We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Longevity with systems medicine? Epigenome, genome and environment interactions network

    Dimitrios H Roukos

    Personalized Cancer Genomic Medicine, Ioannina University, Ioannina, TK 451 10, Greece and Department of Surgery, Ioannina University, School of Medicine, Ioannina, TK 451 10, Greece and Biosystems & Synthetic Genomic Network Medicine Center, Ioannina University, Ioannina, Greece.

    Published Online:https://doi.org/10.2217/epi.12.1
    Free first page

    References

    • Kang TW, Yevsa T, Woller N et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature479(7374),547–551 (2011).
    • Serrano M. Cancer: final act of senescence. Nature479(7374),481–482 (2011).
    • Greer EL, Maures TJ, Ucar D et al. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature479(7373),365–371 (2011).
    • Kim EB, Fang X, Fushan AA et al. Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature479(7372),223–227 (2011).
    • Baker DJ, Wijshake T, Tchkonia T et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature479(7372),232–236 (2011).
    • Danchin É, Charmantier A, Champagne FA, Mesoudi A, Pujol B, Blanchet S. Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nat. Rev. Genet.12(7),475–486 (2011).
    • modENCODE Consortium; Roy S, Ernst J, Kharchenko PV et al. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science330(6012),1787–1797 (2010).
    • Baylin SB, Jones PA. A decade of exploring the cancer epigenome – biological and translational implications. Nat. Rev. Cancer.11(10),726–734 (2011).
    • Green ED, Guyer MS. National human genome research institute. Charting a course for genomic medicine from base pairs to bedside. Nature470(7333),204–213 (2011).
    • 10  Roychowdhury S, Iyer MK, Robinson DR et al. Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci. Transl. Med.3(111),111ra121 (2011).
    • 11  Ku CS, Naidoo N, Wu M, Soong R. Studying the epigenome using next generation sequencing. J. Med. Genet.48(11),721–730 (2011).
    • 12  Cutillas PR, Jørgensen C. Biological signalling activity measurements using mass spectrometry. Biochem. J.434(2),189–199 (2011).
    • 13  Cox J, Mann M. Quantitative, high-resolution proteomics for data-driven systems biology. Annu. Rev. Biochem.80,273–299 (2011).
    • 14  Kosako H, Nagano K. Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways. Expert Rev. Proteomics8(1),81–94 (2011).
    • 15  Schubert C. Single-cell analysis: the deepest differences. Nature480(7375),133–137 (2011).
    • 16  Welch CM, Elliott H, Danuser G, Hahn KM. Imaging the coordination of multiple signalling activities in living cells. Nat. Rev. Mol. Cell Biol.12(11),749–756 (2011).
    • 17  Cheong R, Rhee A, Wang CJ, Nemenman I, Levchenko A. Information transduction capacity of noisy biochemical signaling networks. Science334(6054),354–358 (2011).
    • 18  Narod SA, Salmena L. BRCA1 and BRCA2 mutations and breast cancer. Discov. Med.12(66),445–453 (2011).
    • 19  Petronis A. Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature465(7299),721–727 (2010).
    • 20  Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome-wide association studies for common human diseases. Nat. Rev. Genet.12(8),529–541 (2011).
    • 21  Portela A, Esteller M. Epigenetic modifications and human disease. Nat. Biotechnol.28,1057–1068 (2010).
    • 22  Baylin SB, Jones PA. A decade of exploring the cancer epigenome – biological and translational implications. Nat. Rev. Cancer11(10),726–734 (2011).
    • 23  Beltrao P, Cagney G, Krogan N. Quantitative genetic interactions reveal biological modularity. Cell141(5),739–745 (2010).
    • 24  Gogol-Döring A, Chen W. An overview of the analysis of next generation sequencing data. Methods Mol. Biol.802,249–257 (2012).
    • 25  Blaxter M. Genetics. Revealing the dark matter of the genome. Science330(6012),1758–1759 (2010).
    • 26  Loscalzo J, Barabasi AL. Systems biology and the future of medicine. Wiley Interdiscip. Rev. Syst. Biol. Med.3(6),619–627 (2011).
    • 27  Nandagopal N, Elowitz MB. Synthetic biology: integrated gene circuits. Science333(6047),1244–1248 (2011).
    • 28  Weber W, Fussenegger M. Emerging biomedical applications of synthetic biology. Nat. Rev. Genet.13(1),21–35 (2011).
    • 29  Fernández A, Lynch M. Non-adaptive origins of interactome complexity. Nature474(7352),502–505 (2011).