We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/14622416.8.11.1597

The CYP2D6 gene is highly polymorphic, causing absent (poor metabolizers), decreased, normal or increased enzyme activity (extensive and ultrarapid metabolizers). The genetic polymorphism of the CYP2D6 influences plasma concentration of a wide variety of drugs metabolized in the liver by the cytochrome P450 (CYP) 2D6 enzyme, including antipsychotic drugs used for schizophrenia treatment. Additionally, CYP2D6 is involved in the metabolism of endogenous substrates in the brain, and reported to be located in regions such as the cortex, hippocampus and cerebellum, which are impaired in schizophrenia. Moreover, recently we have found that CYP2D6 poor metabolizers are under-represented in a case–control association study of schizophrenia. Furthermore, null CYP2D6 activity in healthy volunteers is associated with personality characteristics of social cognitive anxiety, which may bear some resemblance to milder forms of psychotic-like symptoms. In keeping with this, CYP2D6 may influence, not only variability to drug response, but also vulnerability to disease in schizophrenia patients.

Papers of special note have been highlighted as either of interest (•) or of considerable interest (••) to readers.

Bibliography

  • 1 Dorado P, Berecz R, Penas-Lledo EM, Caceres MC, LLerena A: Clinical implications of CYP2D6 genetic polymorphism during treatment with antipsychotic drugs. Curr. Drug Targets7,671–680 (2006).Summarizes the clinical implications of polymorphism of CYP2D6 in patients during treatment with antipsychotic drugs.
  • 2 Yu AM, Idle JR, Gonzalez FJ: Polymorphic cytochrome P450 2D6: humanized mouse model and endogenous substrates. Drug Metab. Rev.36,243–277 (2004).Invivo study showing that the polymorphic CYP2D6 may play an important role in the interconversions of psychoactive tryptamines, including a crucial step in a serotoninmelatonin cycle.
  • 3 Miksys SL, Tyndale RF: Drug-metabolizing cytochrome P450s in the brain. J.Psychiatry Neurosci.27,406–415 (2002).
  • 4 Schultz SK, Andreasen NC: Schizophrenia. Lancet353,1425–1430 (1999).
  • 5 LLerena A, de la Rubia A, Penas-Lledo EM, Diaz FJ, de Leon J: Schizophrenia and tobacco smoking in a Spanish psychiatric hospital. Schizophr. Res.60,313–317 (2003).
  • 6 Berecz R, de la Rubia A, Dorado P, Fernandez-Salguero P, Dahl ML, LLerena A: Thioridazine steady-state plasma concentrations are influenced by tobacco smoking and CYP2D6, but not by the CYP2C9 genotype. Eur. J. Clin. Pharmacol.59,45–50 (2003).
  • 7 Miksys S, Tyndale RF: Nicotine induces brain CYP enzymes: relevance to Parkinson’s disease. J.Neural. Transm. (Suppl.) 70,177–180 (2006).
  • 8 Sistonen J, Sajantila A, Lao O, Corander J, Barbujani G, Fuselli S: CYP2D6 worldwide genetic variation shows high frequency of altered activity variants and no continental structure. Pharmacogenet. Genomics17,93–101 (2007).
  • 9 Bradford LD: CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics3,229–243 (2002).
  • 10 Johansson I, Oscarson M, Yue QY, Bertilsson L, Sjoqvist F, Ingelman-Sundberg M: Genetic analysis of the Chinese cytochrome P4502D locus: characterization of variant CYP2D6 genes present in subjects with diminished capacity for debrisoquine hydroxylation. Mol. Pharmacol.46,452–459 (1994).
  • 11 Masimirembwa C, Persson I, Bertilsson L, Hasler J, Ingelman-Sundberg M: A novel mutant variant of the CYP2D6 gene (CYP2D6*17) common in a black African population: association with diminished debrisoquine hydroxylase activity. Br. J. Clin. Pharmacol.42,713–719 (1996).
  • 12 Bertilsson L, Dahl ML, Ekqvist B, Llerena A: Disposition of the neuroleptics perphenazine, zuclopenthixol, and haloperidol cosegregates with polymorphic debrisoquine hydroxylation. Psychopharmacol. Ser.10,230–237 (1993).
  • 13 Gaedigk A, Ndjountche L, Divakaran K etal.: Cytochrome P4502D6 (CYP2D6) gene locus heterogeneity: characterization of gene duplication events. Clin. Pharmacol. Ther.81,242–251 (2007).Exhaustive analysis of a high number of multiplicated CYP2D6 alleles and their potential relationship with ultrarapid metabolism in different ethnic groups.
  • 14 Dorado P, Peas-LLed EM, Cceres MC, LLerena A: Multiplication of CYP2D6 non active alleles: controversy about the high frequency of ultrapids in south-Europeans. Basic Clin. Pharmacol. Toxicol.101(Suppl. 1),51–102 (2007).
  • 15 LLerena A, Dorado P, Penas-Lledo EM, Caceres MC, De la Rubia A: Low frequency of CYP2D6 poor metabolizers among schizophrenia patients. PharmacogenomicsJ. (2007) (Epub ahead of print).First study that shows a lower frequency of genetic CYP2D6 poor metabolizers (PMs) in schizophrenic patients than in healthy volunteers supporting the hypothesis of a potential role of CYP2D6 in vulnerability to schizophrenia.
  • 16 Dorado P, Berecz R, Caceres MC, Gonzalez I, Cobaleda J, Llerena A: Determination of debrisoquine and 4-hydroxydebrisoquine by high-performance liquid chromatography: application to the evaluation of CYP2D6 genotype and debrisoquine metabolic ratio relationship. Clin. Chem. Lab. Med.43,275–279 (2005).
  • 17 Dahl ML, Johansson I, Bertilsson L, Ingelman-Sundberg M, Sjoqvist F: Ultrarapid hydroxylation of debrisoquine in a Swedish population. Analysis of the molecular genetic basis. J.Pharmacol. Exp. Ther.274,516–520 (1995).
  • 18 LLerena A, Cobaleda J, Benitez J: Debrisoquine hydroxylation phenotypes in healthy volunteers. Lancet1,1398 (1989).
  • 19 Bertilsson L, Alm C, De Las Carreras C, Widen J, Edman G, Schalling D: Debrisoquine hydroxylation polymorphism and personality. Lancet1,555 (1989).
  • 20 Schalling D, Asberg M, Edman G, Oreland L: Markers for vulnerability to psychopathology: temperament traits associated with platelet MAO activity. Acta Psychiatr. Scand.76,172–182 (1987).
  • 21 LLerena A, Edman G, Cobaleda J, Benitez J, Schalling D, Bertilsson L: Relationship between personality and debrisoquine hydroxylation capacity. Suggestion of an endogenous neuroactive substrate or product of the cytochrome P4502D6. Acta Psychiatr. Scand.87,23–28 (1993).First study in a large sample of healthy volunteers showing personality differences between CYP2D6 extensive metabolizers (EMs) and PMs by comparing different degrees of CYP2D6 activity with personality features measured by the Karolinska Scale of Personality (KSP).
  • 22 Gonzlez I, Peas-LLed EM, Prez B, Dorado P, lvarez M, LLerena A: The relation between CYP2D6 pheno- and genotype and personality in healthy volunteers. Basic Clin. Pharmacol. Toxicol.101(Suppl. 1),51–102 (2007).
  • 23 Ortet G, Ibez M, LLerena A, Torrubia R: The underlying traits of the Karolinska Scales of Personality (KSP). Eur. J. Psychologic. Asses.18,139–148 (2002).
  • 24 Gan SH, Ismail R, Wan Adnan WA, Zulmi W, Kumaraswamy N, Larmie ET: Relationship between Type A and B personality and debrisoquine hydroxylation capacity. Br. J. Clin. Pharmacol.57,785–789 (2004).
  • 25 Roberts RL, Luty SE, Mulder RT, Joyce PR, Kennedy MA: Association between cytochrome P450 2D6 genotype and harm avoidance. Am. J. Med. Genet. B NeuroPsychiatr. Genet.127,90–93 (2004).
  • 26 Kirchheiner J, Lang U, Stamm T, Sander T, Gallinat J: Association of CYP2D6 genotypes and personality traits in healthy individuals. J.Clin. Psychopharmacol.26,440–442 (2006).
  • 27 Hiroi T, Imaoka S, Funae Y: Dopamine formation from tyramine by CYP2D6. Biochem. Biophys. Res. Commun.249,838–843 (1998).
  • 28 Kirchheiner J, Henckel HB, Franke L etal.: Impact of the CYP2D6 ultra-rapid metabolizer genotype on doxepin pharmacokinetics and serotonin in platelets. Pharmacogenet. Genomics15,579–587 (2005).
  • 29 Ozdemir V, Gunes A, Dahl ML, Scordo MG, Williams-Jones B, Someya T: Could endogenous substrates of drug-metabolizing enzymes influence constitutive physiology and drug target responsiveness? Pharmacogenomics7,1199–1210 (2006).
  • 30 Ozdemir V, Bertilsson L, Miura J etal.: CYP2D6 genotype in relation to perphenazine concentration and pituitary pharmacodynamic tissue sensitivity in Asians: CYP2D6-serotonin-dopamine crosstalk revisited. Pharmacogenet. Genomics17,339–347 (2007).Suggests that CYP2D6 genetic variation may potentially influence pharmacodynamic tissue sensitivity in the pituitary, presumably through disposition of an endogenous substrate.
  • 31 Alex KD, Pehek EA: Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission. Pharmacol. Ther.113,296–320 (2007).
  • 32 Frankle WG, Lombardo I, New AS etal.: Brain serotonin transporter distribution in subjects with impulsive aggressivity: a positron emission study with [11C]McN 5652. Am. J. Psychiatry162,915–923 (2002).
  • 33 Carli M, Baviera M, Invernizzi RW, Balducci C: Dissociable contribution of 5-HT1A and 5-HT2A receptors in the medial prefrontal cortex to different aspects of executive control such as impulsivity and compulsive perseveration in rats. NeuroPsychopharmacology31,757–767 (2006).
  • 34 Niwa T, Hiroi T, Tsuzuki D etal.: Effect of genetic polymorphism on the metabolism of endogenous neuroactive substances, progesterone and p-tyramine, catalyzed by CYP2D6. Brain Res. Mol. Brain Res.129,117–123 (2004).Results of this study suggest the possibility that the polymorphism of CYP2D6 might affect an individuals behavior and the CNS through neuroactive steroids and tyramine, in the brain.
  • 35 Hiroi T, Kishimoto W, Chow T, Imaoka S, Igarashi T, Funae Y: Progesterone oxidation by cytochrome P450 2D isoforms in the brain. Endocrinology142,3901–3908 (2001).Supports the idea that CYP2D6 may be involved in the metabolism and/or synthesis of progesterone and its derivatives in brain tissues.
  • 36 Willner P: The dopamine hypothesis of schizophrenia: current status, future prospects. Int. Clin. Psychopharmacol.12,297–308 (1997).
  • 37 Burnet PW, Eastwood SL, Harrison PJ: 5-HT1A and 5-HT2A receptor mRNAs and binding site densities are differentially altered in schizophrenia. NeuroPsychopharmacology15,442–455 (1996).
  • 38 Burnet PW, Eastwood SL, Harrison PJ: [3H]WAY-100635 for 5-HT1A receptor autoradiography in human brain: a comparison with [3H]8-OH-DPAT and demonstration of increased binding in the frontal cortex in schizophrenia. Neurochem. Int.30,565–574 (1997).
  • 39 East SZ, Burnet PW, Kerwin RW, HarrisonPJ: An RT-PCR study of 5-HT(6) and 5-HT(7) receptor mRNAs in the hippocampal formation and prefrontal cortex in schizophrenia. Schizophr. Res.57,15–26 (2002).
  • 40 Peas-LLed EM, Dorado P, Cceres MC, de la Rubia A, LLerena A: Association between T102C and A-1438G polymorphisms in serotonin receptor 2A (5-HT2A) gene and schizophrenia: relevance for treatment with antipsychotic drugs. Clin. Chem. Lab. Med.45,835–838 (2007).
  • 41 Horacek J, Bubenikova-Valesova V, KopecekM etal.: Mechanism of action of atypical antipsychotic drugs and the neurobiology of schizophrenia. CNS Drugs20,389–409 (2006).
  • 42 Dahl AA, Lwert A, Asserson S etal.: Hydroxylation polymorphism of debrisoquine hydroxylase (CYP2D6) in patients with schizophrenia in Norway and Denmark. Hum. Psychopharmacol.13,509–511 (1998).
  • 43 Brockmoller J, Kirchheiner J, Schmider J etal.: The impact of the CYP2D6 polymorphism on haloperidol pharmacokinetics and on the outcome of haloperidol treatment. Clin. Pharmacol. Ther.72,438–452 (2002).
  • 44 Dawson E, Powell JF, Nothen MM etal.: An association study of debrisoquine hydroxylase (CYP2D6) polymorphisms in schizophrenia. Psychiatr. Genet.4,215–218 (1994).
  • 45 Daniels J, Williams J, Asherson P, McGuffin P, Owen M: No association between schizophrenia and polymorphisms within the genes for debrisoquine 4-hydroxylase (CYP2D6) and the dopamine transporter (DAT). Am. J. Med. Genet.60,85–87 (1995).
  • 46 Pirmohamed M, Wild MJ, KitteringhamNR etal.: Lack association between schizophrenia and the CYP2D6 gene polymorphisms. Am. J. Med. Genet.67,236–237 (1996).
  • 47 Jonsson EG, Dahl ML, Roh HK, Jerling M, Sedvall GC: Lack of association between debrisoquine 4-hydroxylase (CYP2D6) gene polymorphisms and schizophrenia. Psychiatr. Genet.8,25–28 (1998).
  • 48 Chen CH, Hung CC, Wei FC, Koong FJ: Debrisoquine 4-hydroxylase (CYP2D6) genetic polymorphisms and susceptibility to schizophrenia in Chinese patients from Taiwan. Psychiatr. Genet.11,153–155 (2001).
  • 49 Dahl ML: Cytochrome p450 phenotyping/genotyping in patients receiving antipsychotics: useful aid to prescribing? Clin. Pharmacokinet.41,453–470 (2002).
  • 50 Kubo M, Koue T, Inaba A etal.: Influence of itraconazole co-administration and CYP2D6 genotype on the pharmacokinetics of the new antipsychotic aripiprazole. Drug Metab. Pharmacokinet.20,55–64 (2005).
  • 51 Hendset M, Hermann M, Lunde H, Refsum H, Molden E: Impact of the CYP2D6 genotype on steady-state serum concentrations of aripiprazole and dehydroaripiprazole. Eur. J. Clin. Pharmacol. (2007) (Epub ahead of print).
  • 52 Spina E, Martines C, Caputi AP etal.: Debrisoquine oxidation phenotype during neuroleptic monotherapy. Eur. J. Clin. Pharmacol.41,467–470 (1991).
  • 53 Suzuki Y, Someya T, Shimoda K etal.: Importance of the cytochrome P450 2D6 genotype for the drug metabolic interaction between chlorpromazine and haloperidol. Ther. Drug Monit.23,363–368 (2001).
  • 54 Bertilsson L, Carrillo JA, Dahl ML etal.: Clozapine disposition covaries with CYP1A2 activity determined by a caffeine test. Br. J. Clin. Pharmacol.38,471–473 (1994).
  • 55 Dahl ML, Llerena A, Bondesson U, Lindstrom L, Bertilsson L: Disposition of clozapine in man: lack of association with debrisoquine and S-mephenytoin hydroxylation polymorphisms. Br. J. Clin. Pharmacol.37,71–74 (1994).
  • 56 Spina E, Avenoso A, Salemi M etal.: Plasma concentrations of clozapine and its major metabolites during combined treatment with paroxetine or sertraline. Pharmacopsychiatry33,213–217 (2000).
  • 57 LLerena A, Herraiz AG, Cobaleda J, Johansson I, Dahl ML: Debrisoquin and mephenytoin hydroxylation phenotypes and CYP2D6 genotype in patients treated with neuroleptic and antidepressant agents. Clin. Pharmacol. Ther.54,606–611 (1993).
  • 58 LLerena A, de la Rubia A, Berecz R, DoradoP: Relationship between haloperidol plasma concentration, debrisoquine metabolic ratio, CYP2D6 and CYP2C9 genotypes in psychiatric patients. Pharmacopsychiatry37,69–73 (2004).
  • 59 Someya T, Shimoda K, Suzuki Y etal.: Effect of CYP2D6 genotypes on the metabolism of haloperidol in a Japanese psychiatric population. NeuroPsychopharmacology28,1501–1505 (2003).
  • 60 Linnet K, Wiborg O: Steady-state serum concentrations of the neuroleptic perphenazine in relation to CYP2D6 genetic polymorphism. Clin. Pharmacol. Ther.60,41–47 (1996).
  • 61 Jerling M, Dahl ML, Aberg-Wistedt A etal.: The CYP2D6 genotype predicts the oral clearance of the neuroleptic agents perphenazine and zuclopenthixol. Clin. Pharmacol. Ther.59,423–428 (1996).
  • 62 Ozdemir V, Naranjo CA, Herrmann N, Reed K, Sellers EM, Kalow W: Paroxetine potentiates the central nervous system side effects of perphenazine: contribution of cytochrome P4502D6 inhibition invivo. Clin. Pharmacol. Ther.62,334–347 (1997).
  • 63 LLerena A, Berecz R, Dorado P, de la Rubia A: QTc interval, CYP2D6 and CYP2C9 genotypes and risperidone plasma concentrations. J.Psychopharmacol.18,189–193 (2004).
  • 64 Berecz R, LLerena A, de la Rubia A etal.: Relationship between risperidone and 9-hydroxy-risperidone plasma concentrations and CYP2D6 enzyme activity in psychiatric patients. Pharmacopsychiatry35,231–234 (2002).
  • 65 Baumann P, Meyer JW, Amey M et al.: Dextromethorphan and mephenytoin phenotyping of patients treated with thioridazine or amitriptyline. Ther. Drug. Monit.14,1–8 (1992).
  • 66 Shin JG, Soukhova N, Flockhart DA: Effect of antipsychotic drugs on human liver cytochrome P-450 (CYP) isoforms invitro: preferential inhibition of CYP2D6. Drug Metab. Dispos.27,1078–1084 (1999).
  • 67 LLerena A, Berecz R, de la Rubia A, Norberto MJ, Benitez J: Use of the mesoridazine/thioridazine ratio as a marker for CYP2D6 enzyme activity. Ther. Drug Monit.22,397–401 (2000).Suggests that the use of the mesoridazine:thioridazine ratio might be a useful tool to assess CYP2D6 activity during treatment.
  • 68 Jaanson P, Marandi T, Kiivet RA etal.: Maintenance therapy with zuclopenthixol decanoate: associations between plasma concentrations, neurological side effects and CYP2D6 genotype. Psychopharmacology162,67–73 (2002).
  • 69 Caceres MC, Peas Lled EM, De la RubiaA, LLerena A: Increased use of second generation antipsychotic drugs: Potential relationship with schziophrenia. Eur. J. Clin. Pharmacol. (2007) (Epub ahead of print).
  • 70 LLerena A, Kiivet RA: Fixed combinations of neuroleptics with antidepressants: potential risks and estimation of use. Br. J. Clin. Pharmacol.37(6),531–532 (1994).
  • 71 Schulze TG, Schumacher J, Muller DJ, Krauss H, Alfter D, Maroldt A: Lack of association between a functional polymorphism of the cytochrome P450 1A2 (CYP1A2) gene and tardive dyskinesia in schizophrenia. Am. J. Med. Genet.105,498–501 (2001).
  • 72 Tiwari AK, Deshpande SN, Rao AR, Bhatia T, Lerer B, Nimgaonkar VL: Genetic susceptibility to tardive dyskinesia in chronic schizophrenia subjects: III. Lack of association of CYP3A4 and CYP2D6 gene polymorphisms. Schizophr. Res.75,21–26 (2005).
  • 73 Otani K, Aoshima T: Pharmacogenetics of classical and new antipsychotic drugs. Ther. Drug Monit.22,118–121 (2000).
  • 74 Spina E, Ancione M, Di Rosa AE, MeduriM, Caputi AP: Polymorphic debrisoquina oxidation and acute neuroleptic-induced adverse effects. Eur. J. Clin. Pharmacol.42,347–348 (1992).
  • 75 Meyer JW, Woggon B, Baumann P etal.: Clinical implications of slow sulphoxidation of thioridazine in a poor metabolizer of the debrisoquine type. Eur. J. Clin. Pharmacol.39,613–614 (1990).
  • 76 Dorado P, Berecz R, Penas-Lledo EM, LLerena A: Antipsychotic drugs and QTc prolongation: the potential role of CYP2D6 genetic polymorphism. Expert Opin. Drug Metab. Toxicol.3,9–19 (2007).
  • 77 LLerena A, Berecz R, de la Rubia A, DoradoP: QTc interval lengthening and debrisoquine metabolic ratio in psychiatric patients treated with oral haloperidol monotherapy. Eur. J. Clin. Pharmacol.58,223–224 (2002).
  • 78 LLerena A, Berecz R, de la Rubia A, DoradoP: QTc interval lengthening is related to CYP2D6 hydroxylation capacity and plasma concentration of thioridazine in patients. J.Psychopharmacol.16,361–364 (2002).First study showing that thioridazine plasma concentration is related to the lengthening of QTc interval among psychiatric patients.
  • 79 Kirchheiner J, Nickchen K, Bauer M etal.: Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol. Psychiatry9,442–473 (2004).
  • 80 Dorado P, Caceres MC, Pozo-Guisado E, Wong ML, Licinio J, Llerena A: Development of a PCR-based strategy for CYP2D6 genotyping including gene multiplication of worldwide potential use. Biotechniques39,571–574 (2005).
  • 81 LLerena A, Berecz R, de la Rubia A, Fernandez-Salguero P, Dorado P: Effect of thioridazine dosage on the debrisoquine hydroxylation phenotype in psychiatric patients with different CYP2D6 genotypes. Ther. Drug Monit.23,616–620 (2001).
  • 82 Inada T, Senoo H, Iijima Y, Yamauchi T, Yagi G: Cytochrome P450 II D6 gene polymorphisms and the neuroleptic-induced extrapyramidal symptoms in Japanese schizophrenic patients. Psychiatr. Genet.13,163–168 (2003).
  • 83 Schillevoort I, de Boer A, van der Weide J etal.: Antipsychotic-induced extrapyramidal syndromes and cytochrome P450 2D6 genotype: a case–control study. Pharmacogenetics12,235–240 (2002).
  • 84 Vandel P, Haffen E, Vandel S etal.: Drug extrapyramidal side effects. CYP2D6 genotypes and phenotypes. Eur. J. Clin. Pharmacol.55,659–665 (1999).
  • 85 Lpez-Torres E, Lucena MI, Vicario F, Salomn J, Dorado P, LLerena A : Genetic polymorphisms of CYP2D6, 5HTT, 5HTR1A, 5HTR2A, DR2 and DR3 genes and extrapyramidal-induced side effects during treatment with aripiprazole. Basic Clin. Pharmacol. Toxicol.101(Suppl. 1),51–102 (2007).
  • 86 Pollock BG, Mulsant BH, Sweet RA etal.: Prospective cytochrome P450 phenotyping for neuroleptic treatment in dementia. Psychopharmacol. Bull.31,327–331 (1995).
  • 87 Lane HY, Hu OYP, Jann MW, Deng HC, Lin HN, Chang WH: Dextromethorphan phenotyping and haloperidol disposition in schizophrenic patients. Psychiatry Res.69,105–111 (1997).
  • 88 Kapitany T, Meszaros K, Lenzinger E etal.: Genetic polymorphisms for drug metabolism (CYP2D6) and tardive dyskinesia in schizophrenia. Schizophr. Res.32,101–106 (1998).
  • 89 Liou YJ, Wang YC, Bai YM etal.: Cytochrome P-450 2D6*10 C188T polymorphism is associated with antipsychotic-induced persistent tardive dyskinesia in Chinese schizophrenic patients. Neuropsychobiology49,167–173 (2004).