We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

DNA methylation profiling highlights the unique nature of the human placental epigenome

    &
    Richard Saffery

    Developmental Epigenetics, Murdoch Childrens Research Institute, Royal Children’s Hospital & Department of Paediatrics, University of Melbourne, Parkville, Victoria, 3052, Australia

    Published Online:https://doi.org/10.2217/epi.10.45

    As the ‘gateway’ to the fetus, the placenta is subject to a myriad of environmental factors, each with the potential to alter placental epigenetic and gene expression profile. This can have direct consequences for the developing fetus and potentially even long-term health implications. As a result, interest in placental epigenetics generally, and changes occurring in placenta-associated disease, has intensified over recent years. This article will discuss the general features of placental DNA methylation and will describe current technologies for profiling genome-wide DNA methylation patterns in this tissue, the approaches to data analysis and some of the major findings from recent studies.

    Papers of special note have been highlighted as: ▪ of interest

    Bibliography

    • De Witt F: An historical study on theories of the placenta to 1900. J. Hist. Med. Allied Sci.14,360–374 (1959).
    • Huppertz B: The anatomy of the normal placenta. J. Clin. Pathol.61(12),1296–1302 (2008).
    • Benerischke K, Kaufmann P: Pathology of the Human Placenta (6th Edition). Springer, Germany (2006).
    • Evain-Brion D, Malassine A: Human placenta as an endocrine organ. Growth Horm. IGF Res.13(Suppl. A),S34–S37 (2003).
    • Barker DJ: The developmental origins of insulin resistance. Horm. Res.64(Suppl. 3),2–7 (2005).
    • Gottesman II, Hanson DR: Human development: biological and genetic processes. Annu. Rev. Psychol.56,263–286 (2005).
    • Hanson MA, Gluckman PD: Developmental processes and the induction of cardiovascular function: conceptual aspects. J. Physiol.565(Pt 1),27–34 (2005).
    • Sood R, Zehnder JL, Druzin ML, Brown PO: Gene expression patterns in human placenta. Proc. Natl Acad. Sci. USA103(14),5478–5483 (2006).
    • Rawn SM, Cross JC: The evolution, regulation, and function of placenta-specific genes. Annu. Rev. Cell Dev. Biol.24,159–181 (2008).
    • 10  Lambertini L, Diplas AI, Lee MJ, Sperling R, Chen J, Wetmur J: A sensitive functional assay reveals frequent loss of genomic imprinting in human placenta. Epigenetics3(5),261–269 (2008).
    • 11  Coan PM, Burton GJ, Ferguson-Smith AC: Imprinted genes in the placenta--a review. Placenta26(Suppl. A),S10–S20 (2005).
    • 12  Frost JM, Moore GE: The importance of imprinting in the human placenta. PLoS Genet.6,e1001015 (2010).
    • 13  Wagschal A, Feil R: Genomic imprinting in the placenta. Cytogenet. Genome Res.113(1–4),90–98 (2006).
    • 14  Ng HK, Novakovic B, Hiendleder S, Craig JM, Roberts CT, Saffery R: Distinct patterns of gene-specific methylation in mammalian placentas: implications for placental evolution and function. Placenta31(4),259–268 (2010).
    • 15  Monk M, Boubelik M, Lehnert S: Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development99(3),371–382 (1987).
    • 16  Jirtle RL, Skinner MK: Environmental epigenomics and disease susceptibility. Nat. Rev. Genet.8(4),253–262 (2007).
    • 17  Okada Y, Yamagata K, Hong K, Wakayama T, Zhang Y: A role for the elongator complex in zygotic paternal genome demethylation. Nature463(7280),554–558 (2010).
    • 18  Chapman V, Forrester L, Sanford J, Hastie N, Rossant J: Cell lineage-specific undermethylation of mouse repetitive DNA. Nature307(5948),284–286 (1984).
    • 19  Razin A, Webb C, Szyf M et al.: Variations in DNA methylation during mouse cell differentiation in vivo and in vitro. Proc. Natl Acad. Sci. USA81(8),2275–2279 (1984).
    • 20  Santos F, Hendrich B, Reik W, Dean W: Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol.241(1),172–182 (2002).
    • 21  Gama-Sosa MA, Wang RY, Kuo KC, Gehrke CW, Ehrlich M: The 5-methylcytosine content of highly repeated sequences in human DNA. Nucleic Acids Res.11(10),3087–3095 (1983).
    • 22  Gama-Sosa MA, Slagel VA, Trewyn RW et al.: The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res.11(19),6883–6894 (1983).
    • 23  Tsien F, Fiala ES, Youn B et al.: Prolonged culture of normal chorionic villus cells yields ICF syndrome-like chromatin decondensation and rearrangements. Cytogenet. Genome Res.98(1),13–21 (2002).
    • 24  Reiss D, Zhang Y, Mager DL: Widely variable endogenous retroviral methylation levels in human placenta. Nucleic Acids Res.35(14),4743–4754 (2007).
    • 25  Shen HM, Nakamura A, Sugimoto J et al.: Tissue specificity of methylation and expression of human genes coding for neuropeptides and their receptors, and of a human endogenous retrovirus K family. J. Hum. Genet.51(5),440–450 (2006).
    • 26  Medstrand P, Landry JR, Mager DL: Long terminal repeats are used as alternative promoters for the endothelin B receptor and apolipoprotein C-I genes in humans. J. Biol. Chem.276(3),1896–1903 (2001).
    • 27  Gimenez J, Montgiraud C, Pichon JP et al.: Custom human endogenous retroviruses dedicated microarray identifies self-induced HERV-W family elements reactivated in testicular cancer upon methylation control. Nucleic Acids Res.38(7),2229–2246 (2009).
    • 28  Cotton AM, Avila L, Penaherrera MS, Affleck JG, Robinson WP, Brown CJ: Inactive X chromosome-specific reduction in placental DNA methylation. Hum. Mol. Genet.18(19),3544–3552 (2009).▪ Reported lower methylation on the inactive X chromosome in placenta compared with whole blood. This finding sheds light on the relationship between DNA methylation and X inactivation in different cell types.
    • 29  Zaragoza MV, Surti U, Redline RW, Millie E, Chakravarti A, Hassold TJ: Parental origin and phenotype of triploidy in spontaneous abortions: predominance of diandry and association with the partial hydatidiform mole. Am. J. Hum. Genet.66(6),1807–1820 (2000).
    • 30  Perrin D, Ballestar E, Fraga MF et al.: Specific hypermethylation of LINE-1 elements during abnormal overgrowth and differentiation of human placenta. Oncogene26(17),2518–2524 (2007).
    • 31  Monk D, Arnaud P, Apostolidou S et al.: Limited evolutionary conservation of imprinting in the human placenta. Proc. Natl Acad. Sci. USA103(17),6623–6628 (2006).
    • 32  Renfree MB, Hore TA, Shaw G, Graves JA, Pask AJ: Evolution of genomic imprinting: insights from marsupials and monotremes. Annu. Rev. Genomics Hum. Genet.10,241–262 (2009).
    • 33  Pozharny Y, Lambertini L, Ma Y et al.: Genomic loss of imprinting in first-trimester human placenta. Am. J. Obstet. Gynecol.202(4),391.e391–e398 (2010).
    • 34  McMinn J, Wei M, Sadovsky Y, Thaker HM, Tycko B: Imprinting of PEG1/MEST isoform 2 in human placenta. Placenta27(2–3),119–126 (2006).
    • 35  Diplas AI, Lambertini L, Lee MJ et al.: Differential expression of imprinted genes in normal and IUGR human placentas. Epigenetics4(4),235–240 (2009).
    • 36  Bourque DK, Avila L, Penaherrera M, von Dadelszen P, Robinson WP: Decreased placental methylation at the H19/IGF2 imprinting control region is associated with normotensive intrauterine growth restriction but not preeclampsia. Placenta31(3),197–202 (2010).
    • 37  Guo L, Choufani S, Ferreira J et al.: Altered gene expression and methylation of the human chromosome 11 imprinted region in small for gestational age (SGA) placentae. Dev. Biol.320(1),79–91 (2008).
    • 38  Tabano S, Colapietro P, Cetin I et al.: Epigenetic modulation of the IGF2/H19 imprinted domain in human embryonic and extra-embryonic compartments and its possible role in fetal growth restriction. Epigenetics5(4),313–324 (2010).
    • 39  Mann MR, Lee SS, Doherty AS et al.: Selective loss of imprinting in the placenta following preimplantation development in culture. Development131(15),3727–3735 (2004).
    • 40  Zechner U, Pliushch G, Schneider E et al.: Quantitative methylation analysis of developmentally important genes in human pregnancy losses after ART and spontaneous conception. Mol. Hum. Reprod.16(9),704–713 (2009).
    • 41  Haycock PC, Ramsay M: Exposure of mouse embryos to ethanol during preimplantation development: effect on DNA methylation in the h19 imprinting control region. Biol. Reprod.81(4),618–627 (2009).
    • 42  Luo YM, Fang Q, Zhuang GL, Liang RC, Liu QL: [Characteristics of IGF-II gene imprinting in twin placentas]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi23(5),497–501 (2006).
    • 43  Chiu RW, Chim SS, Wong IH et al.: Hypermethylation of RASSF1A in human and rhesus placentas. Am. J. Pathol.170(3),941–950 (2007).
    • 44  Guilleret I, Osterheld MC, Braunschweig R, Gastineau V, Taillens S, Benhattar J: Imprinting of tumor-suppressor genes in human placenta. Epigenetics4(1),62–68 (2009).
    • 45  Novakovic B, Rakyan V, Ng HK et al.: Specific tumour-associated methylation in normal human term placenta and first-trimester cytotrophoblasts. Mol. Hum. Reprod.14(9),547–554 (2008).
    • 46  Wong NC, Novakovic B, Weinrich B et al.: Methylation of the adenomatous polyposis coli (APC) gene in human placenta and hypermethylation in choriocarcinoma cells. Cancer Lett.268(1),56–62 (2008).
    • 47  Xue WC, Feng HC, Tsao SW et al.: Methylation status and expression of E-cadherin and cadherin-11 in gestational trophoblastic diseases. Int. J. Gynecol. Cancer13(6),879–888 (2003).
    • 48  Novakovic B, Sibson M, Ng HK et al.: Placenta-specific methylation of the vitamin D 24-hydroxylase gene: implications for feedback autoregulation of active vitamin D levels at the fetomaternal interface. J. Biol. Chem.284(22),14838–14848 (2009).
    • 49  Novakovic B, Wong NC, Sibson M et al.: DNA methylation-mediated down-regulation of DNA methyltransferase-1 (DNMT1) is coincident with, but not essential for, global hypomethylation in human placenta. J. Biol. Chem.285(13),9583–9593 (2010).
    • 50  Chim SS, Tong YK, Chiu RW et al.: Detection of the placental epigenetic signature of the maspin gene in maternal plasma. Proc. Natl Acad. Sci. USA102(41),14753–14758 (2005).
    • 51  Bellido ML, Radpour R, Lapaire O et al.: MALDI-TOF mass array analysis of RASSF1A, SERPINB5 methylation patterns in human placenta and plasma. Biol. Reprod.82(4),745–750 (2010).
    • 52  Zhang HJ, Siu MK, Wong ES et al.: Oct4 is epigenetically regulated by methylation in normal placenta and gestational trophoblastic disease. Placenta29(6),549–554 (2008).
    • 53  Bellido ML, Radpour R, Lapaire O et al.: MALDI-TOF Mass array analysis of RASSF1A, SERPINB5 methylation patterns in human placenta and plasma. Biol. Reprod.745–750 (2010).
    • 54  Bourque DK, Avila L, Penaherrera M, von Dadelszen P, Robinson WP: Decreased Placental Methylation at the H19/IGF2 imprinting control region is associated with normotensive intrauterine growth restriction but not preeclampsia. Placenta31(3),197–202 (2010).
    • 55  Brown L, Brown G, Vacek P, Brown S: Aneuploidy detection in mixed DNA samples by methylation-sensitive amplification and microarray analysis. Clin. Chem.56(5),805–813 (2010).
    • 56  Chu T, Burke B, Bunce K, Surti U, Allen Hogge W, Peters DG: A microarray-based approach for the identification of epigenetic biomarkers for the noninvasive diagnosis of fetal disease. Prenat. Diagn.29(11),1020–1030 (2009).▪ Using a high resolution 215,060 probe custom oligonucleotide microarray for chromosomes 13, 18 and 21, this study identified over 6000 potential biomarkers for fetal aneuploidy in maternal plasma.
    • 57  Papageorgiou EA, Fiegler H, Rakyan V et al.: Sites of differential DNA methylation between placenta and peripheral blood: molecular markers for noninvasive prenatal diagnosis of aneuploidies. Am. J. Pathol.174(5),1609–1618 (2009).▪ Using a high-resolution tiling array for chromosomes 21, 13, 18, X and Y, this study found that most DNA methylation differences between first- and third-trimester placenta and maternal blood occur in nongenic regions.
    • 58  Tong YK, Jin S, Chiu RW et al.: Noninvasive prenatal detection of trisomy 21 by an epigenetic-genetic chromosome-dosage approach. Clin. Chem.56(1),90–98 (2010).
    • 59  Laird PW: Principles and challenges of genome-wide DNA methylation analysis. Nat. Rev. Genet.11(3),191–203 (2010).▪ Up-to-date review of next-generation sequencing technology, with a focus on data analysis approaches and future directions in the field.
    • 60  Metzker ML: Sequencing technologies – the next generation. Nat. Rev. Genet.11(1),31–46 (2010).
    • 61  Rakyan V, Down T, Thorne N et al.: An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs). Genome Res.18(9),1518–1529 (2008).▪ Useful resource of DNA methylation patterns in several human tissue types, including placenta.
    • 62  Christensen BC, Houseman EA, Marsit CJ et al.: Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet.5(8),e1000602 (2009).
    • 63  Houseman EA, Christensen BC, Yeh RF et al.: Model-based clustering of DNA methylation array data: a recursive-partitioning algorithm for high-dimensional data arising as a mixture of β distributions. BMC Bioinformatics9,365 (2008).
    • 64  Yuen RK, Avila L, Penaherrera MS et al.: Human placental-specific epipolymorphism and its association with adverse pregnancy outcomes. PLoS One4(10),e7389 (2009).▪ This study used the GoldenGate 1536 probe array to study variable DNA methylation loci, ‘epipolymorphisms’, in placentas from unrelated individuals. Almost 10% of probes showed high variation between 13 unrelated placentas.
    • 65  Jinno Y, Yun K, Nishiwaki K et al.: Mosaic and polymorphic imprinting of the WT1 gene in humans. Nat. Genet.6(3),305–309 (1994).
    • 66  Tzschoppe AA, Struwe E, Dorr HG et al.: Differences in gene expression dependent on sampling site in placental tissue of fetuses with intrauterine growth restriction. Placenta31(3),178–185 (2009).
    • 67  Gicquel C, Gaston V, Mandelbaum J, Siffroi JP, Flahault A, Le Bouc Y: In vitro fertilization may increase the risk of Beckwith–Wiedemann syndrome related to the abnormal imprinting of the KCN1OT gene. Am. J. Hum. Genet.72(5),1338–1341 (2003).
    • 68  Orstavik KH, Eiklid K, van der Hagen CB et al.: Another case of imprinting defect in a girl with Angelman syndrome who was conceived by intracytoplasmic semen injection. Am. J. Hum. Genet.72(1),218–219 (2003).
    • 69  Allen C, Bowdin S, Harrison RF et al.: Pregnancy and perinatal outcomes after assisted reproduction: a comparative study. Ir. J. Med. Sci.177(3),233–241 (2008).
    • 70  Bowdin S, Allen C, Kirby G et al.: A survey of assisted reproductive technology births and imprinting disorders. Hum. Reprod.22(12),3237–3240 (2007).
    • 71  Cox GF, Burger J, Lip V et al.: Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am. J. Hum. Genet.71(1),162–164 (2002).
    • 72  DeBaun MR, Niemitz EL, Feinberg AP: Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am. J. Hum. Genet.72(1),156–160 (2003).
    • 73  Fauque P, Jouannet P, Lesaffre C et al.: Assisted reproductive technology affects developmental kinetics, h19 imprinting control region methylation and h19 gene expression in individual mouse embryos. BMC Dev. Biol.7,116 (2007).
    • 74  Gomes MV, Huber J, Ferriani RA, Amaral Neto AM, Ramos ES: Abnormal methylation at the KvDMR1 imprinting control region in clinically normal children conceived by assisted reproductive technologies. Mol. Hum. Reprod.15(8),471–477 (2009).
    • 75  Halliday J, Oke K, Breheny S, Algar E, J Amor D: Beckwith–Wiedemann syndrome and IVF: a case-control study. Am. J. Hum. Genet.75(3),526–528 (2004).
    • 76  Kallen B, Finnstrom O, Nygren KG, Olausson PO: In vitro fertilization (IVF) in Sweden: infant outcome after different IVF fertilization methods. Fertil. Steril.84(3),611–617 (2005).
    • 77  Kallen B, Finnstrom O, Nygren KG, Olausson PO: In vitro fertilization (IVF) in Sweden: risk for congenital malformations after different IVF methods. Birth Defects Res. A Clin. Mol. Teratol.73(3),162–169 (2005).
    • 78  Lidegaard O, Pinborg A, Andersen AN: Imprinting diseases and IVF: Danish National IVF cohort study. Hum. Reprod.20(4),950–954 (2005).
    • 79  Lim D, Bowdin SC, Tee L et al.: Clinical and molecular genetic features of Beckwith-Wiedemann syndrome associated with assisted reproductive technologies. Hum. Reprod.24(3),741–747 (2009).
    • 80  Maher ER, Brueton LA, Bowdin SC et al.: Beckwith-Wiedemann syndrome and assisted reproduction technology (ART). J. Med. Genet.40(1),62–64 (2003).
    • 81  Pinborg A, Lidegaard O, Andersen AN: The vanishing twin: a major determinant of infant outcome in IVF singleton births. Br. J. Hosp. Med. (Lond.)67(8),417–420 (2006).
    • 82  Pinborg A, Lidegaard O, Freiesleben NC, Andersen AN: Vanishing twins: a predictor of small-for-gestational age in IVF singletons. Hum. Reprod.22(10),2707–2714 (2007).
    • 83  Pinborg A, Lidegaard O, la Cour Freiesleben N, Andersen AN: Consequences of vanishing twins in IVF/ICSI pregnancies. Hum. Reprod.20(10),2821–2829 (2005).
    • 84  Rossignol S, Steunou V, Chalas C et al.: The epigenetic imprinting defect of patients with Beckwith-Wiedemann syndrome born after assisted reproductive technology is not restricted to the 11p15 region. J. Med. Genet.43(12),902–907 (2006).
    • 85  Sato A, Otsu E, Negishi H, Utsunomiya T, Arima T: Aberrant DNA methylation of imprinted loci in superovulated oocytes. Hum. Reprod.22(1),26–35 (2007).
    • 86  Shi W, Haaf T: Aberrant methylation patterns at the two-cell stage as an indicator of early developmental failure. Mol. Reprod. Dev.63(3),329–334 (2002).
    • 87  Sutcliffe AG, Peters CJ, Bowdin S et al.: Assisted reproductive therapies and imprinting disorders – a preliminary British survey. Hum. Reprod.21(4),1009–1011 (2006).
    • 88  Tierling S, Souren NY, Gries J et al.: Assisted reproductive technologies do not enhance the variability of DNA methylation imprints in human. J. Med. Genet. (2009).
    • 89  Katari S, Turan N, Bibikova M et al.: DNA methylation and gene expression differences in children conceived in vitro or in vivo. Hum. Mol. Genet.18(20),3769–3778 (2009).▪ First study to examine the effects of in vitro fertilization on genome-wide DNA methylation patterns at promoter regions in placenta and cord blood. A trend towards lower methylation was detected in placentas from in vitro fertilization individuals.
    • 90  Market-Velker BA, Zhang L, Magri LS, Bonvissuto AC, Mann MR: Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum. Mol. Genet.19(1),36–51 (2010).
    • 91  Li T, Vu TH, Ulaner GA et al.: IVF results in de novo DNA methylation and histone methylation at an Igf2-H19 imprinting epigenetic switch. Mol. Hum. Reprod.11(9),631–640 (2005).
    • 92  Fauque P, Ripoche MA, Tost J et al.: Modulation of imprinted gene network in placenta results in normal development of in vitro manipulated mouse embryos. Hum. Mol. Genet.19(9),1779–1790 (2010).
    • 93  Turan N, Katari S, Gerson LF et al.: Inter- and intra-individual variation in allele-specific DNA methylation and gene expression in children conceived using assisted reproductive technology. PLoS Genet.6(7),e1001033 (2010).
    • 94  Zhang Y, Cui Y, Zhou Z, Sha J, Li Y, Liu J: Altered global gene expressions of human placentae subjected to assisted reproductive technology treatments. Placenta31(4),251–258 (2010).
    • 95  Yu L, Chen M, Zhao D et al.: The H19 gene imprinting in normal pregnancy and pre-eclampsia. Placenta30(5),443–447 (2009).
    • 96  Redman CW, Sargent IL: Latest advances in understanding preeclampsia. Science308(5728),1592–1594 (2005).
    • 97  Fisher SJ: The placental problem: linking abnormal cytotrophoblast differentiation to the maternal symptoms of preeclampsia. Reprod. Biol. Endocrinol.2,53 (2004).
    • 98  Barker DJ: Intra-uterine programming of the adult cardiovascular system. Curr. Opin Nephrol. Hypertens.6(1),106–110 (1997).
    • 99  Tsui DW, Chan KC, Chim SS et al.: Quantitative aberrations of hypermethylated RASSF1A gene sequences in maternal plasma in pre-eclampsia. Prenat. Diagn.27(13) 1212–1218 (2007).
    • 100  Yuen RK, Penaherrera MS, von Dadelszen P, McFadden DE, Robinson WP: DNA methylation profiling of human placentas reveals promoter hypomethylation of multiple genes in early-onset preeclampsia. Eur. J. Hum. Genet.18(9),1006–1012 (2010).
    • 101  Pang ZJ, Xing FQ: Expression profile of trophoblast invasion-associated genes in the pre-eclamptic placenta. Br. J. Biomed. Sci.60(2),97–101 (2003).
    • 102  Lo YM, Tein MS, Lau TK et al.: Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am. J. Hum. Genet.62(4),768–775 (1998).
    • 103  Lo YM, Lau TK, Zhang J et al.: Increased fetal DNA concentrations in the plasma of pregnant women carrying fetuses with trisomy 21. Clin. Chem.45(10),1747–1751 (1999).
    • 104  Litton C, Stone J, Eddleman K, Lee MJ: Noninvasive prenatal diagnosis: past, present, and future. Mt. Sinai J. Med.76(6),521–528 (2009).
    • 105  Chim SS, Jin S, Lee TY et al.: Systematic search for placental DNA-methylation markers on chromosome 21: toward a maternal plasma-based epigenetic test for fetal trisomy 21. Clin. Chem.54(3),500–511 (2008).