We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/14622416.9.5.625

CYP1A2 is involved in the metabolism of several widely used drugs and endogenous compounds, and in the activation of procarcinogens. Both genetic and environmental factors influence the activity of this enzyme. The current knowledge regarding factors influencing the activity of CYP1A2 is summarized in this review. Substrates, inhibitors and inducers of CYP1A2 activity, as well as phenotyping probes, are discussed. The functional significance and clinical importance of CYP1A2 gene polymorphisms are reviewed and interethnic differences in the distribution of CYP1A2 variant alleles and haplotypes are summarized. Finally, future perspectives for the possible clinical applications of CYP1A2 genotyping are discussed.

Papers of special note have been highlighted as either of interest (•) or of considerable interest (••) to readers.

Bibliography

  • Eichelbaum M, Ingelman-Sundberg M, Evans WE: Pharmacogenomics and individualized drug therapy. Annu. Rev. Med.57,119–137 (2006).
  • Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP: Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J. Pharmacol. Exp. Ther.270,414–423 (1994).
  • Heilmann LJ, Sheen YY, Bigelow SW, Nebert DW: Trout P450IA1: cDNA and deduced protein sequence, expression in liver, and evolutionary significance. DNA7,379–387 (1988).
  • Liang HC, Li H, McKinnon RA et al.: Cyp1a2(-/-) null mutant mice develop normally but show deficient drug metabolism. Proc. Natl Acad. Sci. USA93,1671–1676 (1996).
  • Sansen S, Yano JK, Reynald RL et al.: Adaptations for the oxidation of polycyclic aromatic hydrocarbons exhibited by the structure of human P450 1A2. J. Biol. Chem.282,14348–14355 (2007).
  • Lewis DF: On the recognition of mammalian microsomal cytochrome P450 substrates and their characteristics: towards the prediction of human p450 substrate specificity and metabolism. Biochem. Pharmacol.60,293–306 (2000).
  • Bertilsson L, Carrillo JA, Dahl ML et al.: Clozapine disposition covaries with CYP1A2 activity determined by a caffeine test. Br. J. Clin. Pharmacol.38,471–473 (1994).
  • Fang J, Coutts RT, McKenna KF, Baker GB: Elucidation of individual cytochrome P450 enzymes involved in the metabolism of clozapine. Naunyn Schmiedebergs Arch. Pharmacol.358,592–599 (1998).
  • Callaghan JT, Bergstrom RF, Ptak LR, Beasley CM: Olanzapine. Pharmacokinetic and pharmacodynamic profile. Clin. Pharmacokinet.37,177–193 (1999).
  • 10  Ring BJ, Catlow J, Lindsay TJ et al.: Identification of the human cytochromes P450 responsible for the in vitro formation of the major oxidative metabolites of the antipsychotic agent olanzapine. J. Pharmacol. Exp. Ther.276,658–666 (1996).
  • 11  Shet MS, McPhaul M, Fisher CW, Stallings NR, Estabrook RW: Metabolism of the antiandrogenic drug (flutamide) by human CYP1A2. Drug Metab. Dispos.25,1298–1303 (1997).
  • 12  Orlando R, Piccoli P, de Martin S, Padrini R, Floreani M, Palatini P: Cytochrome P450 1A2 is a major determinant of lidocaine metabolism in vivo: effects of liver function. Clin. Pharmacol. Ther.75,80–88 (2004).
  • 13  Granfors MT, Backman JT, Laitila J, Neuvonen PJ: Tizanidine is mainly metabolized by cytochrome P450 1A2 in vitro. Br. J. Clin. Pharmacol.57,349–353 (2004).
  • 14  Spaldin V, Madden S, Adams DA, Edwards RJ, Davies DS, Park BK: Determination of human hepatic cytochrome P4501A2 activity in vitro use of tacrine as an isoenzyme-specific probe. Drug Metab. Dispos.23,929–934 (1995).
  • 15  Fontana RJ, deVries TM, Woolf TF et al.: Caffeine based measures of CYP1A2 activity correlate with oral clearance of tacrine in patients with Alzheimer’s disease. Br. J. Clin. Pharmacol.46,221–228 (1998).
  • 16  Facciola G, Hidestrand M, von Bahr C, Tybring G: Cytochrome P450 isoforms involved in melatonin metabolism in human liver microsomes. Eur. J. Clin. Pharmacol.56,881–888 (2001).
  • 17  Hartter S, Ursing C, Morita S et al.: Orally given melatonin may serve as a probe drug for cytochrome P450 1A2 activity in vivo: a pilot study. Clin. Pharmacol. Ther.70,10–16 (2001).
  • 18  Yamazaki H, Shaw PM, Guengerich FP, Shimada T: Roles of cytochromes P450 1A2 and 3A4 in the oxidation of estradiol and estrone in human liver microsomes. Chem. Res. Toxicol.11,659–665 (1998).
  • 19  Zaccaro C, Sweitzer S, Pipino S et al.: Role of cytochrome P450 1A2 in bilirubin degradation studies in Cyp1a2 (-/-) mutant mice. Biochem. Pharmacol.61,843–849 (2001).
  • 20  Lambrecht RW, Jacobs JM, Sinclair PR, Sinclair JF: Inhibition of uroporphyrinogen decarboxylase activity. The role of cytochrome P-450-mediated uroporphyrinogen oxidation. Biochem. J.269,437–441 (1990).
  • 21  Eaton DL, Gallagher EP, Bammler TK, Kunze KL: Role of cytochrome P4501A2 in chemical carcinogenesis: implications for human variability in expression and enzyme activity. Pharmacogenetics5,259–274 (1995).
  • 22  Butler MA, Iwasaki M, Guengerich FP, Kadlubar FF: Human cytochrome P-450PA (P-450IA2), the phenacetin O-deethylase, is primarily responsible for the hepatic 3-demethylation of caffeine and N-oxidation of carcinogenic arylamines. Proc. Natl Acad. Sci. USA86,7696–7700 (1989).
  • 23  Boobis AR, Lynch AM, Murray S et al.: CYP1A2-catalyzed conversion of dietary heterocyclic amines to their proximate carcinogens is their major route of metabolism in humans. Cancer Res.54,89–94 (1994).
  • 24  Kim D, Guengerich FP: Cytochrome P450 activation of arylamines and heterocyclic amines. Annu. Rev. Pharmacol. Toxicol.45,27–49 (2005).
  • 25  Gallagher EP, Wienkers LC, Stapleton PL, Kunze KL, Eaton DL: Role of human microsomal and human complementary DNA-expressed cytochromes P4501A2 and P4503A4 in the bioactivation of aflatoxin B1. Cancer Res.54,101–108 (1994).
  • 26  Gu L, Gonzalez FJ, Kalow W, Tang BK: Biotransformation of caffeine, paraxanthine, theobromine and theophylline by cDNA-expressed human CYP1A2 and CYP2E1. Pharmacogenetics2,73–77 (1992).
  • 27  Fuhr U, Rost KL, Engelhardt R et al.: Evaluation of caffeine as a test drug for CYP1A2, NAT2 and CYP2E1 phenotyping in man by in vivo versus in vitro correlations. Pharmacogenetics6,159–176 (1996).
  • 28  Kalow W, Tang BK: The use of caffeine for enzyme assays: a critical appraisal. Clin. Pharmacol. Ther.53,503–514 (1993).
  • 29  Carrillo JA, Christensen M, Ramos SI et al.: Evaluation of caffeine as an in vivo probe for CYP1A2 using measurements in plasma, saliva, and urine. Ther. Drug Monit.22,409–417 (2000).
  • 30  Kalow W, Tang BK: Use of caffeine metabolite ratios to explore CYP1A2 and xanthine oxidase activities. Clin. Pharmacol. Ther.50,508–519 (1991).
  • 31  Sarkar MA, Hunt C, Guzelian PS, Karnes HT: Characterization of human liver cytochromes P-450 involved in theophylline metabolism. Drug Metab. Dispos.20,31–37 (1992).
  • 32  Venkatakrishnan K, von Moltke LL, Greenblatt DJ: Human cytochromes P450 mediating phenacetin O-deethylation in vitro: validation of the high affinity component as an index of CYP1A2 activity. J. Pharm. Sci.87,1502–1507 (1998).
  • 33  Burke MD, Thompson S, Weaver RJ, Wolf CR, Mayer RT: Cytochrome P450 specificities of alkoxyresorufin O-dealkylation in human and rat liver. Biochem. Pharmacol.48,923–936 (1994).
  • 34  Schweikl H, Taylor JA, Kitareewan S, Linko P, Nagorney D, Goldstein JA: Expression of CYP1A1 and CYP1A2 genes in human liver. Pharmacogenetics3,239–249 (1993).
  • 35  Vistisen K, Poulsen HE, Loft S: Foreign compound metabolism capacity in man measured from metabolites of dietary caffeine. Carcinogenesis13,1561–1568 (1992).
  • 36  Rasmussen BB, Brosen K: Determination of urinary metabolites of caffeine for the assessment of cytochrome P4501A2, xanthine oxidase, and N-acetyltransferase activity in humans. Ther. Drug Monit.18,254–262 (1996).
  • 37  Catteau A, Bechtel YC, Poisson N, Bechtel PR, Bonaiti-Pellie C: A population and family study of CYP1A2 using caffeine urinary metabolites. Eur. J. Clin. Pharmacol.47,423–430 (1995).
  • 38  Nakajima M, Yokoi T, Mizutani M, Shin S, Kadlubar FF, Kamataki T: Phenotyping of CYP1A2 in Japanese population by analysis of caffeine urinary metabolites: absence of mutation prescribing the phenotype in the CYP1A2 gene. Cancer Epidemiol. Biomarkers Prev.3,413–421 (1994).
  • 39  Schrenk D, Brockmeier D, Morike K, Bock KW, Eichelbaum M: A distribution study of CYP1A2 phenotypes among smokers and non-smokers in a cohort of healthy Caucasian volunteers. Eur. J. Clin. Pharmacol.53,361–367 (1998).
  • 40  Butler MA, Lang NP, Young JF et al.: Determination of CYP1A2 and NAT2 phenotypes in human populations by analysis of caffeine urinary metabolites. Pharmacogenetics2,116–127 (1992).
  • 41  Ilett KF, Castleden WM, Vandongen YK, Stacey MC, Butler MA, Kadlubar FF: Acetylation phenotype and cytochrome P450IA2 phenotype are unlikely to be associated with peripheral arterial disease. Clin. Pharmacol. Ther.54,317–322 (1993).
  • 42  Ou-Yang DS, Huang SL, Wang W et al.: Phenotypic polymorphism and gender-related differences of CYP1A2 activity in a Chinese population. Br. J. Clin. Pharmacol.49,145–151 (2000).
  • 43  Landi MT, Sinha R, Lang NP, Kadlubar FF: Human cytochrome P4501A2. IARC Sci. Publ.148,173–195 (1999).
  • 44  Sesardic D, Boobis AR, Edwards RJ, Davies DS: A form of cytochrome P450 in man, orthologous to form d in the rat, catalyses the O-deethylation of phenacetin and is inducible by cigarette smoking. Br. J. Clin. Pharmacol.26,363–372 (1988).
  • 45  Ma Q, Lu AY: CYP1A induction and human risk assessment: an evolving tale of in vitro and in vivo studies. Drug Metab. Dispos.35,1009–1016 (2007).• Reviews the role of the CYP1A family in the metabolic activation of carcinogenic polycyclic aromatic amines/amides leading to toxicity and cancer.
  • 46  Kall MA, Clausen J: Dietary effect on mixed function P450 1A2 activity assayed by estimation of caffeine metabolism in man. Hum. Exp. Toxicol.14,801–807 (1995).
  • 47  Diaz D, Fabre I, Daujat M et al.: Omeprazole is an aryl hydrocarbon-like inducer of human hepatic cytochrome P450. Gastroenterology99,737–747 (1990).
  • 48  Carbo M, Segura J, de la Torre R, Badenas JM, Cami J: Effect of quinolones on caffeine disposition. Clin. Pharmacol. Ther.45,234–240 (1989).
  • 49  Abernethy DR, Todd EL: Impairment of caffeine clearance by chronic use of low-dose oestrogen-containing oral contraceptives. Eur. J. Clin. Pharmacol.28,425–428 (1985).
  • 50  Balogh A, Klinger G, Henschel L, Borner A, Vollanth R, Kuhnz W: Influence of ethinylestradiol-containing combination oral contraceptives with gestodene or levonorgestrel on caffeine elimination. Eur. J. Clin. Pharmacol.48,161–166 (1995).
  • 51  Brosen K, Skjelbo E, Rasmussen BB, Poulsen HE, Loft S: Fluvoxamine is a potent inhibitor of cytochrome P4501A2. Biochem. Pharmacol.45,1211–1214 (1993).
  • 52  Jeppesen U, Gram LF, Vistisen K, Loft S, Poulsen HE, Brosen K: Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine. Eur. J. Clin. Pharmacol.51,73–78 (1996).
  • 53  Kunze KL, Trager WF: Isoform-selective mechanism-based inhibition of human cytochrome P450 1A2 by furafylline. Chem. Res. Toxicol.6,649–656 (1993).
  • 54  Chen L, Bondoc FY, Lee MJ, Hussin AH, Thomas PE, Yang CS: Caffeine induces cytochrome P4501A2: induction of CYP1A2 by tea in rats. Drug Metab. Dispos.24,529–533 (1996).
  • 55  Faber MS, Jetter A, Fuhr U: Assessment of CYP1A2 activity in clinical practice: why, how, and when? Basic Clin. Pharmacol. Toxicol.97,125–134 (2005).
  • 56  Lofgren S, Hagbjork AL, Ekman S, Fransson-Steen R, Terelius Y: Metabolism of human cytochrome P450 marker substrates in mouse: a strain and gender comparison. Xenobiotica34,811–834 (2004).
  • 57  Parkinson A, Mudra DR, Johnson C, Dwyer A, Carroll KM: The effects of gender, age, ethnicity, and liver cirrhosis on cytochrome P450 enzyme activity in human liver microsomes and inducibility in cultured human hepatocytes. Toxicol. Appl. Pharmacol.199,193–209 (2004).
  • 58  Carrillo JA, Benitez J: CYP1A2 activity, gender and smoking, as variables influencing the toxicity of caffeine. Br. J. Clin. Pharmacol.41,605–608 (1996).
  • 59  Relling MV, Lin JS, Ayers GD, Evans WE: Racial and gender differences in N-acetyltransferase, xanthine oxidase, and CYP1A2 activities. Clin. Pharmacol. Ther.52,643–658 (1992).
  • 60  Bock KW, Schrenk D, Forster A et al.: The influence of environmental and genetic factors on CYP2D6, CYP1A2 and UDP-glucuronosyltransferases in man using sparteine, caffeine, and paracetamol as probes. Pharmacogenetics4,209–218 (1994).
  • 61  Buur-Rasmussen B, Brosen K: Cytochrome P450 and therapeutic drug monitoring with respect to clozapine. Eur. Neuropsychopharmacol.9,453–459 (1999).
  • 62  Potkin SG, Bera R, Gulasekaram B et al.: Plasma clozapine concentrations predict clinical response in treatment-resistant schizophrenia. J. Clin. Psychiatry55(Suppl. B),133–136 (1994).
  • 63  Haring C, Fleischhacker WW, Schett P, Humpel C, Barnas C, Saria A: Influence of patient-related variables on clozapine plasma levels. Am. J. Psychiatry147,1471–1475 (1990).
  • 64  Lane HY, Chang YC, Chang WH, Lin SK, Tseng YT, Jann MW: Effects of gender and age on plasma levels of clozapine and its metabolites: analyzed by critical statistics. J. Clin. Psychiatry60,36–40 (1999).
  • 65  Tang YL, Mao P, Li FM et al.: Gender, age, smoking behaviour and plasma clozapine concentrations in 193 Chinese inpatients with schizophrenia. Br. J. Clin. Pharmacol.64,49–56 (2007).
  • 66  Meibohm B, Beierle I, Derendorf H: How important are gender differences in pharmacokinetics? Clin. Pharmacokinet.41,329–342 (2002).
  • 67  Lane JD, Steege JF, Rupp SL, Kuhn CM: Menstrual cycle effects on caffeine elimination in the human female. Eur. J. Clin. Pharmacol.43,543–546 (1992).
  • 68  Tsutsumi K, Kotegawa T, Matsuki S et al.: The effect of pregnancy on cytochrome P4501A2, xanthine oxidase, and N-acetyltransferase activities in humans. Clin. Pharmacol. Ther.70,121–125 (2001).
  • 69  Knutti R, Rothweiler H, Schlatter C: Effect of pregnancy on the pharmacokinetics of caffeine. Eur. J. Clin. Pharmacol.21,121–126 (1981).
  • 70  Ghotbi R, Christensen M, Roh HK, Ingelman-Sundberg M, Aklillu E, Bertilsson L: Comparisons of CYP1A2 genetic polymorphisms, enzyme activity and the genotype–phenotype relationship in Swedes and Koreans. Eur. J. Clin. Pharmacol.63,537–546 (2007).
  • 71  Bartoli A, Xiaodong S, Gatti G, Cipolla G, Marchiselli R, Perucca E: The influence of ethnic factors and gender on CYP1A2-mediated drug disposition: a comparative study in Caucasian and Chinese subjects using phenacetin as a marker substrate. Ther. Drug Monit.18,586–591 (1996).
  • 72  Chang WH, Lin SK, Lane HY, Hu WH, Jann MW, Lin HN: Clozapine dosages and plasma drug concentrations. J. Formos. Med. Assoc.96,599–605 (1997).
  • 73  Devonshire HW, Kong I, Cooper M, Sloan TP, Idle JR, Smith RL: The contribution of genetically determined oxidation status to inter-individual variation in phenacetin disposition. Br. J. Clin. Pharmacol.16,157–166 (1983).
  • 74  Shahidi NT: Acetophenetidin sensitivity. Am. J. Dis. Child.113,81–82 (1967).
  • 75  Miller M, Opheim KE, Raisys VA, Motulsky AG: Theophylline metabolism: variation and genetics. Clin. Pharmacol. Ther.35,170–182 (1984).
  • 76  Miller CA, Slusher LB, Vesell ES: Polymorphism of theophylline metabolism in man. J. Clin. Invest.75,1415–1425 (1985).
  • 77  Rasmussen BB, Brix TH, Kyvik KO, Brosen K: The interindividual differences in the 3-demethylation of caffeine alias CYP1A2 is determined by both genetic and environmental factors. Pharmacogenetics12,473–478 (2002).•• Roles of genetic and environmental factors (CYP1A2) in caffeine metabolism are investigated in mono- and di-zygotic twins.
  • 78  Corchero J, Pimprale S, Kimura S, Gonzalez FJ: Organization of the CYP1A cluster on human chromosome 15: implications for gene regulation. Pharmacogenetics11,1–6 (2001).
  • 79  Ikeya K, Jaiswal AK, Owens RA, Jones JE, Nebert DW, Kimura S: Human CYP1A2: sequence, gene structure, comparison with the mouse and rat orthologous gene, and differences in liver 1A2 mRNA expression. Mol. Endocrinol.3,1399–1408 (1989).
  • 80  Chida M, Yokoi T, Fukui T, Kinoshita M, Yokota J, Kamataki T: Detection of three genetic polymorphisms in the 5´-flanking region and intron 1 of human CYP1A2 in the Japanese population. Jpn J. Cancer Res.90,899–902 (1999).
  • 81  Nakajima M, Yokoi T, Mizutani M, Kinoshita M, Funayama M, Kamataki T: Genetic polymorphism in the 5´-flanking region of human CYP1A2 gene: effect on the CYP1A2 inducibility in humans. J. Biochem. (Tokyo)125,803–808 (1999).
  • 82  Sachse C, Brockmoller J, Bauer S, Roots I: Functional significance of a C–>A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br. J. Clin. Pharmacol.47,445–449 (1999).
  • 83  Han XM, Ouyang DS, Chen XP et al.: Inducibility of CYP1A2 by omeprazole in vivo related to the genetic polymorphism of CYP1A2. Br. J. Clin. Pharmacol.54,540–543 (2002).
  • 84  Nordmark A, Lundgren S, Ask B, Granath F, Rane A: The effect of the CYP1A2 *1F mutation on CYP1A2 inducibility in pregnant women. Br. J. Clin. Pharmacol.54,504–510 (2002).
  • 85  Aklillu E, Carrillo JA, Makonnen E et al.: Genetic polymorphism of CYP1A2 in Ethiopians affecting induction and expression: characterization of novel haplotypes with single-nucleotide polymorphisms in intron 1. Mol. Pharmacol.64,659–669 (2003).•• Demonstrates the functional significance of the different CYP1A2 intron 1 haplotypes.
  • 86  Sachse C, Bhambra U, Smith G et al.: Polymorphisms in the cytochrome P450 CYP1A2 gene (CYP1A2) in colorectal cancer patients and controls: allele frequencies, linkage disequilibrium and influence on caffeine metabolism. Br. J. Clin. Pharmacol.55,68–76 (2003).•• Phenotypic consequences, frequencies and linkage disequilibria of common CYP1A2 polymorphisms are described in Caucasians.
  • 87  Chen X, Wang L, Zhi L et al.: The G-113A polymorphism in CYP1A2 affects the caffeine metabolic ratio in a Chinese population. Clin. Pharmacol. Ther.78,249–259 (2005).
  • 88  Jiang Z, Dragin N, Jorge-Nebert LF et al.: Search for an association between the human CYP1A2 genotype and CYP1A2 metabolic phenotype. Pharmacogenet. Genomics16,359–367 (2006).• Provides data from resequencing the human CYP1A1_CYP1A2 locus and attempts to correlate the CYP1A2 genotype with a metabolic phenotype.
  • 89  Huang JD, Guo WC, Lai MD, Guo YL, Lambert GH: Detection of a novel cytochrome P-450 1A2 polymorphism (F21L) in Chinese. Drug Metab. Dispos.27,98–101 (1999).
  • 90  Chevalier D, Cauffiez C, Allorge D et al.: Five novel natural allelic variants – 951A>C, 1042G>A (D348N), 1156A>T (I386F), 1217G>A (C406Y) and 1291C>T (C431Y) – of the human CYP1A2 gene in a French Caucasian population. Hum. Mutat.17,355–356 (2001).
  • 91  Zhou H, Josephy PD, Kim D, Guengerich FP: Functional characterization of four allelic variants of human cytochrome P450 1A2. Arch. Biochem. Biophys.422,23–30 (2004).
  • 92  Allorge D, Chevalier D, Lo-Guidice JM et al.: Identification of a novel splice-site mutation in the CYP1A2 gene. Br. J. Clin. Pharmacol.56,341–344 (2003).
  • 93  Murayama N, Soyama A, Saito Y et al.: Six novel nonsynonymous CYP1A2 gene polymorphisms: catalytic activities of the naturally occurring variant enzymes. J. Pharmacol. Exp. Ther.308,300–306 (2004).
  • 94  Saito Y, Hanioka N, Maekawa K et al.: Functional analysis of three CYP1A2 variants found in a Japanese population. Drug Metab. Dispos.33,1905–1910 (2005).
  • 95  Soyama A, Saito Y, Hanioka N et al.: Single nucleotide polymorphisms and haplotypes of CYP1A2 in a Japanese population. Drug Metab. Pharmacokinet.20,24–33 (2005).
  • 96  Pucci L, Geppetti A, Maggini V, Lucchesi D, Maria Rossi A, Longo V: CYP1A2 F21L and F186L polymorphisms in an Italian population sample. Drug Metab. Pharmacokinet.22,220–222 (2007).
  • 97  Dandara C, Basvi PT, Bapiro TE, Sayi J, Hasler JA: Frequency of -163 C>A and 63 C>G single nucleotide polymorphism of cytochrome P450 1A2 in two African populations. Clin. Chem. Lab. Med.42,939–941 (2004).
  • 98  Ozdemir V, Kalow W, Okey AB et al.: Treatment-resistance to clozapine in association with ultrarapid CYP1A2 activity and the C–>A polymorphism in intron 1 of the CYP1A2 gene: effect of grapefruit juice and low-dose fluvoxamine. J. Clin. Psychopharmacol.21,603–607 (2001).•• Reports the impact of the CYP1A2 -163C>A polymorphism on treatment resistance to clozapine.
  • 99  Aitchison KJ, Jann MW, Zhao JH et al.: Clozapine pharmacokinetics and pharmacodynamics studied with Cyp1A2-null mice. J. Psychopharmacol.14,353–359 (2000).
  • 100  Melkersson KI, Scordo MG, Gunes A, Dahl ML: Impact of CYP1A2 and CYP2D6 polymorphisms on drug metabolism and on insulin and lipid elevations and insulin resistance in clozapine-treated patients. J. Clin. Psychiatry68,697–704 (2007).
  • 101  Eap CB, Bender S, Jaquenoud Sirot E et al.: Nonresponse to clozapine and ultrarapid CYP1A2 activity: clinical data and analysis of CYP1A2 gene. J. Clin. Psychopharmacol.24,214–219 (2004).
  • 102  Skogh E, Bengtsson F, Nordin C: Could discontinuing smoking be hazardous for patients administered clozapine medication? A case report. Ther. Drug Monit.21,580–582 (1999).
  • 103  Meyer JM: Individual changes in clozapine levels after smoking cessation: results and a predictive model. J. Clin. Psychopharmacol.21,569–574 (2001).
  • 104  Skogh E, Reis M, Dahl ML, Lundmark J, Bengtsson F: Therapeutic drug monitoring data on olanzapine and its N-demethyl metabolite in the naturalistic clinical setting. Ther. Drug Monit.24,518–526 (2002).
  • 105  Carrillo JA, Herraiz AG, Ramos SI, Gervasini G, Vizcaino S, Benitez J: Role of the smoking-induced cytochrome P450 (CYP) 1A2 and polymorphic CYP2D6 in steady-state concentration of olanzapine. J. Clin. Psychopharmacol.23,119–127 (2003).
  • 106  Tay JK, Tan CH, Chong SA, Tan EC: Functional polymorphisms of the cytochrome P450 1A2 (CYP1A2) gene and prolonged QTc interval in schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry31,1297–1302 (2007).
  • 107  Basile VS, Ozdemir V, Masellis M et al.: A functional polymorphism of the cytochrome P450 1A2 (CYP1A2) gene: association with tardive dyskinesia in schizophrenia. Mol. Psychiatry5,410–417 (2000).
  • 108  Fu Y, Fan CH, Deng HH et al.: Association of CYP2D6 and CYP1A2 gene polymorphism with tardive dyskinesia in Chinese schizophrenic patients. Acta Pharmacol. Sin.27,328–332 (2006).
  • 109  Rasmussen BB, Maenpaa J, Pelkonen O et al.: Selective serotonin reuptake inhibitors and theophylline metabolism in human liver microsomes: potent inhibition by fluvoxamine. Br. J. Clin. Pharmacol.39,151–159 (1995).
  • 110  Obase Y, Shimoda T, Kawano T et al.: Polymorphisms in the CYP1A2 gene and theophylline metabolism in patients with asthma. Clin. Pharmacol. Ther.73,468–474 (2003).
  • 111  Brzezinski A: Melatonin in humans. N. Engl. J. Med.336,186–195 (1997).
  • 112  Hartter S, Korhonen T, Lundgren S et al.: Effect of caffeine intake 12 or 24 hours prior to melatonin intake and CYP1A2*1F polymorphism on CYP1A2 phenotyping by melatonin. Basic Clin. Pharmacol. Toxicol.99,300–304 (2006).
  • 113  Hartter S, Grozinger M, Weigmann H, Roschke J, Hiemke C: Increased bioavailability of oral melatonin after fluvoxamine coadministration. Clin. Pharmacol. Ther.67,1–6 (2000).
  • 114  Ursing C, von Bahr C, Brismar K, Rojdmark S: Influence of cigarette smoking on melatonin levels in man. Eur. J. Clin. Pharmacol.61,197–201 (2005).
  • 115  Ursing C, Hartter S, von Bahr C, Tybring G, Bertilsson L, Rojdmark S: Does hepatic metabolism of melatonin affect the endogenous serum melatonin level in man? J. Endocrinol. Invest.25,459–462 (2002).
  • 116  Chen X, Wang H, Xie W et al.: Association of CYP1A2 genetic polymorphisms with hepatocellular carcinoma susceptibility: a case–control study in a high-risk region of China. Pharmacogenet. Genomics16,219–227 (2006).
  • 117  Pavanello S, Pulliero A, Lupi S, Gregorio P, Clonfero E: Influence of the genetic polymorphism in the 5´-noncoding region of the CYP1A2 gene on CYP1A2 phenotype and urinary mutagenicity in smokers. Mutat. Res.587,59–66 (2005).
  • 118  Pavanello S, B’Chir F, Pulliero A et al.: Interaction between CYP1A2 -T2467DELT polymorphism and smoking in adenocarcinoma and squamous cell carcinoma of the lung. Lung Cancer57,266–272 (2007).
  • 119  Osawa Y, Osawa KK, Miyaishi A et al.: NAT2 and CYP1A2 polymorphisms and lung cancer risk in relation to smoking status. Asian Pac. J. Cancer Prev.8,103–108 (2007).
  • 120  Bae SY, Choi SK, Kim KR et al.: Effects of genetic polymorphisms of MDR1, FMO3 and CYP1A2 on susceptibility to colorectal cancer in Koreans. Cancer Sci.97,774–779 (2006).
  • 121  Agudo A, Sala N, Pera G et al.: Polymorphisms in metabolic genes related to tobacco smoke and the risk of gastric cancer in the European prospective investigation into cancer and nutrition. Cancer Epidemiol. Biomarkers Prev.15,2427–2434 (2006).
  • 122  Li D, Jiao L, Li Y et al.: Polymorphisms of cytochrome P4501A2 and N-acetyltransferase genes, smoking, and risk of pancreatic cancer. Carcinogenesis27,103–111 (2006).
  • 123  Shou M, Korzekwa KR, Brooks EN, Krausz KW, Gonzalez FJ, Gelboin HV: Role of human hepatic cytochrome P450 1A2 and 3A4 in the metabolic activation of estrone. Carcinogenesis18,207–214 (1997).
  • 124  Lurie G, Maskarinec G, Kaaks R, Stanczyk FZ, le Marchand L: Association of genetic polymorphisms with serum estrogens measured multiple times during a 2-year period in premenopausal women. Cancer Epidemiol. Biomarkers Prev.14,1521–1527 (2005).
  • 125  le Marchand L, Donlon T, Kolonel LN, Henderson BE, Wilkens LR: Estrogen metabolism-related genes and breast cancer risk: the multiethnic cohort study. Cancer Epidemiol. Biomarkers Prev.14,1998–2003 (2005).
  • 126  Mikhailova ON, Gulyaeva LF, Prudnikov AV, Gerasimov AV, Krasilnikov SE: Estrogen-metabolizing gene polymorphisms in the assessment of female hormone-dependent cancer risk. Pharmacogenomics J.6,189–193 (2006).
  • 127  Nichols RC, Cooper S, Trask HW et al.: Uroporphyrin accumulation in hepatoma cells expressing human or mouse CYP1A2: relation to the role of CYP1A2 in human porphyria cutanea tarda. Biochem. Pharmacol.65,545–550 (2003).
  • 128  Sinclair PR, Gorman N, Tsyrlov IB, Fuhr U, Walton HS, Sinclair JF: Uroporphyrinogen oxidation catalyzed by human cytochromes P450. Drug Metab. Dispos.26,1019–1025 (1998).
  • 129  Sinclair PR, Gorman N, Walton HS et al.: CYP1A2 is essential in murine uroporphyria caused by hexachlorobenzene and iron. Toxicol. Appl. Pharmacol.162,60–67 (2000).
  • 130  Smith AG, Clothier B, Carthew P et al.: Protection of the Cyp1a2(-/-) null mouse against uroporphyria and hepatic injury following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol. Appl. Pharmacol.173,89–98 (2001).
  • 131  Christiansen L, Bygum A, Jensen A et al.: Association between CYP1A2 polymorphism and susceptibility to porphyria cutanea tarda. Hum. Genet.107,612–614 (2000).
  • 132  Signorello LB, Nordmark A, Granath F et al.: Caffeine metabolism and the risk of spontaneous abortion of normal karyotype fetuses. Obstet. Gynecol.98,1059–1066 (2001).
  • 133  Grosso LM, Triche EW, Belanger K, Benowitz NL, Holford TR, Bracken MB: Caffeine metabolites in umbilical cord blood, cytochrome P-450 1A2 activity, and intrauterine growth restriction. Am. J. Epidemiol.163,1035–1041 (2006).
  • 134  Sata F, Yamada H, Suzuki K et al.: Caffeine intake, CYP1A2 polymorphism and the risk of recurrent pregnancy loss. Mol. Hum. Reprod.11,357–360 (2005).
  • 135  Smith AG, Davies R, Dalton TP et al.: Intrinsic hepatic phenotype associated with the Cyp1a2 gene as shown by cDNA expression microarray analysis of the knockout mouse. EHP Toxicogenomics111,45–51 (2003).•• Demonstrates changes in the expressions of genes involved in cell-cycle control, insulin action, lipogenesis, fatty acid and cholesterol biosynthetic pathways are shown in CYP1A2-knockout mice.
  • 136  Hamdy SI, Hiratsuka M, Narahara K et al.: Genotyping of four genetic polymorphisms in the CYP1A2 gene in the Egyptian population. Br. J. Clin. Pharmacol.55,321–324 (2003).
  • 201  Drugs metabolized by CYPs http://medicine.iupui.edu/flockhart/table.htm• List of drugs that are metabolized by a specific CYP isoform, and published inhibitors, inducers and genetic influences on that isoform.
  • 202  CYP1A2 allele nomenclature www.cypalleles.ki.se/cyp1a2.htm
  • 203  International HapMap Project: CYP1A2 allele nomenclature www.hapmap.org/