We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Combining genomic and proteomic approaches for epigenetics research

    Yumiao Han

    Epigenetics Program, Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, 1009C Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104, USA

    &
    Benjamin A Garcia

    * Author for correspondence

    Epigenetics Program, Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, 1009C Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104, USA. .

    Published Online:https://doi.org/10.2217/epi.13.37

    Epigenetics is the study of changes in gene expression or cellular phenotype that do not change the DNA sequence. In this review, current methods, both genomic and proteomic, associated with epigenetics research are discussed. Among them, chromatin immunoprecipitation (ChIP) followed by sequencing and other ChIP-based techniques are powerful techniques for genome-wide profiling of DNA-binding proteins, histone post-translational modifications or nucleosome positions. However, mass spectrometry-based proteomics is increasingly being used in functional biological studies and has proved to be an indispensable tool to characterize histone modifications, as well as DNA–protein and protein–protein interactions. With the development of genomic and proteomic approaches, combination of ChIP and mass spectrometry has the potential to expand our knowledge of epigenetics research to a higher level.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Esteller M. Epigenetics in cancer. N. Engl. J. Med.358,1148–1159 (2008).
    • Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Gene Dev.23,781–783 (2009).
    • Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet.9,465–476 (2008).
    • Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell128,635 (2007).
    • Nakao M. Epigenetics: interaction of DNA methylation and chromatin. Gene278,25–31 (2001).
    • Sajan SA, Hawkins RD. Methods for identification of higher-order chromatin structure. Annu. Rev. Genomics Hum. Genet.13,59–82 (2012).
    • Kornberg RD. Chromatin structure: a repeating unit of histones and DNA. Science184,868 (1974).
    • Grunstein M. Histone acetylation in chromatin structure and transcription. Nature389,349–352 (1997).
    • Weinhold B. Epigenetics: the science of change. Environ. Health Persp.114,A160 (2006).
    • 10  Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet.13,484–492 (2012).▪ Describes how the function of DNA methylation is intrinsically linked to the mechanisms for establishing, maintaining and removing the methyl group.
    • 11  Bird AP, Wolffe AP. Methylation-induced repression – belts, braces, and chromatin. Cell99,451–454 (1999).
    • 12  Dodge JE, Okano M, Dick F et al. Inactivation of Dnmt3b in mouse embryonic fibroblasts results in DNA hypomethylation, chromosomal instability, and spontaneous immortalization. J. Biol. Chem.280,17986–17991 (2005).
    • 13  Hammoud SS, Cairns BR, Carrell DT. Analysis of gene-specific and genome-wide sperm DNA methylation. Methods Mol. Biol.927,451–458 (2013).
    • 14  Surani MA. Imprinting and the initiation of gene silencing in the germ line. Cell93,309–312 (1998).
    • 15  Ng HH, Adrian B. DNA methylation and chromatin modification. Curr. Opin. Genet. Dev.9,158–163 (1999).
    • 16  Weber M, Davies JJ, Wittig D et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet.37,853–862 (2005).
    • 17  Chen Z, Wang L, Wang Q, Li W. Histone modifications and chromatin organization in prostate cancer. Epigenomics2,551–560 (2010).
    • 18  Strahl BD, Allis CD. The language of covalent histone modifications. Nature403,41–45 (2000).
    • 19  Ruthenburg AJ, Li H, Patel DJ, Allis CD. Multivalent engagement of chromatin modifications by linked binding modules. Nat. Rev. Mol. Cell Biol.8,983–994 (2007).
    • 20  Tan M, Luo H, Lee S et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell146,1016–1028 (2011).
    • 21  Jenuwein T, Allis CD. Translating the histone code. Science293,1074–1080 (2001).
    • 22  Turner BM. Cellular memory and the histone code. Cell111,285–291 (2002).
    • 23  Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res.21,381–395 (2011).
    • 24  Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet.10,295–304 (2009).
    • 25  Bird A. DNA methylation patterns and epigenetic memory. Gene Dev.16,6–21 (2002).
    • 26  Fuks F. DNA methylation and histone modifications: teaming up to silence genes. Curr. Opin. Genet. Dev.15,490–495 (2005).
    • 27  Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet.8,286–298 (2007).
    • 28  Alelu-Paz R, Ashour N, Gonzalez-Corpas A, Ropero S. DNA methylation, histone modifications, and signal transduction pathways: a close relationship in malignant gliomas pathophysiology. J. Signal. Trans.2012,956–958 (2012).
    • 29  Harris RA, Wang T, Coarfa C et al. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat. Biotechnol.28,1097–1105 (2010).
    • 30  Bock C, Tomazou EM, Brinkman AB et al. Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat. Biotechnol.28,1106–1114 (2010).▪ Describes several methods that have been developed to map DNA methylation on a genomic scale. Most of these methods combine DNA analysis by microarrays or high-throughput sequencing with one of four ways of translating DNA methylation patterns into DNA sequence information or library enrichment.
    • 31  Laird PW. Principles and challenges of genomewide DNA methylation analysis. Nat. Rev. Genet.11,191–203 (2010).
    • 32  Zilberman D, Henikoff S. Genome-wide analysis of DNA methylation patterns. Development134,3959–3965 (2007).
    • 33  Brunner AL, Johnson DS, Kim SW et al. Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res.19,1044–1056 (2009).
    • 34  Oda M, Glass JL, Thompson RF et al. High-resolution genome-wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers. Nucleic Acids Res.37,3829–3839 (2009).
    • 35  Down TA, Rakyan VK, Turner DJ et al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat. Biotechnol.26,779–785 (2008).
    • 36  Coverdale LE, Martin CC. Epigenomics – genome wide modifications of cytosine and new dimensions in our understanding of differentiation and disease. Curr. Genomics6,491–500 (2005).
    • 37  Brinkman AB, Simmer F, Ma K, Kaan A, Zhu J, Stunnenberg HG. Whole-genome DNA methylation profiling using methylCap-seq. Methods52,232–236 (2010).
    • 38  Serre D, Lee BH, Ting AH. MBD-isolated genome sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res.38,391–399 (2010).
    • 39  Meissner A, Mikkelsen TS, Gu H et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature454,766–770 (2008).
    • 40  Eckhardt F, Lewin J, Cortese R et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat. Genet.38,1378–1385 (2006).
    • 41  Laird PW. The power and the promise of DNA methylation markers. Nat. Rev. Cancer3,253–266 (2003).
    • 42  Pomraning KR, Smith KM, Freitag M. Genome-wide high throughput analysis of DNA methylation in eukaryotes. Methods47,142–150 (2009).
    • 43  Sørensen AL, Collas P. Immunoprecipitation of methylated DNA. Methods Mol. Biol.567,249–262 (2009).
    • 44  Maunakea AK, Nagarajan RP, Bilenky M et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature466,253–257 (2010).
    • 45  Lister R, Pelizzola M, Dowen RH et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature462,315–322 (2009).
    • 46  Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res.33,5868–5877 (2005).
    • 47  Gu H, Smith ZD, Bock C, Boyle P, Gnirke A, Meissner A. Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat. Protoc.6,468–481 (2011).
    • 48  Cokus SJ, Feng S, Zhang X et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature452,215–219 (2008).
    • 49  Kouzarides T. Chromatin modifications and their function. Cell128,693 (2007).
    • 50  Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell128,707–719 (2007).
    • 51  Schones DE, Zhao K. Genome-wide approaches to studying chromatin modifications. Nat. Rev. Genet.9,179–191 (2008).
    • 52  Iyer VR, Horak CE, Scafe CS, Botstein D, Snyder M, Brown PO. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature409,533–538 (2001).
    • 53  Ren B, Robert F, Wyrick JJ et al. Genome-wide location and function of DNA binding proteins. Science290,2306–2309 (2000).
    • 54  Zhang Z, Pugh BF. High-resolution genome-wide mapping of the primary structure of chromatin. Cell144,175–186 (2011).
    • 55  Zhou VW, Goren A, Bernstein BE. Charting histone modifications and the functional organization of mammalian genomes. Nat. Rev. Genet.12,7–18 (2011).
    • 56  Wang Z, Zang C, Rosenfeld JA et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet.40,897–903 (2008).
    • 57  Vega VB, Cheung E, Palanisamy N, Sung WK. Inherent signals in sequencing-based chromatin-immunoprecipitation control libraries. PLoS One4,e5241 (2009).
    • 58  Roh T, Zhao K. High-resolution, genome-wide mapping of chromatin modifications by GMAT. Methods Mol. Biol.387,95 (2008).
    • 59  Ng P, Tan JJ, Ooi HS et al. Multiplex sequencing of paired-end ditags (MS-PET): a strategy for the ultra-high-throughput analysis of transcriptomes and genomes. Nucleic Acids Res.34,e84–e84 (2006).
    • 60  Buck MJ, Lieb JD. ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics83,349–360 (2004).
    • 61  Park PJ. ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet.10,669–680 (2009).
    • 62  Li KK, Luo C, Wang D, Jiang H, Zheng YG. Chemical and biochemical approaches in the study of histone methylation and demethylation. Med. Res. Rev.32,815–867 (2012).
    • 63  Heintzman ND, Stuart RK, Hon G et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet.39,311–318 (2007).
    • 64  Kirmizis A, Bartley SM, Kuzmichev A et al. Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Gene Dev.18,1592–1605 (2004).
    • 65  Viré E, Brenner C, Deplus R et al. The polycomb group protein EZH2 directly controls DNA methylation. Nature439,871–874 (2005).
    • 66  Peters AH, Schübeler D. Methylation of histones: playing memory with DNA. Curr. Opin. Cell Biol.17,230–238 (2005).
    • 67  Irvine RA, Hsieh CL. Q-PCR in combination with ChIP assays to detect changes in chromatin acetylation. Methods Mol. Biol.287,45–52 (2004).
    • 68  Barski A, Cuddapah S, Cui K et al. High-resolution profiling of histone methylations in the human genome. Cell129,823–837 (2007).
    • 69  Garcia BA, Pesavento JJ, Mizzen CA, Kelleher NL. Pervasive combinatorial modification of histone H3 in human cells. Nat. Methods4,487–489 (2007).
    • 70  Vermeulen M, Eberl HC, Matarese F et al. Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell142,967–980 (2010).
    • 71  Vasilescu J, Figeys D. Mapping protein–protein interactions by mass spectrometry. Curr. Opin. Biotech.17,394 (2006).▪▪ Overview of developments in protein interaction mapping by mass spectrometry (MS) and MS-based methods that employ novel affinity purification strategies and affinity tags, as well as a description of in vivo and in vitro chemical crosslinking.
    • 72  Ethier M, Lambert JP, Vasilescu J, Figeys D. Analysis of protein interaction networks using mass spectrometry compatible techniques. Anal. Chim. Acta564,10–18 (2006).
    • 73  Bauer A, Kuster B. Affinity purification-mass spectrometry. Eur. J. Biochem.270,570–578 (2003).
    • 74  Roque A, Lowe C. Affinity chromatography: history, perspectives, limitations and prospects. Methods Mol. Biol.421,1–21 (2008).
    • 75  Dunham WH, Mullin M, Gingras AC. Affinity-purification coupled to mass spectrometry: basic principles and strategies. Proteomics12,1576–1590 (2012).
    • 76  Puig O, Caspary F, Rigaut G et al. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods24,218–229 (2001).
    • 77  Li Y. The tandem affinity purification technology: an overview. Biotechnol. Lett.33,1487–1499 (2011).
    • 78  Trinkle-Mulcahy L. Resolving protein interactions and complexes by affinity purification followed by label-based quantitative mass spectrometry. Proteomics12,1623–1638 (2012).
    • 79  Galan JA, Paris LL, Zhang HJ, Adler J, Geahlen RL, Tao WA. Proteomic studies of Syk-interacting proteins using a novel amine-specific isotope tag and GFP nanotrap. J. Am. Soc. Mass Spectrom.22,319–328 (2011).
    • 80  Oeffinger M. Two steps forward – one step back: advances in affinity purification mass spectrometry of macromolecular complexes. Proteomics12,1591–1608 (2012).
    • 81  Breitkreutz A, Choi H, Sharom JR et al. A global protein kinase and phosphatase interaction network in yeast. Science328,1043–1046 (2010).
    • 82  Poser I, Sarov M, Hutchins JR et al. BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. Nat. Methods5,409–415 (2008).
    • 83  Tang X, Bruce JE. Chemical crosslinking for protein–protein interaction studies. Methods Mol. Biol.492,283–293 (2009).
    • 84  Sinz A. Chemical crosslinking and mass spectrometry to map three-dimensional protein structures and protein–protein interactions. Mass Spectrom. Rev.25,663–682 (2006).
    • 85  Leitner A, Walzthoeni T, Kahraman A et al. Probing native protein structures by chemical crosslinking, mass spectrometry, and bioinformatics. Mol. Cell Proteomics9,1634–1649 (2010).
    • 86  Byrum SD, Taverna SD, Tackett AJ. Quantitative analysis of histone exchange for transcriptionally active chromatin. J. Clin. Bioinforma.1,17 (2011).
    • 87  Byrum S, Mackintosh SG, Edmondson RD, Cheung WL, Taverna SD, Tackett AJ. Analysis of histone exchange during chromatin purification. J. Integr. OMICS1,61–65 (2011).
    • 88  Northrup DL, Zhao K. Application of ChIP-seq and related techniques to the study of immune function. Immunity34,830–842 (2011).
    • 89  Das PM, Ramachandran K, Vanwert J, Singal R. Chromatin immunoprecipitation assay. Biotechniques37,961–969 (2004).
    • 90  O’Neill LP, Turner BM. Immunoprecipitation of native chromatin: NChIP. Methods31,76–82 (2003).
    • 91  Krogan NJ, Cagney G, Yu H et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature440,637–643 (2006).
    • 92  Stunnenberg HG, Vermeulen M. Towards cracking the epigenetic code using a combination of high-throughput epigenomics and quantitative mass spectrometry-based proteomics. Bioessays33,547–551 (2011).
    • 93  Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell150,12–27 (2012).
    • 94  Ueberheide BM, Mollah S. Deciphering the histone code using mass spectrometry. Int. J. Mass Spectrom.259,46–56 (2007).
    • 95  Bartke T, Borgel J, Dimaggio PA. Proteomics in epigenetics: new perspectives for cancer research. Brief Funct. Genomics12(3),205–218 (2013).▪▪ Overview of the applications of MS-based proteomics in studying various aspects of chromatin biology, the use of MS in the discovery and mapping of histone modifications and how novel proteomic approaches are being utilized to identify and study chromatin-associated proteins and multisubunit complexes.
    • 96  Young NL, Dimaggio PA, Garcia BA. The significance, development and progress of high-throughput combinatorial histone code analysis. Cell Mol. Life Sci.67,3983–4000 (2010).
    • 97  Yates JR, Ruse CI, Nakorchevsky A. Proteomics by mass spectrometry: approaches, advances, and applications. Annu. Rev. Biomed. Eng.11,49–79 (2009).
    • 98  Zee BM, Garcia BA. Validation of protein acetylation by mass spectrometry. Methods Mol. Biol.981,1–11 (2013).
    • 99  Sidoli S, Cheng L, Jensen ON. Proteomics in chromatin biology and epigenetics: Elucidation of post-translational modifications of histone proteins by mass spectrometry. J. Proteomics75,3419–3433 (2012).
    • 100  Lin S, Garcia BA. Examining histone posttranslational modification patterns by high-resolution mass spectrometry. Methods Enzymol.512,3–28 (2012).
    • 101  Siuti N, Kelleher NL. Decoding protein modifications using top-down mass spectrometry. Nat. Methods4,817–821 (2007).
    • 102  Macek B, Waanders LF, Olsen JV, Mann M. Top-down protein sequencing and MS3 on a hybrid linear quadrupole ion trap-orbitrap mass spectrometer. Mol. Cell Proteomics5,949–958 (2006).
    • 103  Pesavento JJ, Kim YB, Taylor GK, Kelleher NL. Shotgun annotation of histone modifications: a new approach for streamlined characterization of proteins by top down mass spectrometry. J. Am. Chem. Soc.126,3386–3387 (2004).
    • 104  Thomas CE, Kelleher NL, Mizzen CA. Mass spectrometric characterization of human histone H3: a bird’s eye view. J. Proteome Res.5,240–247 (2006).
    • 105  Young NL, Dimaggio PA, Plazas-Mayorca MD, Baliban RC, Floudas CA, Garcia BA. High throughput characterization of combinatorial histone codes. Mol. Cell Proteomics8,2266–2284 (2009).
    • 106  Boyne MT 2nd, Pesavento JJ, Mizzen CA, Kelleher NL. Precise characterization of human histones in the H2A gene family by top down mass spectrometry. J. Proteome Res.5,248–253 (2006).
    • 107  Soldi M, Bonaldi T. The proteomic investigation of chromatin functional domains reveals novel synergisms among distinct heterochromatin components. Mol. Cell Proteomics12,764–780 (2013).▪ Overview of affinity-interaction assays using different baits in conjunction with SILAC-based proteomics and the development of a global, quantitative proteomic strategy named ‘chromatin proteomics’ to analyze the protein component characterizing distinct chromatin regions.
    • 108  Pokholok DK, Harbison CT, Levine S et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell122,517–527 (2005).
    • 109  Nelson EA, Walker SR, Alvarez JV, Frank DA. Isolation of unique STAT5 targets by chromatin immunoprecipitation-based gene identification. J. Biol. Chem.279,54724–54730 (2004).
    • 110  Voigt P, Leroy G, Drury WJ 3rd et al. Asymmetrically modified nucleosomes. Cell151,181–193 (2012).
    • 111  Vinckevicius A, Chakravarti D. Chromatin immunoprecipitation: advancing analysis of nuclear hormone signaling. J. Mol. Endocrinol.49,R113–R123 (2012).
    • 112  Nelson JD, Denisenko O, Bomsztyk K. Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat. Protoc.1,179–185 (2006).
    • 113  Collas P, Dahl JA. Chop it, ChIP it, check it: the current status of chromatin immunoprecipitation. Front. Biosci.13,929–943 (2008).
    • 114  Collas P. The current state of chromatin immunoprecipitation. Mol. Biotechnol.45,87–100 (2010).▪ Describes recent developments in the chromatin immunoprecipitation field that have led to the emergence of protocols aiming to reduce cell numbers.
    • 115  Garcia BA, Shabanowitz J, Hunt DF. Characterization of histones and their post-translational modifications by mass spectrometry. Curr. Opin. Chem. Biol.11(1),66–73 (2007).
    • 116  Beck HC. Mass spectrometry in epigenetic research. Methods Mol. Biol.593,263–282 (2010).
    • 117  Hardison RC, Taylor J. Genomic approaches towards finding cis-regulatory modules in animals. Nat. Rev. Genet.13,469–483 (2012).
    • 118  Leroy G, Chepelev I, Dimaggio PA et al. Proteogenomic characterization and mapping of nucleosomes decoded by Brd and HP1 proteins. Genome Biol.13,R68 (2012).
    • 119  Wang CI, Alekseyenko AA, Leroy G et al. Chromatin proteins captured by ChIP-mass spectrometry are linked to dosage compensation in Drosophila. Nat. Struct. Mol. Biol.20,202–209 (2013).
    • 120  Price CM, Cech TR. Telomeric DNA–protein interactions of oxytricha macronuclear DNA. Gene Dev.1,783–793 (1987).
    • 121  Lambert JP, Mitchell L, Rudner A, Baetz K, Figeys D. A novel proteomics approach for the discovery of chromatin-associated protein networks. Mol. Cell Proteomics8,870–882 (2009).
    • 122  Wood A, Schneider J, Dover J, Johnston M, Shilatifard A. The Bur1/Bur2 complex is required for histone H2B monoubiquitination by Rad6/Bre1 and histone methylation by COMPASS. Mol. Cell20,589–599 (2005).
    • 123  Chu DS, Liu H, Nix P et al. Sperm chromatin proteomics identifies evolutionarily conserved fertility factors. Nature443,101–105 (2006).
    • 124  Griesenbeck J, Boeger H, Strattan JS, Kornberg RD. Affinity purification of specific chromatin segments from chromosomal loci in yeast. Mol. Cell Biol.23,9275–9282 (2003).
    • 125  Rusk N. Reverse ChIP. Nat. Methods6,187–187 (2009).
    • 126  Byrum SD, Raman A, Taverna SD, Tackett AJ. ChAP–MS: a method for identification of proteins and histone posttranslational modifications at a single genomic locus. Cell Reports2(1),198–205 (2012).
    • 127  Déjardin J, Kingston RE. Purification of proteins associated with specific genomic Loci. Cell136,175–186 (2009).
    • 128  Wu CH, Chen S, Shortreed MR et al. Sequence-specific capture of protein–DNA complexes for mass spectrometric protein identification. PLoS One6,e26217 (2011).
    • 129  Fujita T, Fujii H. Direct identification of insulator components by insertional chromatin immunoprecipitation. PLoS One6,e26109 (2011).
    • 130  Fujita T, Fujii H. Locus-specific biochemical epigenetics/chromatin biochemistry by insertional chromatin immunoprecipitation. ISRN Biochem.2013,913273 (2013).
    • 131  Agelopoulos M, Mckay DJ, Mann RS. Developmental regulation of chromatin conformation by Hox proteins in Drosophila. Cell Rep.1,350–359 (2012).
    • 132  Eberl HC, Mann M, Vermeulen M. Quantitative proteomics for epigenetics. Chembiochem12,224–234 (2011).
    • 133  Cox J, Mann M. Quantitative, high-resolution proteomics for data-driven systems biology. Annu. Rev. Biochem.80,273–299 (2011).
    • 134  Vermeulen M, Mulder KW, Denissov S et al. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell131,58–69 (2007).
    • 135  Katan-Khaykovich Y, Struhl K. Splitting of H3–H4 tetramers at transcriptionally active genes undergoing dynamic histone exchange. Proc. Natl Acad. Sci. USA108,1296–1301 (2011).
    • 136  Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet.13,343–357 (2012).
    • 137  Bartke T, Vermeulen M, Xhemalce B, Robson SC, Mann M, Kouzarides T. Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell143,470–484 (2010).
    • 138  Li X, Foley EA, Molloy KR, Li Y, Chait BT, Kapoor TM. Quantitative chemical proteomics approach to identify post-translational modification-mediated protein–protein interactions. J. Am. Chem. Soc.134,1982–1985 (2012).
    • 139  Bogdanovic O, Veenstra GJ. Affinity-based enrichment strategies to assay methyl-CpG binding activity and DNA methylation in early Xenopus embryos. BMC Res. Notes4,300 (2011).
    • 140  Mittler G, Butter F, Mann M. A SILAC-based DNA protein interaction screen that identifies candidate binding proteins to functional DNA elements. Genome Res.19,284–293 (2009).
    • 141  Spruijt CG, Gnerlich F, Smits AH et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell152,1146–1159 (2013).
    • 142  O’Neill LP, Vermilyea MD, Turner BM. Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nat. Genet.38,835–841 (2006).
    • 143  Dahl JA, Collas P. Q2ChIP, a quick and quantitative chromatin immunoprecipitation assay, unravels epigenetic dynamics of developmentally regulated genes in human carcinoma cells. Stem Cells25,1037–1046 (2007).
    • 144  Dahl JA, Collas P. MicroChIP – a rapid micro chromatin immunoprecipitation assay for small cell samples and biopsies. Nucleic Acids Res.36,e15 (2008).
    • 145  Dahl JA, Collas P. A rapid micro chromatin immunoprecipitation assay (microChIP). Nat. Protoc.3,1032–1045 (2008).
    • 146  Flanagin S, Nelson JD, Castner DG, Denisenko O, Bomsztyk K. Microplate-based chromatin immunoprecipitation method, Matrix ChIP: a platform to study signaling of complex genomic events. Nucleic Acids Res.36,e17 (2008).