We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

African trypanosomiasis and antibodies: implications for vaccination, therapy and diagnosis

    Stefan Magez

    † Author for correspondence

    Department of Molecular & Cellular Interactions, Flanders Institute for Biotechnology (VIB), Rijvisschestraat 120, B-9052 Ghent, Belgium and Unit of Cellular & Molecular Immunology, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.

    &
    Magdalena Radwanska

    Science Officer for Strategic Activities, European Cooperation for Science & Technology, COST Office, Avenue Louise 149, B-1050 Brussels, Belgium.

    Published Online:https://doi.org/10.2217/fmb.09.65

    African trypanosomiasis causes devastating effects on human populations and livestock herds in large parts of sub-Saharan Africa. Control of the disease is hampered by the lack of any efficient vaccination results in a field setting, and the severe side effects of current drug therapies. In addition, with the exception of Trypanosoma brucei gambiense infections, the diagnosis of trypanosomiasis has to rely on microscopic analysis of blood samples, as other specific tools are nonexistent. However, new developments in biotechnology, which include loop-mediated isothermal amplification as an adaptation to conventional PCR, as well as the antibody engineering that has allowed the development of Nanobody® technology, offer new perspectives in both the detection and treatment of trypanosomiasis. In addition, recent data on parasite-induced B-cell memory destruction offer new insights into mechanisms of vaccine failure, and should lead us towards new strategies to overcome trypanosome defenses operating against the host immune system.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Vickerman K: Developmental cycles and biology of pathogenic trypanosomes. Br. Med. Bull.41,105–114 (1985).
    • Simarro PP, Jannin J, Cattand P: Eliminating human African trypanosomiasis: where do we stand and what comes next? PLoS Med.5,e55 (2008).▪▪ Gives a very accurate and updated insight into the actual numbers of sleeping sickness cases reported to the WHO.
    • Schofield CJ, Kabayo JP: Trypanosomiasis vector control in Africa and Latin America. Parasit. Vectors1,24 (2008).
    • Fevre EM, Picozzi K, Jannin J, Welburn SC, Maudlin I: Human African trypanosomiasis: epidemiology and control. Adv. Parasitol.61,167–221 (2006).
    • Taylor JE, Rudenko G: Switching trypanosome coats: what’s in the wardrobe? Trends Genet.22,614–620 (2006).
    • Magez S, Schwegmann A, Atkinson R et al.: The role of B-cells and IgM antibodies in parasitemia, anemia, and VSG switching in Trypanosoma brucei-infected mice. PLoS Pathog.4,e1000122 (2008).
    • Beschin A, Brys L, Magez S, Radwanska M, De Baetselier P: Trypanosoma brucei infection elicits nitric oxide-dependent and nitric oxide-independent suppressive mechanisms. J. Leukoc. Biol.63,429–439 (1998).
    • Radwanska M, Magez S, Michel A, Stijlemans B, Geuskens M, Pays E: Comparative analysis of antibody responses against HSP60, invariant surface glycoprotein 70, and variant surface glycoprotein reveals a complex antigen-specific pattern of immunoglobulin isotype switching during infection by Trypanosoma brucei.Infect. Immun.68,848–860 (2000).▪ Includes data obtained in both wild-type and T-cell-deficient nu/nu BALB/c mice, suggesting the very limited impact of T cells on the process of parasitemia control.
    • Sendashonga CN, Black SJ: Humoral responses against Trypanosoma brucei variable surface antigen are induced by degenerating parasites. Parasite Immunol.4,245–257 (1982).
    • 10  Van Meirvenne N, Janssens PG, Magnus E: Antigenic variation in syringe passaged populations of Trypanosoma (Trypanozoon) brucei. 1. Rationalization of the experimental approach. Ann. Soc. Belg. Med. Trop.55,1–23 (1975).
    • 11  Van Meirvenne N, Janssens PG, Magnus E, Lumsden WH, Herbert WJ: Antigenic variation in syringe passaged populations of Trypanosoma (Trypanozoon) brucei. II. Comparative studies on two antigenic-type collections. Ann. Soc. Belg. Med. Trop.55,25–30 (1975).
    • 12  Cornelissen AW, Bakkeren GA, Barry JD, Michels PA, Borst P: Characteristics of trypanosome variant antigen genes active in the tsetse fly. Nucleic Acids Res.13,4661–4676 (1985).
    • 13  Crowe JS, Lamont AG, Barry JD, Vickerman K: Cytotoxicity of monoclonal antibodies to Trypanosoma brucei.Trans. R. Soc. Trop. Med. Hyg.78,508–513 (1984).
    • 14  Crowe JS, Barry JD, Luckins AG, Ross CA, Vickerman K: All metacyclic variable antigen types of Trypanosoma congolense identified using monoclonal antibodies. Nature306,389–391 (1983).
    • 15  Nantulya VM, Doyle JJ, Jenni L: Studies on Trypanosoma (nannomonas) congolense III. Antigenic variation in three cyclically transmitted stocks. Parasitology80,123–131 (1980).
    • 16  MacAskill JA, Holmes PH, Whitelaw DD, Jennings FW, Urquhart GM: Immune mechanisms in C57B1 mice genetically resistant to Trypanosoma congolense infection. II. Aspects of the humoral response. Parasite Immunol.5,577–586 (1983).
    • 17  Mitchell LA, Pearson TW: Antibody responses induced by immunization of inbred mice susceptible and resistant to African trypanosomes. Infect. Immun.40,894–902 (1983).
    • 18  Pan W, Ogunremi O, Wei G, Shi M, Tabel H: CR3 (CD11b/CD18) is the major macrophage receptor for IgM antibody-mediated phagocytosis of African trypanosomes: diverse effect on subsequent synthesis of tumor necrosis factor α and nitric oxide. Microbes Infect.8,1209–1218 (2006).
    • 19  Shi M, Wei G, Pan W, Tabel H: Impaired Kupffer cells in highly susceptible mice infected with Trypanosoma congolense.Infect. Immun.73,8393–8396 (2005).
    • 20  Macaskill JA, Holmes PH, Whitelaw DD, McConnell I, Jennings FW, Urquhart GM: Immunological clearance of 75Se-labelled Trypanosoma brucei in mice. II. Mechanisms in immune animals. Immunology40,629–635 (1980).
    • 21  Steverding D, Stierhof YD, Chaudhri M et al.: ESAG 6 and 7 products of Trypanosoma brucei form a transferrin binding protein complex. Eur. J. Cell Biol.64,78–87 (1994).
    • 22  Jackson DG, Windle HJ, Voorheis HP: The identification, purification, and characterization of two invariant surface glycoproteins located beneath the surface coat barrier of bloodstream forms of Trypanosoma brucei.J. Biol. Chem.268,8085–8095 (1993).
    • 23  Ziegelbauer K, Overath P: Identification of invariant surface glycoproteins in the bloodstream stage of Trypanosoma brucei.J. Biol. Chem.267,10791–10796 (1992).
    • 24  Ziegelbauer K, Multhaup G, Overath P: Molecular characterization of two invariant surface glycoproteins specific for the bloodstream stage of Trypanosoma brucei.J. Biol. Chem.267,10797–10803 (1992).
    • 25  Nolan DP, Jackson DG, Windle HJ et al.: Characterization of a novel, stage-specific, invariant surface protein in Trypanosoma brucei containing an internal, serine-rich, repetitive motif. J. Biol. Chem.272,29212–29221 (1997).
    • 26  Gull K: Host-parasite interactions and trypanosome morphogenesis: a flagellar pocketful of goodies. Curr. Opin. Microbiol.6,365–370 (2003).
    • 27  Mkunza F, Olaho WM, Powell CN: Partial protection against natural trypanosomiasis after vaccination with a flagellar pocket antigen from Trypanosoma brucei rhodesiense.Vaccine13,151–154 (1995).
    • 28  Radwanska M, Magez S, Dumont N, Pays A, Nolan D, Pays E: Antibodies raised against the flagellar pocket fraction of Trypanosoma brucei preferentially recognize HSP60 in cDNA expression library. Parasite Immunol.22,639–650 (2000).
    • 29  Gingrich JB, Ward RA, Macken LM, Esser KM: Some phenomena associated with the development of Trypanosoma brucei rhodesiense infections in the tsetse fly, Glossina morsitans.Am. J. Trop. Med. Hyg.30,570–574 (1981).
    • 30  Tran T, Claes F, Dujardin JC, Buscher P: The invariant surface glycoprotein ISG75 gene family consists of two main groups in the Trypanozoon subgenus. Parasitology133,613–621 (2006).
    • 31  Tran T, Buscher P, Vandenbussche G, Wyns L, Messens J, De Greve H: Heterologous expression, purification and characterisation of the extracellular domain of trypanosome invariant surface glycoprotein ISG75. J. Biotechnol.135,247–254 (2008).
    • 32  Authie E, Boulange A, Muteti D, Lalmanach G, Gauthier F, Musoke AJ: Immunisation of cattle with cysteine proteinases of Trypanosoma congolense: targetting the disease rather than the parasite. Int. J. Parasitol.31,1429–1433 (2001).
    • 33  Hanotte O, Ronin Y, Agaba M et al.: Mapping of quantitative trait loci controlling trypanotolerance in a cross of tolerant West African N’Dama and susceptible East African Boran cattle. Proc. Natl Acad. Sci. USA100,7443–7448 (2003).
    • 34  Naessens J, Leak SG, Kennedy DJ, Kemp SJ, Teale AJ: Responses of bovine chimaeras combining trypanosomosis resistant and susceptible genotypes to experimental infection with Trypanosoma congolense.Vet. Parasitol.111,125–142 (2003).
    • 35  Lalmanach G, Boulange A, Serveau C et al.: Congopain from Trypanosoma congolense: drug target and vaccine candidate. Biol. Chem.383,739–749 (2002).
    • 36  Magez S, Radwanska M, Beschin A, Sekikawa K, De Baetselier P: Tumor necrosis factor a is a key mediator in the regulation of experimental Trypanosoma brucei infections. Infect. Immun.67,3128–3132 (1999).
    • 37  Sileghem M, Flynn JN, Logan-Henfrey L, Ellis J: Tumour necrosis factor production by monocytes from cattle infected with Trypanosoma (Duttonella) vivax and Trypanosoma (Nannomonas) congolense: possible association with severity of anaemia associated with the disease. Parasite Immunol.16,51–54 (1994).
    • 38  Magez S, Stijlemans B, Radwanska M, Pays E, Ferguson MA, De Baetselier P: The glycosyl-inositol-phosphate and dimyristoylglycerol moieties of the glycosylphosphatidylinositol anchor of the trypanosome variant-specific surface glycoprotein are distinct macrophage-activating factors. J. Immunol.160,1949–1956 (1998).
    • 39  Stijlemans B, Baral TN, Guilliams M et al.: A glycosylphosphatidylinositol-based treatment alleviates trypanosomiasis-associated immunopathology. J. Immunol.179,4003–4014 (2007).
    • 40  Askonas BA, Corsini AC, Clayton CE, Ogilvie BM: Functional depletion of T- and B-memory cells and other lymphoid cell subpopulations-during trypanosomiasis. Immunology36,313–321 (1979).
    • 41  Clayton CE, Ogilvie BM, Askonas BA: Trypanosoma brucei infection in nude mice: B lymphocyte function is suppressed in the absence of T lymphocytes. Parasite Immunol.1,39–48 (1979).
    • 42  Murray PK, Jennings FW, Murray M, Urquhart GM: The nature of immunosuppression in Trypanosoma brucei infections in mice. I. The role of the macrophage. Immunology27,815–824 (1974).
    • 43  Murray PK, Jennings FW, Murray M, Urquhart GM: The nature of immunosuppression in Trypanosoma brucei infections in mice. II. The role of the T and B lymphocytes. Immunology27,825–840 (1974).
    • 44  Whitelaw DD, Scott JM, Reid HW, Holmes PH, Jennings FW, Urquhart GM: Immunosuppression in bovine trypanosomiasis: studies with louping-ill vaccine. Res. Vet. Sci.26,102–107 (1979).
    • 45  Greenwood BM, Whittle HC, Molyneux DH: Immunosuppression in Gambian trypanosomiasis. Trans. R. Soc. Trop. Med. Hyg.67,846–850 (1973).
    • 46  Hudson KM, Byner C, Freeman J, Terry RJ: Immunodepression, high IgM levels and evasion of the immune response in murine trypanosomiasis. Nature264,256–258 (1976).
    • 47  Corsini AC, Clayton C, Askonas BA, Ogilvie BM: Suppressor cells and loss of B-cell potential in mice infected with Trypanosoma brucei.Clin. Exp. Immunol.29,122–131 (1977).
    • 48  Sharpe RT, Langley AM, Mowat GN, Macaskill JA, Holmes PH: Immunosuppression in bovine trypanosomiasis: response of cattle infected with Trypanosoma congolense to foot-and-mouth disease vaccination and subsequent live virus challenge. Res. Vet. Sci.32,289–293 (1982).
    • 49  Rurangirwa FR, Musoke AJ, Nantulya VM, Tabel H: Immune depression in bovine trypanosomiasis: effects of acute and chronic Trypanosoma congolense and chronic Trypanosoma vivax infections on antibody response to Brucella abortus vaccine. Parasite Immunol.5,267–276 (1983).
    • 50  Mwangi DM, Munyua WK, Nyaga PN: Immunosuppression in caprine trypanosomiasis: effects of acute Trypanosoma congolense infection on antibody response to anthrax spore vaccine. Trop. Anim. Health Prod.22,95–100 (1990).
    • 51  Holland WG, Do TT, Huong NT et al.: The effect of Trypanosoma evansi infection on pig performance and vaccination against classical swine fever. Vet. Parasitol.111,115–123 (2003).
    • 52  Radwanska M, Guirnalda P, De Trez C, Ryffel B, Black S, Magez S: Trypanosomiasis-induced B cell apoptosis results in loss of protective anti-parasite antibody responses and abolishment of vaccine-induced memory responses. PLoS Pathog.4,e1000078 (2008).▪▪ Describes in detail the alterations that occur to a number of specific B-cell subsets during experimental trypanosome infections in mice. Also shows how trypanosomes knockout the vaccine-induced memory responses against other pathogens such as Bordetella pertussis.
    • 53  O’Beirne C, Lowry CM, Voorheis HP: Both IgM and IgG anti-VSG antibodies initiate a cycle of aggregation–disaggregation of bloodstream forms of Trypanosoma brucei without damage to the parasite. Mol. Biochem. Parasitol.91,165–193 (1998).
    • 54  Engstler M, Pfohl T, Herminghaus S et al.: Hydrodynamic flow-mediated protein sorting on the cell surface of trypanosomes. Cell131,505–515 (2007).▪▪ Gives new insights into the role of parasite cell mobility and the process of active endocytosis.
    • 55  Vervoort T, Barbet AF, Musoke AJ, Magnus E, Mpimbaza G, Van Meirvenne N: Isotypic surface glycoproteins of trypanosomes. Immunology44,223–232 (1981).
    • 56  Albright JW, Albright JF: Murine natural resistance to Trypanosoma lewisi involves complement component C3 and radiation-resistant, silica dust-sensitive effector cells. Infect. Immun.47,176–182 (1985).
    • 57  Frevert U, Reinwald E: Trypanosoma congolense bloodstream forms evade complement lysis in vitro by shedding of immune complexes. Eur. J. Cell Biol.52,264–269 (1990).
    • 58  Guirnalda P, Murphy NB, Nolan D, Black SJ: Anti-Trypanosoma brucei activity in Cape buffalo serum during the cryptic phase of parasitemia is mediated by antibodies. Int. J. Parasitol.37,1391–1399 (2007).▪▪ Demonstrates that while antibody-mediated parasite clearance is certainly beneficial in parasitemia control, activation of the complement cascade has only a limited contribution to the control of chronic stage parasitemia.
    • 59  Muyldermans S, Baral TN, Retamozzo VC et al.: Camelid immunoglobulins and nanobody technology. Vet. Immunol. Immunopathol.128,178–183 (2009).
    • 60  Hamers-Casterman C, Atarhouch T, Muyldermans S et al.: Naturally occurring antibodies devoid of light chains. Nature363,446–448 (1993).▪▪ Foundation of all camel-variable heavy chain of a heavy-chain antibody and Nanobody® (Nb) platform development.
    • 61  Simmons DP, Abregu FA, Krishnan UV et al.: Dimerisation strategies for shark IgNAR single domain antibody fragments. J. Immunol. Methods315,171–184 (2006).
    • 62  Wesolowski J, Alzogaray V, Reyelt J et al.: Single domain antibodies: promising experimental and therapeutic tools in infection and immunity. Med. Microbiol. Immunol.198(3),157–174 (2009).
    • 63  Lauwereys M, Arbabi Ghahroudi M, Desmyter A et al.: Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. EMBO J.17,3512–3520 (1998).▪ Demonstrates some of the unique epitope recognition features of Nbs as compared with antibodies.
    • 64  Tijink BM, Laeremans T, Budde M et al.: Improved tumor targeting of anti-epidermal growth factor receptor Nanobodies through albumin binding: taking advantage of modular Nanobody technology. Mol. Cancer Ther.7,2288–2297 (2008).
    • 65  Vincke C, Loris R, Saerens D, Martinez-Rodriguez S, Muyldermans S, Conrath K: General strategy to humanize a camelid single-domain antibody and identification of a universal humanized Nanobody scaffold. J. Biol. Chem.284,3273–3284 (2009).
    • 66  Stijlemans B, Conrath K, Cortez-Retamozo V et al.: Efficient targeting of conserved cryptic epitopes of infectious agents by single domain antibodies. African trypanosomes as paradigm. J. Biol. Chem.279,1256–1261 (2004).▪ Demonstrates how Nbs can be used to target toxic compounds towards the surface of an extracellular pathogen in a specific manner.
    • 67  Baral TN, Magez S, Stijlemans B et al.: Experimental therapy of African trypanosomiasis with a Nanobody-conjugated human trypanolytic factor. Nat. Med.12,580–584 (2006).
    • 68  Xong HV, Vanhamme L, Chamekh M et al.: A VSG expression site-associated gene confers resistance to human serum in Trypanosoma rhodesiense.Cell95,839–846 (1998).▪▪ The fundamental discovery of the basis of human infectivity of Trypanosoma brucei rhodesiense as compared with other African trypanosomes. It allowed for the development of new ideas with respect to antitrypanosome drug development.
    • 69  Vanhamme L, Paturiaux-Hanocq F, Poelvoorde P et al.: Apolipoprotein L-I is the trypanosome lytic factor of human serum. Nature422,83–87 (2003).▪ Builds on the paper of Xong et al. and elaborates on the potential mechanisms of human ApoL1 and interaction with the serum resistance factor SRA.
    • 70  Pays E, Vanhollebeke B: Mutual self-defence: the trypanolytic factor story. Microbes Infect.10,985–989 (2008).
    • 71  Molina-Portela MP, Samanovic M, Raper J: Distinct roles of apolipoprotein components within the trypanosome lytic factor complex revealed in a novel transgenic mouse model. J. Exp. Med.205,1721–1728 (2008).▪▪ Uses a transgenic mouse model to further elaborates on the SRA–ApoL1 interaction, and raises some questions regarding the initial interpretations of previous results.
    • 72  Saerens D, Stijlemans B, Baral TN et al.: Parallel selection of multiple anti-infectome Nanobodies without access to purified antigens. J. Immunol. Methods329,138–150 (2008).▪▪ Demonstrates how the experimental infection of a camelid, followed by curative drug treatment, can be used to generate a high-quality, broad-spectrum Nb library against a given pathogen.
    • 73  Magnus E, Vervoort T, Van Meirvenne N: A card-agglutination test with stained trypanosomes (C.A.T.T.) for the serological diagnosis of T. b. gambiense trypanosomiasis. Ann. Soc. Belg. Med. Trop.58,169–176 (1978).
    • 74  Kennedy PG: Human African trypanosomiasis of the CNS: current issues and challenges. J. Clin. Invest.113,496–504 (2004).
    • 75  Odiit M, Kansiime F, Enyaru JC: Duration of symptoms and case fatality of sleeping sickness caused by Trypanosoma brucei rhodesiense in Tororo, Uganda. East Afr. Med. J.74,792–795 (1997).
    • 76  Docampo R, Moreno SN: Current chemotherapy of human African trypanosomiasis. Parasitol. Res.90(Suppl. 1),S10–S13 (2003).
    • 77  Sanderson L, Dogruel M, Rodgers J, De Koning HP, Thomas SA: Pentamidine movement across the murine blood–brain and blood–cerebrospinal fluid barriers: effect of trypanosome infection, combination therapy, P-glycoprotein, and multidrug resistance-associated protein. J. Pharmacol. Exp. Ther.329,967–977 (2009).
    • 78  Heby O, Persson L, Rentala M: Targeting the polyamine biosynthetic enzymes: a promising approach to therapy of African sleeping sickness, Chagas’ disease, and leishmaniasis. Amino Acids33,359–366 (2007).
    • 79  Balasegaram M, Young H, Chappuis F, Priotto G, Raguenaud ME, Checchi F: Effectiveness of melarsoprol and eflornithine as first-line regimens for gambiense sleeping sickness in nine Medecins Sans Frontieres programmes. Trans. R. Soc. Trop. Med. Hyg.103,280–290 (2009).
    • 80  Pepin J, Milord F: The treatment of human African trypanosomiasis. Adv. Parasitol.33,1–47 (1994).
    • 81  Lejon V, Reiber H, Legros D et al.: Intrathecal immune response pattern for improved diagnosis of central nervous system involvement in trypanosomiasis. J. Infect. Dis.187,1475–1483 (2003).
    • 82  Garcia A, Jamonneau V, Magnus E et al.: Follow-up of card agglutination trypanosomiasis test (CATT) positive but apparently aparasitaemic individuals in Cote d’Ivoire: evidence for a complex and heterogeneous population. Trop. Med. Int. Health5,786–793 (2000).
    • 83  Simarro PP, Ruiz JA, Franco JR, Josenando T: Attitude towards CATT-positive individuals without parasitological confirmation in the African trypanosomiasis (T.b. gambiense) focus of Quicama (Angola). Trop. Med. Int. Health4,858–861 (1999).
    • 84  Dukes P, Gibson WC, Gashumba JK et al.: Absence of the LiTat 1.3 (CATT antigen) gene in Trypanosoma brucei gambiense stocks from Cameroon. Acta Trop.51,123–134 (1992).
    • 85  Enyaru JC, Matovu E, Akol M et al.: Parasitological detection of Trypanosoma brucei gambiense in serologically negative sleeping-sickness suspects from north-western Uganda. Ann. Trop. Med. Parasitol.92,845–850 (1998).
    • 86  Asonganyi T, Bedifeh BA, Ade SS, Ngu JL: An evaluation of the reactivity of the card agglutination test for trypanosomiasis (CATT) reagent in the Fontem sleeping sickness focus, Cameroon. Afr. J. Med. Med. Sci.23,39–46 (1994).
    • 87  Tran T, Claes F, Verloo D, De Greve H, Buscher P: Towards a new reference test for surra in camels. Clin. Vaccine Immunol.16(7),999–1002 (2009).
    • 88  Kabiri M, Franco JR, Simarro PP, Ruiz JA, Sarsa M, Steverding D: Detection of Trypanosoma brucei gambiense in sleeping sickness suspects by PCR amplification of expression-site-associated genes 6 and 7. Trop. Med. Int. Health4,658–661 (1999).
    • 89  Radwanska M, Chamekh M, Vanhamme L et al.: The serum resistance-associated gene as a diagnostic tool for the detection of Trypanosoma brucei rhodesiense.Am. J. Trop. Med. Hyg.67,684–690 (2002).▪ Introduced the use of the SRA for the diffrential diagnosis of T. b. rhodesiense in human blood samples.
    • 90  Radwanska M, Claes F, Magez S et al.: Novel primer sequences for polymerase chain reaction-based detection of Trypanosoma brucei gambiense.Am. J. Trop. Med. Hyg.67,289–295 (2002).
    • 91  Thekisoe OM, Bazie RS, Coronel-Servian AM, Sugimoto C, Kawazu S, Inoue N: Stability of loop-mediated isothermal amplification (LAMP) reagents and its amplification efficiency on crude trypanosome DNA templates. J. Vet. Med. Sci.71,471–475 (2009).▪ Introduces the loop-mediated isothermal amplification technology to the field of trypanosomiasis diagnosis, but only uses well-characterized laboratory infection models.
    • 92  Woo PT: The haematocrit centrifuge technique for the diagnosis of African trypanosomiasis. Acta Trop.27,384–386 (1970).
    • 93  Levine RA, Wardlaw SC, Patton CL: Detection of haematoparasites using quantitative buffy coat analysis tubes. Parasitol. Today5,132–134 (1989).
    • 94  Gutierrez C, Corbera JA, Doreste F, Buscher P: Use of the miniature anion exchange centrifugation technique to isolate Trypanosoma evansi from goats. Ann. NY Acad. Sci.1026,149–151 (2004).
    • 95  Chappuis F, Loutan L, Simarro P, Lejon V, Buscher P: Options for field diagnosis of human african trypanosomiasis. Clin. Microbiol. Rev.18,133–146 (2005).