We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Clinical consequences of ADRβ2 polymorphisms

    Gregory A Hawkins

    † Author for correspondence

    Center for Human Genomics, Section of Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.

    ,
    Scott T Weiss

    Channing Laboratory, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA

    &
    Eugene R Bleecker

    Center for Human Genomics, Section of Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.

    Published Online:https://doi.org/10.2217/14622416.9.3.349

    The most prescribed medication for controlling bronchoconstriction associated with asthma and chronic obstructive pulmonary disease are β-agonists. The gene ADRβ2 encodes the β-2-adrenergic receptor and contains several common genetic variations that affect gene expression and receptor function in vitro. The ADRβ2 variations Gly16Arg and Gln27Glu and, more recently, haplotypic variations, have been the focus of numerous pharmacogenetic studies looking at responses to short-acting (SABA) and long-acting β-agonists (LABA) in subjects with asthma. Thus far, a consensus on the effects of ADRβ2 genetic variations has not been reached, although there does appear to be a reproducible adverse effect in subjects homozygous for Arg16 that are regularly treated with SABAs. The complexity of the genotype by response effects observed makes clinical application of ADRβ2 genetic variations limited, and may require the use of detailed haplotypic variation to fully understand the role ADRβ2 plays in regulating β-agonist response.

    Papers of special note have been highlighted as either of interest (•) or of considerable interest (••) to readers.

    Bibliography

    • Weiss ST, Litonjua AA, Lange C et al.: Overview of the pharmacogenetics of asthma treatment. Pharmacogenomics J.6,311–326 (2006).
    • Hawkins GA, Weiss ST, Bleecker ER: Asthma pharmacogenomics. Immunol. Allergy Clin. North Am.25,723–742 (2005).
    • Panhuysen CI, Meyers DA, Postma DS, Bleecker ER: The genetics of asthma and atopy. Allergy50,863–869 (1995).
    • Postma DS, Bleecker ER, Amelung PJ et al.: Genetic susceptibility to asthma – bronchial hyperresponsiveness coinherited with a major gene for atopy. N. Engl. J. Med.333,894–900 (1995).
    • Kobilka BK, Frielle T, Dohlman HG et al.: Delineation of the intronless nature of the genes for the human and hamster β 2-adrenergic receptor and their putative promoter regions. J. Biol. Chem.262,7321–7327 (1987).
    • Reihsaus E, Innis M, MacIntyre N, Liggett SB: Mutations in the gene encoding for the β 2-adrenergic receptor in normal and asthmatic subjects. Am. J. Respir. Cell Mol. Biol.8,334–339 (1993).•• First manuscript to describe the common coding variations in ADRβ2.
    • Drysdale CM, McGraw DW, Stack CB et al.: Complex promoter and coding region β 2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proc. Natl Acad. Sci. USA97,10483–10488 (2000).• First haplotype analysis of ADRβ2 describing the haplotypic variation between different ethnic populations.
    • Hawkins GA, Tantisira K, Meyers DA et al.: Sequence, haplotype and association analysis of ADRβ2 in multi-ethnic asthma case/control subjects. Am. J. Respir. Crit Care Med.174,1101–1109 (2006).• Most detailed sequence analysis of ADRβ2.
    • McGraw DW, Liggett SB: Coding block and 5 leader cistron polymorphisms of the β2-adrenergic receptor. Clin. Exp. Allergy.29(Suppl. 4,),43–45 (1999).
    • 10  Scott MG, Swan C, Wheatley AP, Hall IP: Identification of novel polymorphisms within the promoter region of the human β2 adrenergic receptor gene. Br. J. Pharmacol.126,841–844 (1999).
    • 11  Small KM, Rathz DA, Liggett SB: Identification of adrenergic receptor polymorphisms. Methods Enzymol.343,459–475 (2002).
    • 12  Bleecker ER, Yancey SW, Baitinger LA et al.: Salmeterol response is not affected by β2-adrenergic receptor genotype in subjects with persistent asthma. J. Allergy Clin. Immunol.118,809–816 (2006).
    • 13  Burchard EG, Avila PC, Nazario S et al.: Lower bronchodilator responsiveness in Puerto Rican than in Mexican subjects with asthma. Am. J. Respir. Crit Care Med.169,386–392 (2004).
    • 14  Choudhry S, Ung N, Avila PC et al.: Pharmacogenetic differences in response to albuterol between Puerto Ricans and Mexicans with asthma. Am. J. Respir. Crit Care Med.171,563–570 (2005).
    • 15  Dai LM, Wang ZL, Zhang YP, Liu L, Fang LZ, Zhang JQ: [Relationship between the locus 16 geontype of β 2 adrenergic receptor and the nocturnal asthma phenotype]. Sichuan Da Xue Xue Bao Yi Xue Ban.35,32–34 (2004).
    • 16  Dewar J, Wheatley A, Wilkinson J et al.: Association of the Gln 27 β 2-adrenoceptor polymorphism and IgE variability in asthmatic families. Chest111,78S–79S (1997).
    • 17  Dewar JC, Wilkinson J, Wheatley A et al.: The glutamine 27 β2-adrenoceptor polymorphism is associated with elevated IgE levels in asthmatic families. J. Allergy Clin. Immunol.100,261–265 (1997).
    • 18  Gao JM, Lin YG, Qiu CC et al.: [Association of polymorphism of human β 2-adrenergic receptor gene and bronchial asthma]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao24,626–631 (2002).
    • 19  Hall IP, Daykin K, Widdop S: β 2-adrenoceptor desensitization in cultured human airway smooth muscle. Clin. Sci. (Lond.)84,151–157 (1993).
    • 20  Hall IP, Wheatley A, Wilding P, Liggett SB: Association of Glu 27 β 2-adrenoceptor polymorphism with lower airway reactivity in asthmatic subjects. Lancet345,1213–1214 (1995).
    • 21  Hall IP, Blakey JD, Al Balushi KA et al.: β2-adrenoceptor polymorphisms and asthma from childhood to middle age in the British 1958 birth cohort: a genetic association study. Lancet368,771–779 (2006).
    • 22  Hancox RJ, Sears MR, Taylor DR: Polymorphism of the β2-adrenoceptor and the response to long-term β2-agonist therapy in asthma. Eur. Respir. J.11,589–593 (1998).
    • 23  Hoit BD, Suresh DP, Craft L, Walsh RA, Liggett SB: β2-adrenergic receptor polymorphisms at amino acid 16 differentially influence agonist-stimulated blood pressure and peripheral blood flow in normal individuals. Am. Heart J.139,537–542 (2000).
    • 24  Holloway JW, Dunbar PR, Riley GA et al.: Association of β2-adrenergic receptor polymorphisms with severe asthma. Clin. Exp. Allergy.30,1097–1103 (2000).
    • 25  Hopes E, McDougall C, Christie G et al.: Association of glutamine 27 polymorphism of β 2 adrenoceptor with reported childhood asthma: population based study. BMJ316,664 (1998).
    • 26  Lee DK, Currie GP, Hall IP, Lima JJ, Lipworth BJ: The arginine-16 β2-adrenoceptor polymorphism predisposes to bronchoprotective subsensitivity in patients treated with formoterol and salmeterol. Br. J. Clin. Pharmacol.57,68–75 (2004).
    • 27  Lima JJ, Thomason DB, Mohamed MH, Eberle LV, Self TH, Johnson JA: Impact of genetic polymorphisms of the β2-adrenergic receptor on albuterol bronchodilator pharmacodynamics. Clin. Pharmacol. Ther.65,519–525 (1999).
    • 28  Lipworth BJ, Hall IP, Aziz I, Tan KS, Wheatley A: β2-adrenoceptor polymorphism and bronchoprotective sensitivity with regular short- and long-acting β2-agonist therapy. Clin. Sci. (Lond.)96,253–259 (1999).
    • 29  Litonjua AA, Silverman EK, Tantisira KG, Sparrow D, Sylvia JS, Weiss ST: β 2-adrenergic receptor polymorphisms and haplotypes are associated with airways hyperresponsiveness among nonsmoking men. Chest126,66–74 (2004).
    • 30  Littlejohn MD, Taylor DR, Miller AL, Kennedy MA: Determination of β2-adrenergic receptor (ADRβ2) haplotypes by a multiplexed polymerase chain reaction assay. Hum. Mutat.20,479 (2002).
    • 31  Palmer CN, Lipworth BJ, Lee S, Ismail T, Macgregor DF, Mukhopadhyay S: Arginine-16 β2 adrenoceptor genotype predisposes to exacerbations in young asthmatics taking regular salmeterol. Thorax61,940–944 (2006).
    • 32  Ramsay CE, Hayden CM, Tiller KJ, Burton PR, Goldblatt J, Lesouef PN: Polymorphisms in the β2-adrenoreceptor gene are associated with decreased airway responsiveness. Clin. Exp. Allergy.29,1195–1203 (1999).
    • 33  Silverman EK, Kwiatkowski DJ, Sylvia JS et al.: Family-based association analysis of β2-adrenergic receptor polymorphisms in the childhood asthma management program. J. Allergy Clin. Immunol.112,870–876 (2003).
    • 34  Taylor DR, Sears MR: Regular versus as-needed inhaled salbutamol in asthma control. Lancet344,621 (1994).
    • 35  Taylor DR, Drazen JM, Herbison GP, Yandava CN, Hancox RJ, Town GI: Asthma exacerbations during long term β agonist use: influence of β(2) adrenoceptor polymorphism. Thorax55,762–767 (2000).•• Important study showing that regular treatment with the short-acting β-agonist salbutamol causes a decline in lung function in homozygous Arg16 subjects.
    • 36  Taylor DR, Hancox RJ, McRae W et al.: The influence of polymorphism at position 16 of the β2-adrenoceptor on the development of tolerance to β-agonist. J. Asthma37,691–700 (2000).
    • 37  Taylor DR, Epton MJ, Kennedy MA et al.: Bronchodilator response in relation to β2-adrenoceptor haplotype in patients with asthma. Am. J. Respir. Crit Care Med.172,700–703 (2005).
    • 38  Turki J, Pak J, Green SA, Martin RJ, Liggett SB: Genetic polymorphisms of the β 2-adrenergic receptor in nocturnal and nonnocturnal asthma. Evidence that Gly16 correlates with the nocturnal phenotype. J. Clin. Invest95,1635–1641 (1995).
    • 39  Turner SW, Khoo SK, Laing IA et al.: β2 adrenoceptor Arg16Gly polymorphism, airway responsiveness, lung function and asthma in infants and children. Clin. Exp. Allergy.34,1043–1048 (2004).
    • 40  Green SA, Turki J, Innis M, Liggett SB: Amino-terminal polymorphisms of the human β 2-adrenergic receptor impart distinct agonist-promoted regulatory properties. Biochemistry33,9414–9419 (1994).
    • 41  Dishy V, Landau R, Sofowora GG et al.: β2-adrenoceptor Thr164Ile polymorphism is associated with markedly decreased vasodilator and increased vasoconstrictor sensitivity in vivo. Pharmacogenetics14,517–522 (2004).
    • 42  McGraw DW, Forbes SL, Kramer LA, Liggett SB: Polymorphisms of the 5' leader cistron of the human β2-adrenergic receptor regulate receptor expression. J. Clin. Invest102,1927–1932 (1998).
    • 43  Martinez FD, Graves PE, Baldini M, Solomon S, Erickson R: Association between genetic polymorphisms of the β2-adrenoceptor and response to albuterol in children with and without a history of wheezing. J. Clin. Invest100,3184–3188 (1997).•• One of the first clinical studies demonstrating that homozygous Arg16 subjects have a greater response to albuterol compared with homozygous Gly16 subjects.
    • 44  Sears MR, Taylor DR, Print CG et al.: Regular inhaled β-agonist treatment in bronchial asthma. Lancet336,1391–1396 (1990).
    • 45  Israel E, Drazen JM, Liggett SB et al.: The effect of polymorphisms of the β(2)-adrenergic receptor on the response to regular use of albuterol in asthma. Am. J. Respir. Crit Care Med.162,75–80 (2000).
    • 46  Israel E, Chinchilli VM, Ford JG et al.: Use of regularly scheduled albuterol treatment in asthma: genotype-stratified, randomised, placebo-controlled cross-over trial. Lancet364,1505–1512 (2004).•• First prospective study of ADRβ2 genetic variation that concludes that regular treatment with the short acting β-agonist albuterol may not be appropriate for homozygous Arg16 subjects.
    • 47  Lazarus SC, Boushey HA, Fahy JV et al.: Long-acting β2-agonist monotherapy vs continued therapy with inhaled corticosteroids in patients with persistent asthma: a randomized controlled trial. JAMA285,2583–2593 (2001).
    • 48  Lemanske RF Jr, Sorkness CA, Mauger EA et al.: Inhaled corticosteroid reduction and elimination in patients with persistent asthma receiving salmeterol: a randomized controlled trial. JAMA285,2594–2603 (2001).
    • 49  Wechsler ME, Lehman E, Lazarus SC et al.: β-Adrenergic receptor polymorphisms and response to salmeterol. Am. J. Respir. Crit Care Med.173,519–526 (2006).
    • 50  Food and Drug Administration: Pulmonary-Allergy Drugs Advisory Committee. Rockville, MD, USA, June 13 (2005).• US FDA report describing potential rare adverse effects of β-agonist therapy in African–Americans.
    • 51  Panebra A, Schwarb MR, Swift SM et al.: Variable length poly-C tract polymorphisms of the β-2 adrenergic receptor 3’UTR alter expression and agonist regulation. Am. J. Lung Cell Mol. Physiol. (2008) (Epub ahead of print).
    • 52  Bleecker ER, Postma DS, Lawrance RM, Meyers DA, Ambrose HJ, Goldman M: Effects of polymorphisms in the β-2 adrenergic receptor gene (ADRB2) on response to long-acting β-2 agonists (LABA) therapy. Lancet370,2118–2125 (2007).•• Most recent ADRβ2 pharmacogenetic study showing that ADRβ2 genotypes may not be important in predicting response to the long-acting β-agonist salmeterol.
    • 53  McGraw DW, Almoosa KF, Paul RJ, Kobilka BK, Liggett SB: Antithetic regulation by β-adrenergic receptors of Gq receptor signaling via phospholipase C underlies the airway β-agonist paradox. J. Clin. Invest112,619–626 (2003).
    • 54  Miller RL, Ho SM: Environmental epigenetics and asthma: current concepts and call for studies. Am. J. Respir. Crit Care Med. (2008) (Epub ahead of print).
    • 55  Holliday R: Epigenetics: A historical overview. Epigenetics176–180 (2006).