We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Epigenetics of kidney cancer and bladder cancer

    Amanda M Hoffman

    Departments of Surgical Oncology & Pathology, W350, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA

    &
    Published Online:https://doi.org/10.2217/epi.10.64

    This article focuses on the epigenetic alterations of aberrant promoter hypermethylation of genes, and histone modifications or RNA interference in cancer cells. Current knowledge of the hypermethylation of allele(s) in classical tumor suppressor genes in inherited and sporadic cancer, candidate tumor suppressor and other cancer genes is summarized gene by gene. Global and array-based studies of tumor cell hypermethylation are discussed. The importance of standardization of scoring of the methylation status of a gene is highlighted. The histone marks associated with hypermethylated genes, and the miRNAs with dysregulated expression, in kidney or bladder tumor cells are also discussed. Kidney cancer has the highest mortality rate of the genito–urinary cancers. There are management issues associated with the high recurrence rate of superficial bladder cancer, while muscle-invasive bladder cancer has a poor prognosis. These clinical problems are the basis for the translational application of gene hypermethylation in the diagnosis and prognosis of kidney and bladder cancer.

    Papers of special note have been highlighted as: ▪ of interest

    Bibliography

    • Jemal A, Siegel R, Xu J, Ward E: Cancer statistics, 2010. CA Cancer J. Clin.60,277–300 (2010).
    • Cohen HT, McGovern FJ: Renal-cell carcinoma. N. Engl. J. Med.353,2477–2490 (2005).
    • Zambrano NR, Lubensky IA, Merino MJ, Linehan WM, Walther MM: Histopathology and molecular genetics of renal tumors: toward unification of a classification system. J. Urol.162,1246–1258 (1999).
    • Herr H, Lamm DL, Denis L: Management of superficial bladder cancer. In: Principles & Practice of Genitourinary Oncology. Raghavan D, Scher HL, Leibel SA, Lange PH (Eds). Lippincott-Raven, PA, USA, 273–280 (1997).
    • Cairns P, Sidransky D: Bladder Cancer, 2nd Edition. New York McGraw-Hill, NY, USA (2002).
    • Dalgliesh GL, Furge K, Greenman C et al.: Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature463,360–363 (2010).
    • Thomas RK, Baker AC, Debiasi RM et al.: High-throughput oncogene mutation profiling in human cancer. Nat. Genet.39,347–351 (2007).
    • Beroukhim R, Brunet JP, Di Napoli A et al.: Patterns of gene expression and copy-number alterations in von-Hippel Lindau disease-associated and sporadic clear cell carcinoma of the kidney. Cancer Res.69,4674–4681 (2009).
    • Hoque MO, Lee CC, Cairns P, Schoenberg M, Sidransky D: Genome-wide genetic characterization of bladder cancer: a comparison of high-density single-nucleotide polymorphism arrays and PCR-based microsatellite analysis. Cancer Res.63,2216–2222 (2003).
    • 10  Jones PA, Baylin SB: The fundamental role of epigenetic events in cancer. Nat. Rev. Genet.3,415–428 (2002).
    • 11  Dunn BK: Hypomethylation: one side of a larger picture. Ann. NY Acad. Sci.983,28–42 (2003).
    • 12  Cui H, Niemitz EL, Ravenel JD et al.: Loss of imprinting of insulin-like growth factor-II in Wilms’ tumor commonly involves altered methylation but not mutations of CTCF or its binding site. Cancer Res.61,4947–4950 (2001).
    • 13  Cui H, Onyango P, Brandenburg S, Wu Y, Hsieh CL, Feinberg AP: Loss of imprinting in colorectal cancer linked to hypomethylation of H19 and IGF2. Cancer Res.62,6442–6446 (2002).
    • 14  Byun HM, Wong HL, Birnstein EA, Wolff EM, Liang G, Yang AS: Examination of IGF2 and H19 loss of imprinting in bladder cancer. Cancer Res.67,10753–10758 (2007).
    • 15  Herman JG, Latif F, Weng Y et al.: Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc. Natl Acad. Sci. USA91,9700–9704 (1994).
    • 16  Dulaimi E, Ibanez de Caceres I, Uzzo RG et al.: Promoter hypermethylation profile of kidney cancer. Clin. Cancer Res.10,3972–3979 (2004).
    • 17  Schmidt L, Duh FM, Chen F et al.: Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat. Genet.16,68–73 (1997).
    • 18  Tomlinson IP, Alam NA, Rowan AJ et al.: Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat. Genet.30,406–410 (2002).
    • 19  Nickerson ML, Warren MB, Toro JR et al.: Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt–Hogg–Dube syndrome. Cancer Cell2,157–164 (2002).
    • 20  da Silva NF, Gentle D, Hesson LB, Morton DG, Latif F, Maher ER: Analysis of the Birt–Hogg–Dube (BHD) tumour suppressor gene in sporadic renal cell carcinoma and colorectal cancer. J. Med. Genet.40,820–824 (2003).
    • 21  Gad S, Lefevre SH, Khoo SK et al.: Mutations in BHD and TP53 genes, but not in HNF1β gene, in a large series of sporadic chromophobe renal cell carcinoma. Br. J. Cancer96,336–340 (2007).
    • 22  Ricketts C, Woodward ER, Killick P et al.: Germline SDHB mutations and familial renal cell carcinoma. J. Natl Cancer Inst.100,1260–1262 (2008).
    • 23  Morris MR, Hesson LB, Wagner KJ et al.: Multigene methylation analysis of Wilms’ tumour and adult renal cell carcinoma. Oncogene22,6794–6801 (2003).
    • 24  Lynch HT, Smyrk TC, Watson P et al.: Genetics, natural history, tumor spectrum, and pathology of hereditary nonpolyposis colorectal cancer: an updated review. Gastroenterology104,1535–1549 (1993).
    • 25  Gylling AH, Nieminen TT, Abdel-Rahman WM et al.: Differential cancer predisposition in Lynch syndrome: insights from molecular analysis of brain and urinary tract tumors. Carcinogenesis29,1351–1359 (2008).
    • 26  Herman JG, Umar A, Polyak K et al.: Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl Acad. Sci. USA95,6870–6875 (1998).
    • 27  Catto JW, Azzouzi AR, Rehman I et al.: Promoter hypermethylation is associated with tumor location, stage, and subsequent progression in transitional cell carcinoma. J. Clin. Oncol.23,2903–2910 (2005).
    • 28  Esteller M, Levine R, Baylin SB, Ellenson LH, Herman JG: MLH1 promoter hypermethylation is associated with the microsatellite instability phenotype in sporadic endometrial carcinomas. Oncogene17,2413–2417 (1998).
    • 29  Esteller M, Catasus L, Matias-Guiu X et al.: hMLH1 promoter hypermethylation is an early event in human endometrial tumorigenesis. Am. J. Pathol.155,1767–1772 (1999).
    • 30  Haibach H, Burns TW, Carlson HE, Burman KD, Deftos LJ: Multiple hamartoma syndrome (Cowden’s disease) associated with renal cell carcinoma and primary neuroendocrine carcinoma of the skin (Merkel cell carcinoma). Am. J. Clin. Pathol.97,705–712 (1992).
    • 31  Pilarski R, Eng C: Will the real Cowden syndrome please stand up (again)? Expanding mutational and clinical spectra of the PTEN hamartoma tumour syndrome. J. Med. Genet.41,323–326 (2004).
    • 32  Liaw D, Marsh DJ, Li J et al.: Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat. Genet.16,64–67 (1997).
    • 33  Cairns P, Evron E, Okami K et al.: Point mutation and homozygous deletion of PTEN/MMAC1 in primary bladder cancers. Oncogene16,3215–3218 (1998).
    • 34  Zysman MA, Chapman WB, Bapat B: Considerations when analyzing the methylation status of PTEN tumor suppressor gene. Am. J. Pathol.160,795–800 (2002).
    • 35  Niida Y, Stemmer-Rachamimov AO, Logrip M et al.: Survey of somatic mutations in tuberous sclerosis complex (TSC) hamartomas suggests different genetic mechanisms for pathogenesis of TSC lesions. Am. J. Hum. Genet.69,493–503 (2001).
    • 36  Rocco JW, Sidransky D: p16(MTS-1/CDKN2/INK4a) in cancer progression. Exp. Cell Res.264,42–55 (2001).
    • 37  Herman JG, Merlo A, Mao L et al.: Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res.55,4525–4530 (1995).
    • 38  Smiraglia DJ, Rush LJ, Fruhwald MC et al.: Excessive CpG island hypermethylation in cancer cell lines versus primary human malignancies. Hum. Mol. Genet.10,1413–1419 (2001).▪ Illustrates the point that tumor cell lines need not be representative of the extent of aberrant methylation in a primary tumor.
    • 39  Dulaimi E, Uzzo RG, Greenberg RE, Al-Saleem T, Cairns P: Detection of bladder cancer in urine by a tumor suppressor gene hypermethylation panel. Clin. Cancer Res.10,1887–1893 (2004).
    • 40  Robertson KD, Jones PA: The human ARF cell cycle regulatory gene promoter is a CpG island which can be silenced by DNA methylation and down-regulated by wild-type p53. Mol. Cell Biol.18,6457–6473 (1998).
    • 41  Esteller M, Corn PG, Baylin SB, Herman JG: A gene hypermethylation profile of human cancer. Cancer Res.61,3225–3229 (2001).
    • 42  Esteller M, Sparks A, Toyota M et al.: Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer. Cancer Res.60,4366–4371 (2000).
    • 43  Maruyama R, Toyooka S, Toyooka KO et al.: Aberrant promoter methylation profile of bladder cancer and its relationship to clinicopathological features. Cancer Res.61,8659–8663 (2001).
    • 44  Neuhausen A, Florl AR, Grimm MO, Schulz WA: DNA methylation alterations in urothelial carcinoma. Cancer Biol. Ther.5,993–1001 (2006).
    • 45  Becker KF, Atkinson MJ, Reich U et al.: E-cadherin gene mutations provide clues to diffuse type gastric carcinomas. Cancer Res.54,3845–3852 (1994).
    • 46  Guilford P, Hopkins J, Harraway J et al.: E-cadherin germline mutations in familial gastric cancer. Nature392,402–405 (1998).
    • 47  Grady WM, Willis J, Guilford PJ et al.: Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer. Nat. Genet.26,16–17 (2000).
    • 48  Kawakami T, Okamoto K, Ogawa O, Okada Y: Multipoint methylation and expression analysis of tumor suppressor genes in human renal cancer cells. Urology61,226–230 (2003).
    • 49  Chung WB, Hong SH, Kim JA, Sohn YK, Kim BW, Kim JW: Hypermethylation of tumor-related genes in genitourinary cancer cell lines. J. Korean Med. Sci.16,756–761 (2001).
    • 50  Ribeiro-Filho LA, Franks J, Sasaki M et al.: CpG hypermethylation of promoter region and inactivation of E-cadherin gene in human bladder cancer. Mol. Carcinog.34,187–198 (2002).
    • 51  Reinhold WC, Reimers MA, Maunakea AK et al.: Detailed DNA methylation profiles of the E-cadherin promoter in the NCI-60 cancer cells. Mol. Cancer Ther.6,391–403 (2007).▪ Detailed study across the promoter region of E-cadherin revealed significant differences in methylation between individual CpG sites in the same tumor cell line and between different tumor cell lines in the National Cancer Institute-60 panel, and defines a threshold of approximately 20–30% of promoter CpG sites methylated, necessary for silencing of mRNA expression.
    • 52  Stirzaker C, Millar DS, Paul CL et al.: Extensive DNA methylation spanning the Rb promoter in retinoblastoma tumors. Cancer Res.57,2229–2237 (1997).
    • 53  Bachman KE, Herman JG, Corn PG et al.: Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggest a suppressor role in kidney, brain, and other human cancers. Cancer Res.59,798–802 (1999).
    • 54  Kagan J, Srivastava S, Barker PE, Belinsky SA, Cairns P: Towards clinical application of methylated DNA sequences as cancer biomarkers: a joint NCI’s EDRN and NIST workshop on standards, methods, assays, reagents and tools. Cancer Res.67,4545–4549 (2007).
    • 55  Dammann R, Li C, Yoon JH, Chin PL, Bates S, Pfeifer GP: Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat. Genet.25,315–319 (2000).
    • 56  Dreijerink K, Braga E, Kuzmin I et al.: The candidate tumor suppressor gene, RASSF1A, from human chromosome 3p21.3 is involved in kidney tumorigenesis. Proc. Natl Acad. Sci. USA98,7504–7509 (2001).
    • 57  Morrissey C, Martinez A, Zatyka M et al.: Epigenetic inactivation of the RASSF1A 3p21.3 tumor suppressor gene in both clear cell and papillary renal cell carcinoma. Cancer Res.61,7277–7281 (2001).
    • 58  Yoon JH, Dammann R, Pfeifer GP: Hypermethylation of the CpG island of the RASSF1A gene in ovarian and renal cell carcinomas. Int. J. Cancer94,212–217 (2001).▪ The above four publications are important because they reported aberrant hyperemethylation of a gene to be frequent and across different tumor types.
    • 59  Chan MW, Chan LW, Tang NL et al.: Frequent hypermethylation of promoter region of RASSF1A in tumor tissues and voided urine of urinary bladder cancer patients. Int. J. Cancer104,611–616 (2003).
    • 60  Lee MG, Kim HY, Byun DS et al.: Frequent epigenetic inactivation of RASSF1A in human bladder carcinoma. Cancer Res.61,6688–6692 (2001).
    • 61  Lee WH, Morton RA, Epstein JI et al.: Cytidine methylation of regulatory sequences near the πι-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc. Natl Acad. Sci. USA91,11733–11737 (1994).
    • 62  Chan MW, Chan LW, Tang NL et al.: Hypermethylation of multiple genes in tumor tissues and voided urine in urinary bladder cancer patients. Clin. Cancer Res.8,464–470 (2002).
    • 63  Esteller M, Corn PG, Urena JM, Gabrielson E, Baylin SB, Herman JG: Inactivation of glutathione S-transferase P1 gene by promoter hypermethylation in human neoplasia. Cancer Res.58,4515–4518 (1998).
    • 64  Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG: Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res.59,793–797 (1999).
    • 65  Hoque MO, Begum S, Topaloglu O et al.: Quantitative detection of promoter hypermethylation of multiple genes in the tumor, urine, and serum DNA of patients with renal cancer. Cancer Res.64,5511–5517 (2004).
    • 66  Kissil JL, Feinstein E, Cohen O et al.: DAP-kinase loss of expression in various carcinoma and B-cell lymphoma cell lines: possible implications for role as tumor suppressor gene. Oncogene15,403–407 (1997).
    • 67  Katzenellenbogen RA, Baylin SB, Herman JG: Hypermethylation of the DAP-kinase CpG island is a common alteration in B-cell malignancies. Blood93,4347–4353 (1999).
    • 68  Gonzalgo ML, Yegnasubramanian S, Yan G et al.: Molecular profiling and classification of sporadic renal cell carcinoma by quantitative methylation analysis. Clin. Cancer Res.10,7276–7283 (2004).
    • 69  Wethkamp N, Ramp U, Geddert H et al.: Expression of death-associated protein kinase during tumour progression of human renal cell carcinomas: hypermethylation-independent mechanisms of inactivation. Eur. J. Cancer42,264–274 (2006).
    • 70  Tada Y, Wada M, Taguchi K et al.: The association of death-associated protein kinase hypermethylation with early recurrence in superficial bladder cancers. Cancer Res.62,4048–4053 (2002).
    • 71  Christoph F, Kempkensteffen C, Weikert S et al.: Methylation of tumour suppressor genes APAF-1 and DAPK-1 and in vitro effects of demethylating agents in bladder and kidney cancer. Br. J. Cancer95,1701–1707 (2006).
    • 72  Marsit CJ, Houseman EA, Christensen BC et al.: Examination of a CpG island methylator phenotype and implications of methylation profiles in solid tumors. Cancer Res.66,10621–10629 (2006).
    • 73  Sathyanarayana UG, Maruyama R, Padar A et al.: Molecular detection of noninvasive and invasive bladder tumor tissues and exfoliated cells by aberrant promoter methylation of laminin-5 encoding genes. Cancer Res.64,1425–1430 (2004).
    • 74  Takahashi T, Suzuki M, Shigematsu H et al.: Aberrant methylation of Reprimo in human malignancies. Int. J. Cancer115,503–510 (2005).
    • 75  Iliopoulos D, Guler G, Han SY et al.: Fragile genes as biomarkers: epigenetic control of WWOX and FHIT in lung, breast and bladder cancer. Oncogene24,1625–1633 (2005).
    • 76  Kvasha S, Gordiyuk V, Kondratov A et al.: Hypermethylation of the 5´CpG island of the FHIT gene in clear cell renal carcinomas. Cancer Lett.265,250–257 (2008).
    • 77  Morris MR, Gentle D, Abdulrahman M et al.: Tumor suppressor activity and epigenetic inactivation of hepatocyte growth factor activator inhibitor type 2/SPINT2 in papillary and clear cell renal cell carcinoma. Cancer Res.65,4598–4606 (2005).
    • 78  Agathanggelou A, Dallol A, Zochbauer-Muller S et al.: Epigenetic inactivation of the candidate 3p21.3 suppressor gene BLU in human cancers. Oncogene22,1580–1588 (2003).
    • 79  Stoehr R, Wissmann C, Suzuki H et al.: Deletions of chromosome 8p and loss of sFRP1 expression are progression markers of papillary bladder cancer. Lab. Invest.84,465–478 (2004).
    • 80  Marsit CJ, Karagas MR, Andrew A et al.: Epigenetic inactivation of SFRP genes and TP53 alteration act jointly as markers of invasive bladder cancer. Cancer Res.65,7081–7085 (2005).
    • 81  Dahl E, Wiesmann F, Woenckhaus M et al.: Frequent loss of SFRP1 expression in multiple human solid tumours: association with aberrant promoter methylation in renal cell carcinoma. Oncogene26,5680–5691 (2007).
    • 82  Kagara I, Enokida H, Kawakami K et al.: CpG hypermethylation of the UCHL1 gene promoter is associated with pathogenesis and poor prognosis in renal cell carcinoma. J. Urol.180,343–351 (2008).
    • 83  Urakami S, Shiina H, Enokida H et al.: Combination analysis of hypermethylated Wnt-antagonist family genes as a novel epigenetic biomarker panel for bladder cancer detection. Clin. Cancer Res.12,2109–2116 (2006).
    • 84  de Caestecker MP, Piek E, Roberts AB: Role of transforming growth factor-β signaling in cancer. J. Natl Cancer Inst.92,1388–1402 (2000).
    • 85  Roberts AB, Wakefield LM: The two faces of transforming growth factor β in carcinogenesis. Proc. Natl Acad. Sci. USA100,8621–8623 (2003).
    • 86  Teicher BA: Malignant cells, directors of the malignant process: role of transforming growth factor-β. Cancer Metastasis Rev.20,133–143 (2001).
    • 87  Suzuki M, Shigematsu H, Shames DS et al.: DNA methylation-associated inactivation of TGFβ-related genes DRM/Gremlin, RUNX3, and HPP1 in human cancers. Br. J. Cancer93,1029–1037 (2005).
    • 88  Okuda H, Toyota M, Ishida W et al.: Epigenetic inactivation of the candidate tumor suppressor gene HOXB13 in human renal cell carcinoma. Oncogene25,1733–1742 (2006).
    • 89  Yamada D, Kikuchi S, Williams YN et al.: Promoter hypermethylation of the potential tumor suppressor DAL-1/4.1B gene in renal clear cell carcinoma. Int. J. Cancer118,916–923 (2006).
    • 90  To KK, Zhan Z, Bates SE: Aberrant promoter methylation of the ABCG2 gene in renal carcinoma. Mol. Cell Biol.26,8572–8585 (2006).
    • 91  Kawakami T, Chano T, Minami K, Okabe H, Okada Y, Okamoto K: Imprinted DLK1 is a putative tumor suppressor gene and inactivated by epimutation at the region upstream of GTL2 in human renal cell carcinoma. Hum. Mol. Genet.15,821–830 (2006).
    • 92  Reu FJ, Bae SI, Cherkassky L et al.: Overcoming resistance to interferon-induced apoptosis of renal carcinoma and melanoma cells by DNA demethylation. J. Clin. Oncol.24,3771–3779 (2006).
    • 93  Lee MG, Huh JS, Chung SK et al.: Promoter CpG hypermethylation and downregulation of XAF1 expression in human urogenital malignancies: implication for attenuated p53 response to apoptotic stresses. Oncogene25,5807–5822 (2006).
    • 94  Kempkensteffen C, Hinz S, Schrader M et al.: Gene expression and promoter methylation of the XIAP-associated factor 1 in renal cell carcinomas: correlations with pathology and outcome. Cancer Lett.254,227–235 (2007).
    • 95  Ibanez de Caceres I, Dulaimi E, Hoffman AM, Al-Saleem T, Uzzo RG, Cairns P: Identification of novel target genes by an epigenetic reactivation screen of renal cancer. Cancer Res.66,5021–5028 (2006).
    • 96  Agathanggelou A, Bieche I, Ahmed-Choudhury J et al.: Identification of novel gene expression targets for the Ras association domain family 1 (RASSF1A) tumor suppressor gene in non-small-cell lung cancer and neuroblastoma. Cancer Res.63,5344–5351 (2003).
    • 97  Mori K, Enokida H, Kagara I et al.: CpG hypermethylation of collagen type I a2 contributes to proliferation and migration activity of human bladder cancer. Int. J. Oncol.34,1593–1602 (2009).
    • 98  Liang G, Gonzales FA, Jones PA, Orntoft TF, Thykjaer T: Analysis of gene induction in human fibroblasts and bladder cancer cells exposed to the methylation inhibitor 5-aza-2´-deoxycytidine. Cancer Res.62,961–966 (2002).▪ First use of a genome-wide expresssion array after demethylating drug treatment of a tumor cell line as a global discovery tool.
    • 99  Suzuki H, Gabrielson E, Chen W et al.: A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat. Genet.31,141–149 (2002).
    • 100  Morris MR, Gentle D, Abdulrahman M et al.: Functional epigenomics approach to identify methylated candidate tumour suppressor genes in renal cell carcinoma. Br. J. Cancer98,496–501 (2008).
    • 101  Morris MR, Ricketts C, Gentle D et al.: Identification of candidate tumour suppressor genes frequently methylated in renal cell carcinoma. Oncogene29,2104–2117 (2010).
    • 102  Seliger B, Handke D, Schabel E, Bukur J, Lichtenfels R, Dammann R: Epigenetic control of the ubiquitin carboxyl terminal hydrolase 1 in renal cell carcinoma. J. Transl. Med.7,90 (2009).
    • 103  Dalgin GS, Drever M, Williams T, King T, DeLisi C, Liou LS: Identification of novel epigenetic markers for clear cell renal cell carcinoma. J. Urol.180,1126–1130 (2008).
    • 104  McRonald FE, Morris MR, Gentle D et al.: CpG methylation profiling in VHL related and VHL unrelated renal cell carcinoma. Mol. Cancer8,31 (2009).▪ First report of Illumina® (CA, USA) BeadChip methylation technology in renal cancer.
    • 105  Wu G, Guo Z, Chang X et al.: LOXL1 and LOXL4 are epigenetically silenced and can inhibit ras/extracellular signal-regulated kinase signaling pathway in human bladder cancer. Cancer Res.67,4123–4129 (2007).
    • 106  Veerla S, Panagopoulos I, Jin Y, Lindgren D, Hoglund M: Promoter analysis of epigenetically controlled genes in bladder cancer. Genes Chromosomes Cancer47,368–378 (2008).
    • 107  Cairns P: Gene methylation and early detection of genitourinary cancer: the road ahead. Nat. Rev. Cancer7,531–543 (2007).▪ Discussion of the promise and challenges of aberrant methylation for early detection of cancer.
    • 108  Teodoridis JM, Hardie C, Brown R: CpG island methylator phenotype (CIMP) in cancer: causes and implications. Cancer Lett.268,177–186 (2008).
    • 109  Zhang L, Yu J, Willson JK, Markowitz SD, Kinzler KW, Vogelstein B: Short mononucleotide repeat sequence variability in mismatch repair-deficient cancers. Cancer Res.61,3801–3805 (2001).
    • 110  Esteller M: Epigenetics in cancer. N. Engl. J. Med.358,1148–1159 (2008).
    • 111  Nguyen CT, Weisenberger DJ, Velicescu M et al.: Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2´-deoxycytidine. Cancer Res.62,6456–6461 (2002).
    • 112  Fraga MF, Ballestar E, Villar-Garea A et al.: Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat. Genet.37,391–400 (2005).
    • 113  Ozdag H, Teschendorff AE, Ahmed AA et al.: Differential expression of selected histone modifier genes in human solid cancers. BMC Genomics7,90 (2006).
    • 114  Stransky N, Vallot C, Reyal F et al.: Regional copy number-independent deregulation of transcription in cancer. Nat. Genet.38,1386–1396 (2006).
    • 115  Seligson DB, Horvath S, McBrian MA et al.: Global levels of histone modifications predict prognosis in different cancers. Am. J. Pathol.174,1619–1628 (2009).
    • 116  Ellinger J, Kahl P, Mertens C et al.: Prognostic relevance of global histone H3 lysine 4 (H3K4) methylation in renal cell carcinoma. Int. J. Cancer127,2360–2366 (2010).
    • 117  Lamy P, Andersen CL, Dyrskjot L, Torring N, Orntoft T, Wiuf C: Are microRNAs located in genomic regions associated with cancer? Br. J. Cancer95,1415–1418 (2006).
    • 118  Saito Y, Jones PA: Epigenetic activation of tumor suppressor microRNAs in human cancer cells. Cell Cycle5,2220–2222 (2006).
    • 119  Friedman JM, Liang G, Liu CC et al.: The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res.69,2623–2629 (2009).
    • 120  Catto JW, Miah S, Owen HC et al.: Distinct microRNA alterations characterize high- and low-grade bladder cancer. Cancer Res.69,8472–8481 (2009).
    • 121  Dyrskjot L, Ostenfeld MS, Bramsen JB et al.: Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro. Cancer Res.69,4851–4860 (2009).
    • 122  Wiklund ED, Bramsen JB, Hulf T et al.: Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int. J. Cancer (2010) (Epub ahead of print).
    • 123  Jung M, Mollenkopf HJ, Grimm C et al.: MicroRNA profiling of clear cell renal cell cancer identifies a robust signature to define renal malignancy. J. Cell. Mol. Med.13,3918–3928 (2009).
    • 124  Nakada C, Matsuura K, Tsukamoto Y et al.: Genome-wide microRNA expression profiling in renal cell carcinoma: significant down-regulation of miR-141 and miR-200c. J. Pathol.216,418–427 (2008).
    • 125  Juan D, Alexe G, Antes T et al.: Identification of a microRNA panel for clear-cell kidney cancer. Urology75(4),835–841 (2010).
    • 126  Banumathy G, Cairns P: Signaling pathways in renal cell carcinoma. Cancer Biol. Ther.10(7),658–664 (2010).
    • 127  Battagli C, Uzzo RG, Dulaimi E et al.: Promoter hypermethylation of tumor suppressor genes in urine from kidney cancer patients. Cancer Res.63,8695–8699 (2003).
    • 128  Friedrich MG, Weisenberger DJ, Cheng JC et al.: Detection of methylated apoptosis-associated genes in urine sediments of bladder cancer patients. Clin. Cancer Res.10,7457–7465 (2004).
    • 129  Hoque MO, Begum S, Topaloglu O et al.: Quantitation of promoter methylation of multiple genes in urine DNA and bladder cancer detection. J. Natl Cancer Inst.98,996–1004 (2006).
    • 130  Yates DR, Rehman I, Meuth M, Cross SS, Hamdy FC, Catto JW: Methylational urinalysis: a prospective study of bladder cancer patients and age stratified benign controls. Oncogene25,1984–1988 (2006).
    • 131  Renard I, Joniau S, van Cleynenbreugel B et al.: Identification and validation of the methylated TWIST1 and NID2 genes through real-time methylation-specific polymerase chain reaction assays for the noninvasive detection of primary bladder cancer in urine samples. Eur. Urol.58(1),96–104 (2009).
    • 132  Costa VL, Henrique R, Ribeiro FR et al.: Quantitative promoter methylation analysis of multiple cancer-related genes in renal cell tumors. BMC Cancer7,133 (2007).
    • 133  Gutierrez MI, Siraj AK, Khaled H, Koon N, El-Rifai W, Bhatia K: CpG island methylation in schistosoma- and non-schistosoma-associated bladder cancer. Mod. Pathol.17,1268–1274 (2004).
    • 134  Breault JE, Shiina H, Igawa M et al.: Methylation of the γ-catenin gene is associated with poor prognosis of renal cell carcinoma. Clin. Cancer Res.11,557–564 (2005).
    • 135  Yates DR, Rehman I, Abbod MF et al.: Promoter hypermethylation identifies progression risk in bladder cancer. Clin. Cancer Res.13,2046–2053 (2007).
    • 136  Gollob JA, Sciambi CJ, Peterson BL et al.: Phase I trial of sequential low-dose 5-aza-2’-deoxycytidine plus high-dose intravenous bolus interleukin-2 in patients with melanoma or renal cell carcinoma. Clin. Cancer Res.12,4619–4627 (2006).
    • 137  Winquist E, Knox J, Ayoub JP et al.: Phase II trial of DNA methyltransferase 1 inhibition with the antisense oligonucleotide MG98 in patients with metastatic renal carcinoma: a National Cancer Institute of Canada Clinical Trials Group investigational new drug study. Invest. New Drugs24,159–167 (2006).
    • 138  Hammers HJ, Verheul H, Wilky B et al.: Phase I safety and pharmacokinetic/pharmacodynamic results of the histone deacetylase inhibitor vorinostat in combination with bevacizumab in patients with kidney cancer. J. Clin. Oncol.26, (2008) (Abstract 16094).
    • 139  Verheul HM, Salumbides B, van Erp K et al.: Combination strategy targeting the hypoxia inducible factor-1 α with mammalian target of rapamycin and histone deacetylase inhibitors. Clin. Cancer Res.14,3589–3597 (2008).
    • 140  Shang D, Liu Y, Matsui Y et al.: Demethylating agent 5-aza-2´-deoxycytidine enhances susceptibility of bladder transitional cell carcinoma to cisplatin. Urology71,1220–1225 (2008).
    • 141  Costello JF, Frühwald MC, Smiraglia DJ et al.: Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nature Genet.25,132–138 (2000).
    • 142  Sjoblom T, Jones S, Wood LD et al.: The consensus coding sequences of human breast and colorectal cancers. Science314,268–274 (2006).
    • 143  Aleman A, Cebrian V, Alvarez M et al.: Identification of PMF1 methylation in association with bladder cancer progression. Clin. Cancer Res.14,8236–8243 (2008).
    • 144  Kwabi-Addo B, Chung W, Shen L et al.: Age-related DNA methylation changes in normal human prostate tissues. Clin. Cancer Res.13,3796–3802 (2007).
    • 145  Wolff EM, Liang G, Cortez CC et al.: RUNX3 methylation reveals that bladder tumors are older in patients with a history of smoking. Cancer Res.68,6208–6214 (2008).