14]
Tatarinov, Y.S. On the immunological characteristics of serum proteins. II. Determination of the content of protein fractions in the globulin composition immunologically similar to albumins. Biull. Eksp. Biol. Med., 1961, 52(1), 823-825.
[http://dx.doi.org/10.1007/BF00811644] [PMID: 14039665]
[15]
Zhou, Y.M.; Yang, J.M.; Li, B.; Yin, Z.F.; Xu, F.; Wang, B.; Liu, P.; Li, Z.M. Clinicopathologic characteristics of intrahepatic cholangiocarcinoma in patients with positive serum a-fetoprotein. World J. Gastroenterol., 2008, 14(14), 2251-2254.
[http://dx.doi.org/10.3748/wjg.14.2251] [PMID: 18407604]
[16]
Zhou, J.; Sun, H.; Wang, Z.; Cong, W.; Wang, J.; Zeng, M.; Zhou, W.; Bie, P.; Liu, L.; Wen, T.; Han, G.; Wang, M.; Liu, R.; Lu, L.; Ren, Z.; Chen, M.; Zeng, Z.; Liang, P.; Liang, C.; Chen, M.; Yan, F.; Wang, W.; Ji, Y.; Yun, J.; Cai, D.; Chen, Y.; Cheng, W.; Cheng, S.; Dai, C.; Guo, W.; Hua, B.; Huang, X.; Jia, W.; Li, Y.; Li, Y.; Liang, J.; Liu, T.; Lv, G.; Mao, Y.; Peng, T.; Ren, W.; Shi, H.; Shi, G.; Tao, K.; Wang, W.; Wang, X.; Wang, Z.; Xiang, B.; Xing, B.; Xu, J.; Yang, J.; Yang, J.; Yang, Y.; Yang, Y.; Ye, S.; Yin, Z.; Zhang, B.; Zhang, B.; Zhang, L.; Zhang, S.; Zhang, T.; Zhao, Y.; Zheng, H.; Zhu, J.; Zhu, K.; Liu, R.; Shi, Y.; Xiao, Y.; Dai, Z.; Teng, G.; Cai, J.; Wang, W.; Cai, X.; Li, Q.; Shen, F.; Qin, S.; Dong, J.; Fan, J. Guidelines for the diagnosis and treatment of hepatocellular carcinoma (2019 edition). Liver Cancer, 2020, 9(6), 682-720.
[http://dx.doi.org/10.1159/000509424] [PMID: 33442540]
[17]
Elhendawy, M.; Abdul-Baki, E.A.; Abd-Elsalam, S.; Hagras, M.M.; Zidan, A.A.; Abdel-Naby, A.Y.; Watny, M.; Elkabash, I.A.; Salem, M.L.; Elshanshoury, M.; Soliman, S.; Abdou, S. MicroRNA signature in hepatocellular carcinoma patients: Identification of potential markers. Mol. Biol. Rep., 2020, 47(7), 4945-4953.
[http://dx.doi.org/10.1007/s11033-020-05521-4] [PMID: 32430845]
[18]
Younis, Y.S.; Alegaily, H.S.; Elagawy, W.; Semeya, A.A.; Abo-Amer, Y.E.; El-Abgeegy, M.; Mostafa, S.M.; Elsergany, H.F.; Abd-Elsalam, S. Serum dickopff 1 as a novel biomarker in hepatocellular carcinoma diagnosis and follow up after ablative therapy. Cancer Manag. Res., 2019, 11, 10555-10562.
[http://dx.doi.org/10.2147/CMAR.S218532] [PMID: 31908527]
[19]
El-Gebaly, F.; Abou-Saif, S.; Elkadeem, M.; Helmy, A.; Abd-Elsalam, S.; Yousef, M.; Elkhouly, R.A.; Amer, I.F.; El-Demerdash, T. Study of serum soluble programmed death ligand 1 as a prognostic factor in hepatocellular carcinoma in Egyptian patients. Curr. Cancer Drug Targets, 2019, 19(11), 896-905.
[http://dx.doi.org/10.2174/1568009619666190718141647] [PMID: 31538897]
[20]
Abu El Makarem, M. An overview of biomarkers for the diagnosis of hepatocellular carcinoma. Hepat. Mon., 2012, 12(10 HCC), e6122.
[http://dx.doi.org/10.5812/hepatmon.6122] [PMID: 23162601]
[21]
Moskaleva, E.Yu.; Posypanova, G.A.; Shmyrev, I.I.; Rodina, A.V.; Muizhnek, E.L.; Severin, E.S.; Katukov, VYu; Luzhkov, Y.M.; Severin, S.E. Alpha-fetoprotein-mediated targeting--a new strategy to overcome multidrug resistance of tumour cells in vitro. Cell Biol. Int., 1997, 21(12), 793-799.
[http://dx.doi.org/10.1006/cbir.1998.0201] [PMID: 9812343]
[22]
Purves, L.R.; Macnab, M.; Rolle, M.; Bersohn, I. Serum alpha-fetoprotein. 3. Electrophoresis of sera from cases of primary cancer of the liver: An electrophoretic variant. S. Afr. Med. J., 1969, 43(39), 1194-1196.
[PMID: 4187639]
[23]
Hiraoka, A.; Ishimaru, Y.; Kawasaki, H.; Aibiki, T.; Okudaira, T.; Toshimori, A.; Kawamura, T.; Yamago, H.; Nakahara, H.; Suga, Y.; Azemoto, N.; Miyata, H.; Miyamoto, Y.; Ninomiya, T.; Hirooka, M.; Abe, M.; Matsuura, B.; Hiasa, Y.; Michitaka, K. Tumor markers AFP, AFP-L3, and DCP in hepatocellular carcinoma refractory to transcatheter arterial chemoembolization. Oncology, 2015, 89(3), 167-174.
[http://dx.doi.org/10.1159/000381808] [PMID: 25999038]
[24]
Lamerz, R. AFP isoforms and their clinical significance (overview). Anticancer Res., 1997, 17(4B), 2927-2930.
[PMID: 9329566]
[25]
Li, D.; Mallory, T.; Satomura, S. AFP-L3: A new generation of tumor marker for hepatocellular carcinoma. Clin. Chim. Acta, 2001, 313(1-2), 15-19.
[http://dx.doi.org/10.1016/S0009-8981(01)00644-1] [PMID: 11694234]
[26]
Kim, H.; Sohn, A.; Yeo, I.; Yu, S.J.; Yoon, J.H.; Kim, Y. Clinical assay for AFP-L3 by using multiple reaction monitoring-mass spectrometry for diagnosing hepatocellular carcinoma. Clin. Chem., 2018, 64(8), 1230-1238.
[http://dx.doi.org/10.1373/clinchem.2018.289702] [PMID: 29875214]
[27]
Cheng, J.; Wang, W.; Zhang, Y.; Liu, X.; Li, M.; Wu, Z.; Liu, Z.; Lv, Y.; Wang, B. Prognostic role of pre-treatment serum AFP-L3% in hepatocellular carcinoma: Systematic review and meta-analysis. PLoS One, 2014, 9(1), e87011.
[http://dx.doi.org/10.1371/journal.pone.0087011] [PMID: 24498011]
[28]
Crainie, M.; Semeluk, A.; Lee, K.C.; Wegmann, T. Regulation of constitutive and lymphokine-induced Ia expression by murine alpha-fetoprotein. Cell. Immunol., 1989, 118(1), 41-52.
[http://dx.doi.org/10.1016/0008-8749(89)90356-0] [PMID: 2463096]
[29]
Nicholas, N.S.; Panayi, G.S. Immunosuppressive properties of pregnancy serum on the mixed lymphocyte reaction. Br. J. Obstet. Gynaecol., 1986, 93(12), 1251-1255.
[http://dx.doi.org/10.1111/j.1471-0528.1986.tb07860.x] [PMID: 2432918]
[30]
Hetta, H.F.; Zahran, A.M.; Mansor, S.G.; Abdel-Malek, M.O.; Mekky, M.A.; Abbas, W.A. Frequency and Implications of myeloid-derived suppressor cells and lymphocyte subsets in Egyptian patients with hepatitis C virus-related hepatocellular carcinoma. J. Med. Virol., 2019, 91(7), 1319-1328.
[http://dx.doi.org/10.1002/jmv.25428] [PMID: 30761547]
[31]
Elwan, N.; Salem, M.L.; Kobtan, A.; El-Kalla, F.; Mansour, L.; Yousef, M.; Al-Sabbagh, A.; Zidan, A.A.; Abd-Elsalam, S. High numbers of myeloid derived suppressor cells in peripheral blood and ascitic fluid of cirrhotic and HCC patients. Immunol. Invest., 2018, 47(2), 169-180.
[http://dx.doi.org/10.1080/08820139.2017.1407787] [PMID: 29182438]
[32]
Jayant, K.; Habib, N.; Huang, K.W.; Podda, M.; Warwick, J.; Arasaradnam, R. Immunological basis of genesis of hepatocellular carcinoma: Unique challenges and potential opportunities through immunomodulation. Vaccines (Basel), 2020, 8(2), 8.
[http://dx.doi.org/10.3390/vaccines8020247] [PMID: 32456200]
[33]
Kurebayashi, Y.; Ojima, H.; Tsujikawa, H.; Kubota, N.; Maehara, J.; Abe, Y.; Kitago, M.; Shinoda, M.; Kitagawa, Y.; Sakamoto, M. Landscape of immune microenvironment in hepatocellular carcinoma and its additional impact on histological and molecular classification. Hepatology, 2018, 68(3), 1025-1041.
[http://dx.doi.org/10.1002/hep.29904] [PMID: 29603348]
[34]
Gabrielson, A.; Wu, Y.; Wang, H.; Jiang, J.; Kallakury, B.; Gatalica, Z.; Reddy, S.; Kleiner, D.; Fishbein, T.; Johnson, L.; Island, E.; Satoskar, R.; Banovac, F.; Jha, R.; Kachhela, J.; Feng, P.; Zhang, T.; Tesfaye, A.; Prins, P.; Loffredo, C.; Marshall, J.; Weiner, L.; Atkins, M.; He, A.R. Intratumoral CD3 and CD8 T-cell densities associated with relapse-free survival in HCC. Cancer Immunol. Res., 2016, 4(5), 419-430.
[http://dx.doi.org/10.1158/2326-6066.CIR-15-0110] [PMID: 26968206]
[35]
Unitt, E.; Marshall, A.; Gelson, W.; Rushbrook, S.M.; Davies, S.; Vowler, S.L.; Morris, L.S.; Coleman, N.; Alexander, G.J. Tumour lymphocytic infiltrate and recurrence of hepatocellular carcinoma following liver transplantation. J. Hepatol., 2006, 45(2), 246-253.
[http://dx.doi.org/10.1016/j.jhep.2005.12.027] [PMID: 16580084]
[36]
Cubero, F.J.; Woitok, M.M.; Zoubek, M.E.; de Bruin, A.; Hatting, M.; Trautwein, C. Disruption of the FasL/Fas axis protects against inflammation-derived tumorigenesis in chronic liver disease. Cell Death Dis., 2019, 10(2), 115.
[http://dx.doi.org/10.1038/s41419-019-1391-x] [PMID: 30737368]
[37]
Sharma, S.; Carmona, A.; Skowronek, A.; Yu, F.; Collins, M.O.; Naik, S.; Murzeau, C.M.; Tseng, P.L.; Erdmann, K.S. Apoptotic signalling targets the post-endocytic sorting machinery of the death receptor Fas/CD95. Nat. Commun., 2019, 10(1), 3105.
[http://dx.doi.org/10.1038/s41467-019-11025-y] [PMID: 31308371]
[38]
Ito, Y.; Monden, M.; Takeda, T.; Eguchi, H.; Umeshita, K.; Nagano, H.; Nakamori, S.; Dono, K.; Sakon, M.; Nakamura, M.; Tsujimoto, M.; Nakahara, M.; Nakao, K.; Yokosaki, Y.; Matsuura, N. The status of Fas and Fas ligand expression can predict recurrence of hepatocellular carcinoma. Br. J. Cancer, 2000, 82(6), 1211-1217.
[http://dx.doi.org/10.1054/bjoc.1999.1065] [PMID: 10735508]
[39]
Chen, T.; Dai, X.; Dai, J.; Ding, C.; Zhang, Z.; Lin, Z.; Hu, J.; Lu, M.; Wang, Z.; Qi, Y.; Zhang, L.; Pan, R.; Zhao, Z.; Lu, L.; Liao, W.; Lu, X. AFP promotes HCC progression by suppressing the HuR-mediated Fas/FADD apoptotic pathway. Cell Death Dis., 2020, 11(10), 822.
[http://dx.doi.org/10.1038/s41419-020-03030-7] [PMID: 33009373]
[40]
Li, M.S.; Ma, Q.L.; Chen, Q.; Liu, X.H.; Li, P.F.; Du, G.G.; Li, G. Alpha-fetoprotein triggers hepatoma cells escaping from immune surveillance through altering the expression of Fas/FasL and tumor necrosis factor related apoptosis-inducing ligand and its receptor of lymphocytes and liver cancer cells. World J. Gastroenterol., 2005, 11(17), 2564-2569.
[http://dx.doi.org/10.3748/wjg.v11.i17.2564] [PMID: 15849812]
[41]
Li, M.; Liu, X.; Zhou, S.; Li, P.; Li, G. Effects of alpha fetoprotein on escape of Bel 7402 cells from attack of lymphocytes. BMC Cancer, 2005, 5(1), 96.
[http://dx.doi.org/10.1186/1471-2407-5-96] [PMID: 16080799]
[42]
Chen, K.J.; Zhou, L.; Xie, H.Y.; Ahmed, T.E.; Feng, X.W.; Zheng, S.S. Intratumoral regulatory T cells alone or in combination with cytotoxic T cells predict prognosis of hepatocellular carcinoma after resection. Med. Oncol., 2012, 29(3), 1817-1826.
[http://dx.doi.org/10.1007/s12032-011-0006-x] [PMID: 21678026]
[43]
Huang, Y.; Wang, F.M.; Wang, T.; Wang, Y.J.; Zhu, Z.Y.; Gao, Y.T.; Du, Z. Tumor-infiltrating FoxP3+ Tregs and CD8+ T cells affect the prognosis of hepatocellular carcinoma patients. Digestion, 2012, 86(4), 329-337.
[http://dx.doi.org/10.1159/000342801] [PMID: 23207161]
[44]
Hong, Y.; Peng, Y.; Guo, Z.S.; Guevara-Patino, J.; Pang, J.; Butterfield, L.H.; Mivechi, N.F.; Munn, D.H.; Bartlett, D.L.; He, Y. Epitope-optimized alpha-fetoprotein genetic vaccines prevent carcinogen-induced murine autochthonous hepatocellular carcinoma. Hepatology, 2014, 59(4), 1448-1458.
[http://dx.doi.org/10.1002/hep.26893] [PMID: 24122861]
[45]
Gao, Q.; Qiu, S.J.; Fan, J.; Zhou, J.; Wang, X.Y.; Xiao, Y.S.; Xu, Y.; Li, Y.W.; Tang, Z.Y. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J. Clin. Oncol., 2007, 25(18), 2586-2593.
[http://dx.doi.org/10.1200/JCO.2006.09.4565] [PMID: 17577038]
[46]
Bray, S.M.; Vujanovic, L.; Butterfield, L.H. Dendritic cell-based vaccines positively impact natural killer and regulatory T cells in hepatocellular carcinoma patients. Clin. Dev. Immunol., 2011, 2011, 249281.
[http://dx.doi.org/10.1155/2011/249281] [PMID: 21969837]
[47]
Choucair, K.; Duff, J.R.; Cassidy, C.S.; Albrethsen, M.T.; Kelso, J.D.; Lenhard, A.; Staats, H.; Patel, R.; Brunicardi, F.C.; Dworkin, L.; Nemunaitis, J. Natural killer cells: A review of biology, therapeutic potential and challenges in treatment of solid tumors. Future Oncol., 2019, 15(26), 3053-3069.
[http://dx.doi.org/10.2217/fon-2019-0116] [PMID: 31411057]
[48]
Terentiev, A.A.; Moldogazieva, N.T. Alpha-fetoprotein: A renaissance. Tumour Biol., 2013, 34(4), 2075-2091.
[http://dx.doi.org/10.1007/s13277-013-0904-y] [PMID: 23765762]
[49]
Cai, L.; Zhang, Z.; Zhou, L.; Wang, H.; Fu, J.; Zhang, S.; Shi, M.; Zhang, H.; Yang, Y.; Wu, H.; Tien, P.; Wang, F.S. Functional impairment in circulating and intrahepatic NK cells and relative mechanism in hepatocellular carcinoma patients. Clin. Immunol., 2008, 129(3), 428-437.
[http://dx.doi.org/10.1016/j.clim.2008.08.012] [PMID: 18824414]
[50]
Guo, C.L.; Yang, H.C.; Yang, X.H.; Cheng, W.; Dong, T.X.; Zhu, W.J.; Xu, Z.; Zhao, L. Associations between infiltrating lymphocyte subsets and hepatocellular carcinoma. Asian Pac. J. Cancer Prev., 2012, 13(11), 5909-5913.
[http://dx.doi.org/10.7314/APJCP.2012.13.11.5909] [PMID: 23317279]
[51]
Yamamoto, M.; Tatsumi, T.; Miyagi, T.; Tsunematsu, H.; Aketa, H.; Hosui, A.; Kanto, T.; Hiramatsu, N.; Hayashi, N.; Takehara, T. α-Fetoprotein impairs activation of natural killer cells by inhibiting the function of dendritic cells. Clin. Exp. Immunol., 2011, 165(2), 211-219.
[http://dx.doi.org/10.1111/j.1365-2249.2011.04421.x] [PMID: 21592114]
[52]
Belyaev, N.N.; Bogdanov, A.Y.; Savvulidi, P.G.; Krasnoshtanov, V.K.; Tleulieva, R.T.; Alipov, G.K.; Sekine, I.; Bae, J.S.; Lee, J.B.; Min, Y.K.; Yang, H.M. The Influence of Alpha-fetoprotein on Natural Suppressor Cell Activity and Ehrlich Carcinoma Growth. Korean J. Physiol. Pharmacol., 2008, 12(4), 193-197.
[http://dx.doi.org/10.4196/kjpp.2008.12.4.193] [PMID: 19967055]
[53]
Zhang, C.; Zhang, J.; Niu, J.; Zhou, Z.; Zhang, J.; Tian, Z. Interleukin-12 improves cytotoxicity of natural killer cells via upregulated expression of NKG2D. Hum. Immunol., 2008, 69(8), 490-500.
[http://dx.doi.org/10.1016/j.humimm.2008.06.004] [PMID: 18619507]
[54]
Vujanovic, L.; Stahl, E.C.; Pardee, A.D.; Geller, D.A.; Tsung, A.; Watkins, S.C.; Gibson, G.A.; Storkus, W.J.; Butterfield, L.H. Tumor-derived α-fetoprotein directly drives human natural killer-cell activation and subsequent cell death. Cancer Immunol. Res., 2017, 5(6), 493-502.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0216] [PMID: 28468916]
[55]
Steinman, R.M.; Cohn, Z.A. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med., 1973, 137(5), 1142-1162.
[http://dx.doi.org/10.1084/jem.137.5.1142] [PMID: 4573839]
[56]
Pardee, A.D.; Shi, J.; Butterfield, L.H. Tumor-derived α-fetoprotein impairs the differentiation and T cell stimulatory activity of human dendritic cells. J. Immunol., 2014, 193(11), 5723-5732.
[http://dx.doi.org/10.4049/jimmunol.1400725] [PMID: 25355916]
[57]
Cai, X.Y.; Gao, Q.; Qiu, S.J.; Ye, S.L.; Wu, Z.Q.; Fan, J.; Tang, Z.Y. Dendritic cell infiltration and prognosis of human hepatocellular carcinoma. J. Cancer Res. Clin. Oncol., 2006, 132(5), 293-301.
[http://dx.doi.org/10.1007/s00432-006-0075-y] [PMID: 16421755]
[58]
Um, S.H.; Mulhall, C.; Alisa, A.; Ives, A.R.; Karani, J.; Williams, R.; Bertoletti, A.; Behboudi, S. Alpha-fetoprotein impairs APC function and induces their apoptosis. J. Immunol., 2004, 173(3), 1772-1778.
[http://dx.doi.org/10.4049/jimmunol.173.3.1772] [PMID: 15265907]
[59]
Wang, X.; Wang, Q. Alpha-fetoprotein and hepatocellular carcinoma immunity. Can. J. Gastroenterol. Hepatol., 2018, 2018, 9049252.
[http://dx.doi.org/10.1155/2018/9049252] [PMID: 29805966]
[60]
Rehman, A.; Hemmert, K.C.; Ochi, A.; Jamal, M.; Henning, J.R.; Barilla, R.; Quesada, J.P.; Zambirinis, C.P.; Tang, K.; Ego-Osuala, M.; Rao, R.S.; Greco, S.; Deutsch, M.; Narayan, S.; Pachter, H.L.; Graffeo, C.S.; Acehan, D.; Miller, G. Role of fatty-acid synthesis in dendritic cell generation and function. J. Immunol., 2013, 190(9), 4640-4649.
[http://dx.doi.org/10.4049/jimmunol.1202312] [PMID: 23536633]
[61]
Santos, P.M.; Menk, A.V.; Shi, J.; Tsung, A.; Delgoffe, G.M.; Butterfield, L.H. Tumor-derived α-fetoprotein suppresses fatty acid metabolism and oxidative phosphorylation in dendritic cells. Cancer Immunol. Res., 2019, 7(6), 1001-1012.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0513] [PMID: 30988028]
[62]
Li, C.; Song, B.; Santos, P.M.; Butterfield, L.H. Hepatocellular cancer-derived alpha fetoprotein uptake reduces CD1 molecules on monocyte-derived dendritic cells. Cell. Immunol., 2019, 335, 59-67.
[http://dx.doi.org/10.1016/j.cellimm.2018.10.011] [PMID: 30392891]
[63]
Nielsen, S.R.; Schmid, M.C. Macrophages as key drivers of cancer progression and metastasis. Mediators Inflamm., 2017, 2017, 9624760.
[http://dx.doi.org/10.1155/2017/9624760] [PMID: 28210073]
[64]
Qian, B.Z.; Pollard, J.W. Macrophage diversity enhances tumor progression and metastasis. Cell, 2010, 141(1), 39-51.
[http://dx.doi.org/10.1016/j.cell.2010.03.014] [PMID: 20371344]
[65]
Hu, S.Z.; Ding, C.R.; Zhong, J.L.; Zhang, S.F.; Ji, R.H.; Liu, F.; Xu, Y.S.; Zeng, Q.Y. Effect of alpha-fetoprotein on macrophages; Acta Bioch. Bioph. Sin, 1979, pp. 265-275.
[66]
Moro, R.; Tamaoki, T.; Wegmann, T.G.; Longenecker, B.M.; Laderoute, M.P. Monoclonal antibodies directed against a widespread oncofetal antigen: The alpha-fetoprotein receptor. Tumour Biol., 1993, 14(2), 116-130.
[http://dx.doi.org/10.1159/000217864] [PMID: 7687070]
[67]
Laderoute, M.P. A new paradigm about HERV-K102 particle production and blocked release to explain cortisol mediated immunosenescence and age-associated risk of chronic disease. Discov. Med., 2015, 20(112), 379-391.
[PMID: 26760982]
[68]
Butterfield, L.H. Recent advances in immunotherapy for hepatocellular cancer. Swiss Med. Wkly., 2007, 137(5-6), 83-90.
[PMID: 17370144]
[69]
Liu, H.; Xu, Y.; Xiang, J.; Long, L.; Green, S.; Yang, Z.; Zimdahl, B.; Lu, J.; Cheng, N.; Horan, L.H.; Liu, B.; Yan, S.; Wang, P.; Diaz, J.; Jin, L.; Nakano, Y.; Morales, J.F.; Zhang, P.; Liu, L.X.; Staley, B.K.; Priceman, S.J.; Brown, C.E.; Forman, S.J.; Chan, V.W.; Liu, C. Targeting Alpha-Fetoprotein (AFP)-MHC complex with CAR T-cell therapy for liver cancer. Clin. Cancer Res., 2017, 23(2), 478-488.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1203] [PMID: 27535982]
[70]
Meng, W.; Bai, B.; Bai, Z.; Li, Y.; Yue, P.; Li, X.; Qiao, L. The immunosuppression role of alpha-fetoprotein in human hepatocellular carcinoma. Discov. Med., 2016, 21(118), 489-494.
[PMID: 27448785]
[71]
Fesnak, A.D.; June, C.H.; Levine, B.L. Engineered T cells: The promise and challenges of cancer immunotherapy. Nat. Rev. Cancer, 2016, 16(9), 566-581.
[http://dx.doi.org/10.1038/nrc.2016.97] [PMID: 27550819]
[72]
Qasim, W.; Brunetto, M.; Gehring, A.J.; Xue, S.A.; Schurich, A.; Khakpoor, A.; Zhan, H.; Ciccorossi, P.; Gilmour, K.; Cavallone, D.; Moriconi, F.; Farzhenah, F.; Mazzoni, A.; Chan, L.; Morris, E.; Thrasher, A.; Maini, M.K.; Bonino, F.; Stauss, H.; Bertoletti, A. Immunotherapy of HCC metastases with autologous T cell receptor redirected T cells, targeting HBsAg in a liver transplant patient. J. Hepatol., 2015, 62(2), 486-491.
[http://dx.doi.org/10.1016/j.jhep.2014.10.001] [PMID: 25308176]
[73]
Sun, L.; Guo, H.; Jiang, R.; Lu, L.; Liu, T.; He, X. Engineered cytotoxic T lymphocytes with AFP-specific TCR gene for adoptive immunotherapy in hepatocellular carcinoma. Tumour Biol., 2016, 37(1), 799-806.
[http://dx.doi.org/10.1007/s13277-015-3845-9] [PMID: 26250457]
[74]
Cheng, L.L.; Chen, B.D.; Zhao, G.Z. [Research progress of alphafetoprotein vaccine in hepatocellular carcinoma]. Chung Hua Kan Tsang Ping Tsa Chih, 2020, 28(2), 183-187.
[PMID: 32164075]
[75]
Liu, Y.; Daley, S.; Evdokimova, V.N.; Zdobinski, D.D.; Potter, D.M.; Butterfield, L.H. Hierarchy of alpha fetoprotein (AFP)-specific T cell responses in subjects with AFP-positive hepatocellular cancer. J. Immunol., 2006, 177(1), 712-721.
[http://dx.doi.org/10.4049/jimmunol.177.1.712] [PMID: 16785570]
[76]
Butterfield, L.H.; Ribas, A.; Dissette, V.B.; Lee, Y.; Yang, J.Q.; De la Rocha, P.; Duran, S.D.; Hernandez, J.; Seja, E.; Potter, D.M.; McBride, W.H.; Finn, R.; Glaspy, J.A.; Economou, J.S. A phase I/II trial testing immunization of hepatocellular carcinoma patients with dendritic cells pulsed with four alpha-fetoprotein peptides. Clin. Cancer Res., 2006, 12(9), 2817-2825.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2856] [PMID: 16675576]
[77]
Wang, Y.; Yang, X.; Yu, Y.; Xu, Z.; Sun, Y.; Liu, H.; Cheng, J.; Liu, M.; Sha, B.; Li, L.; Ding, N.; Li, Z.; Jin, H.; Qian, Q. Immunotherapy of patient with hepatocellular carcinoma using cytotoxic T lymphocytes ex vivo activated with tumor antigen-pulsed dendritic cells. J. Cancer, 2018, 9(2), 275-287.
[http://dx.doi.org/10.7150/jca.22176] [PMID: 29344274]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy