We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/fmb.10.168

The concomitant HIV and TB epidemics pose an enormous threat to humanity. After invading the host Mycobacterium tuberculosis initially behaves as an intracellular pathogen, which elicits the emergence of acquired specific resistance in the form of a T-helper-1 T-cell response, and involves the secretion of a myriad of cytokines and chemokines to drive protective immunity and granuloma formation. However, after that, a second phase of the disease process involves survival of bacilli in an extracellular state that is still poorly understood. This article briefly reviews the various strategies currently being used to improve both vaccination and drug therapy of TB, and attempts to make the argument that current viewpoints that dominate [both the field and the current literature] may be seriously flawed. This includes both the choice of new vaccine and drug candidates, and also the ways these are being tested in animal models, which in the opinion of the author run the risk of driving the field backwards rather than forward.

Papers of special note have been highlighted as: ▪ of interest

Bibliography

  • Glaziou P, Floyd K, Raviglione M: Global burden and epidemiology of tuberculosis. Clin. Chest Med.30,621–636 (2009).
  • Bifani PJ, Mathema B, Kurepina NE, Kreiswirth BN: Global dissemination of the Mycobacterium tuberculosis W-Beijing family strains. Trends Microbiol.10,45–52 (2002).
  • Wright A, Zignol M, Van Deun A et al.: Epidemiology of antituberculosis drug resistance 2002–2007: an updated analysis of the Global Project on Anti-Tuberculosis Drug Resistance Surveillance. Lancet373(9678),1861–1873 (2009).
  • Velayati AA, Masjedi MR, Farnia P et al.: Emergence of new forms of totally drug-resistant tuberculosis bacilli: super extensively drug-resistant tuberculosis or totally drug-resistant strains in Iran. Chest136,420–425 (2009).
  • Dye C: Doomsday postponed? Preventing and reversing epidemics of drug-resistant tuberculosis. Nat. Rev. Microbiol.7,81–87 (2009).
  • Dye C, Espinal MA: Will tuberculosis become resistant to all antibiotics? Proc. Biol. Sci.268,45–52 (2001).
  • Fauci AS: Multidrug-resistant and extensively drug-resistant tuberculosis: the National Institute of Allergy and Infectious Diseases Research agenda and recommendations for priority research. J. Infect. Dis.197,1493–1498 (2008).▪ Comprehensive set of recommendations for basic and applied research on the multidrug-resistant/extensively drug-resistant strains.
  • Wells CD, Cegielski JP, Nelson LJ et al.: HIV infection and multidrug-resistant tuberculosis: the perfect storm. J. Infect. Dis.196(Suppl. 1),S86–S107 (2007).
  • Nunn P, Reid A, De Cock KM: Tuberculosis and HIV infection: the global setting. J. Infect. Dis.196(Suppl. 1),S5–S14 (2007).
  • 10  Day JH, Grant AD, Fielding KL et al.: Does tuberculosis increase HIV load? J. Infect. Dis.190,1677–1684 (2004).
  • 11  Whalen C, Horsburgh CR, Hom D, Lahart C, Simberkoff M, Ellner J: Accelerated course of human immunodeficiency virus infection after tuberculosis. Am. J. Respir. Crit. Care Med.151,129–135 (1995).
  • 12  Rajbhandary SS, Marks SM, Bock NN: Costs of patients hospitalized for multidrug-resistant tuberculosis. Int. J. Tuberc. Lung Dis.8,1012–1016 (2004).
  • 13  White VL, Moore-Gillon J: Resource implications of patients with multidrug resistant tuberculosis. Thorax55,962–963 (2000).
  • 14  Bock NN, Jensen PA, Miller B, Nardell E: Tuberculosis infection control in resource-limited settings in the era of expanding HIV care and treatment. J. Infect. Dis.196(Suppl.1),S108–S113 (2007).
  • 15  Quy HT, Buu TN, Cobelens FG, Lan NT, Lambregts CS, Borgdorff MW: Drug resistance among smear-positive tuberculosis patients in Ho Chi Minh City, Vietnam. Int. J. Tuberc. Lung Dis.10,160–166 (2006).
  • 16  Dye C, Lonnroth K, Jaramillo E, Williams BG, Raviglione M: Trends in tuberculosis incidence and their determinants in 134 countries. Bull. World Health Organ.87,683–691 (2009).
  • 17  Gandhi NR, Moll A, Sturm AW et al.: Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet368,1575–1580 (2006).
  • 18  Migliori GB, Sotgiu G: XDR tuberculosis in South Africa: old questions, new answers. Lancet375,1760–1761 (2010).
  • 19  Kliiman K, Altraja A: Predictors of extensively drug-resistant pulmonary tuberculosis. Ann. Intern. Med.150,766–775 (2009).
  • 20  Cooper AM: Cell-mediated immune responses in tuberculosis. Annu. Rev. Immunol.27,393–422 (2009).▪ Excellent overview of current knowledge of TB.
  • 21  North RJ: T cell dependence of macrophage activation and mobilization during infection with Mycobacterium tuberculosis. Infect. Immun.10,66–71 (1974).
  • 22  Johnson CM, Cooper AM, Frank AA, Orme IM: Adequate expression of protective immunity in the absence of granuloma formation in Mycobacterium tuberculosis-infected mice with a disruption in the intracellular adhesion molecule 1 gene. Infect. Immun.66,1666–1670 (1998).
  • 23  Orme IM, Collins FM: Protection against Mycobacterium tuberculosis infection by adoptive immunotherapy. Requirement for T cell-deficient recipients. J. Exp. Med.158,74–83 (1983).
  • 24  Orme IM: The kinetics of emergence and loss of mediator T lymphocytes acquired in response to infection with Mycobacterium tuberculosis. J. Immunol.138,293–298 (1987).
  • 25  Junqueira-Kipnis AP, Kipnis A, Jamieson A et al.: NK cells respond to pulmonary infection with Mycobacterium tuberculosis, but play a minimal role in protection. J. Immunol.171,6039–6045 (2003).
  • 26  Lockhart E, Green AM, Flynn JL: IL-17 production is dominated by γδ T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J. Immunol.177,4662–4669 (2006).
  • 27  D’Souza CD, Cooper AM, Frank AA, Mazzaccaro RJ, Bloom BR, Orme IM: An anti-inflammatory role for γ δ T lymphocytes in acquired immunity to Mycobacterium tuberculosis. J. Immunol.158,1217–1221 (1997).
  • 28  Khader SA, Cooper AM: IL-23 and IL-17 in tuberculosis. Cytokine41,79–83 (2008).
  • 29  Ordway D, Henao-Tamayo M, Harton M et al.: The hypervirulent Mycobacterium tuberculosis strain HN878 induces a potent Th1 response followed by rapid down-regulation. J. Immunol.179,522–531 (2007).▪ First evidence that virulent clinical strains are potent inducers of regulatory T cells.
  • 30  Einarsdottir T, Lockhart E, Flynn JL: Cytotoxicity and secretion of γ interferon are carried out by distinct CD8 T cells during Mycobacterium tuberculosis infection. Infect. Immun.77,4621–4630 (2009).
  • 31  Flynn JL, Goldstein MM, Triebold KJ, Koller B, Bloom BR: Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc. Natl Acad. Sci. USA89,12013–12017 (1992).
  • 32  Wu Y, Woodworth JS, Shin DS, Morris S, Behar SM: Vaccine-elicited 10-kilodalton culture filtrate protein-specific CD8+ T cells are sufficient to mediate protection against Mycobacterium tuberculosis infection. Infect. Immun.76,2249–2255 (2008).
  • 33  Turner J, D’Souza CD, Pearl JE et al.: CD8- and CD95/95L-dependent mechanisms of resistance in mice with chronic pulmonary tuberculosis. Am. J. Respir. Cell. Mol. Biol.24,203–209 (2001).
  • 34  Gonzalez-Juarrero M, Turner OC, Turner J, Marietta P, Brooks JV, Orme IM: Temporal and spatial arrangement of lymphocytes within lung granulomas induced by aerosol infection with Mycobacterium tuberculosis. Infect. Immun.69,1722–1728 (2001).
  • 35  Orme I, Gonzalez-Juarrero M: Animal models of M. tuberculosis infection. Curr. Protoc. Microbiol. Chapter 10, Unit 10A.5 (2007).
  • 36  Young D: Animal models of tuberculosis. Eur.J. Immunol.39,2011–2014 (2009).
  • 37  Flynn JL, Chan J: Immunology of tuberculosis. Annu. Rev. Immunol.19,93–129 (2001).
  • 38  Orme IM: Preclinical testing of new vaccines for tuberculosis: a comprehensive review. Vaccine24,2–19 (2006).
  • 39  Kondratieva EV, Evstifeev VV, Kondratieva TK et al.: I/St mice hypersusceptible to Mycobacterium tuberculosis are resistant to M. avium. Infect. Immun.75,4762–4768 (2007).
  • 40  Pichugin AV, Yan BS, Sloutsky A, Kobzik L, Kramnik I: Dominant role of the sst1 locus in pathogenesis of necrotizing lung granulomas during chronic tuberculosis infection and reactivation in genetically resistant hosts. Am. J. Pathol.174,2190–2201 (2009).
  • 41  Sugawara I, Udagawa T, Yamada H: Rat neutrophils prevent the development of tuberculosis. Infect. Immun.72,1804–1806 (2004).
  • 42  Sugawara I, Yamada H, Mizuno S: Nude rat (F344/N-rnu) tuberculosis. Cell Microbiol.8,661–667 (2006).
  • 43  Tsenova L, Ellison E, Harbacheuski R et al.: Virulence of selected Mycobacterium tuberculosis clinical isolates in the rabbit model of meningitis is dependent on phenolic glycolipid produced by the bacilli. J. Infect. Dis.192,98–106 (2005).
  • 44  Manabe YC, Dannenberg AM Jr, Tyagi SK et al.: Different strains of Mycobacterium tuberculosis cause various spectrums of disease in the rabbit model of tuberculosis. Infect. Immun.71,6004–6011 (2003).
  • 45  Buddle BM, Skinner MA, Wedlock DN, de Lisle GW, Vordermeier HM, Hewinson RG: Cattle as a model for development of vaccines against human tuberculosis. Tuberculosis (Edinb.)85,19–24 (2005).
  • 46  Orme IM: Immunology and vaccinology of tuberculosis: can lessons from the mouse be applied to the cow? Tuberculosis (Edinb.)81,109–113 (2001).
  • 47  Basaraba RJ: Experimental tuberculosis: the role of comparative pathology in the discovery of improved tuberculosis treatment strategies. Tuberculosis (Edinb.)88(Suppl. 1),S35–S47 (2008).▪ Comprehensive description of the pathology of TB in the relevant guinea pig model.
  • 48  McMurray DN: Determinants of vaccine-induced resistance in animal models of pulmonary tuberculosis. Scand. J. Infect. Dis.33,175–178 (2001).
  • 49  McMurray DN, Collins FM, Dannenberg AM Jr, Smith DW: Pathogenesis of experimental tuberculosis in animal models. Curr. Top. Microbiol. Immunol.215,157–179 (1996).
  • 50  Basaraba RJ, Orme IM: Pulmonary tuberculosis in the guinea pig. In: A Color Atlas of Comparative Pathology of Pulmonary Tuberculosis. Leong FJ, Dartois V, Dick T (Eds). CRC Press, LA, USA 131–155 (2010).
  • 51  Ly LH, Russell MI, McMurray DN: Cytokine profiles in primary and secondary pulmonary granulomas of Guinea pigs with tuberculosis. Am. J. Respir. Cell. Mol. Biol.38,455–462 (2008).
  • 52  Ordway D, Palanisamy G, Henao-Tamayo M et al.: The cellular immune response to Mycobacterium tuberculosis infection in the guinea pig. J. Immunol.179,2532–2541 (2007).
  • 53  Turner OC, Basaraba RJ, Frank AA, Orme IM: Granuloma formation in mouse and guinea pig models of experimental tuberculosis. In: Granulomatous Infections and Inflammation: Cellular and Molecular Mechanisms. Boros DL (Ed.). ASM Press, Washington, DC, USA 65–84 (2003).
  • 54  Turner OC, Basaraba RJ, Orme IM: Immunopathogenesis of pulmonary granulomas in the guinea pig after infection with Mycobacterium tuberculosis. Infect. Immun.71,864–871 (2003).
  • 55  Williams A, Hall Y, Orme IM: Evaluation of new vaccines for tuberculosis in the guinea pig model. Tuberculosis (Edinb.)89,389–397 (2009).
  • 56  Ordway DJ, Shanley CA, Caraway ML et al.: Evaluation of standard chemotherapy in the guinea pig model of tuberculosis. Antimicrob. Agents Chemother.54,1820–1833 (2010).
  • 57  Capuano SV, Croix DA, Pawar S et al.: Experimental Mycobacterium tuberculosis infection of cynomolgus macaques closely resembles the various manifestations of human M. tuberculosis infection. Infect. Immun.71,5831–5844 (2003).
  • 58  Walsh GP, Tan EV, de la Cruz EC et al.: The Philippine cynomolgus monkey (Macaca fasicularis) provides a new nonhuman primate model of tuberculosis that resembles human disease. Nat. Med.2,430–436 (1996).
  • 59  Lin PL, Rodgers M, Smith L et al.: Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model. Infect. Immun.77,4631–4642 (2009).
  • 60  Langermans JA, Doherty TM, Vervenne RA et al.: Protection of macaques against Mycobacterium tuberculosis infection by a subunit vaccine based on a fusion protein of antigen 85B and ESAT-6. Vaccine23,2740–2750 (2005).
  • 61  Sharpe SA, McShane H, Dennis MJ et al.: Establishment of an aerosol challenge model of tuberculosis in rhesus macaques and an evaluation of endpoints for vaccine testing. Clin. Vaccine Immunol.17,1170–1182 (2010).▪ First defined low-dose aerosol infection model in nonhuman primate.
  • 62  Tobin DM, Vary JC Jr, Ray JP et al.: The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell140,717–730 (2010).
  • 63  Rhoades ER, Frank AA, Orme IM: Progression of chronic pulmonary tuberculosis in mice aerogenically infected with virulent Mycobacterium tuberculosis. Tuber. Lung Dis.78,57–66 (1997).
  • 64  Chackerian AA, Alt JM, Perera TV, Dascher CC, Behar SM: Dissemination of Mycobacterium tuberculosis is influenced by host factors and precedes the initiation of T-cell immunity. Infect. Immun.70,4501–4509 (2002).
  • 65  Wolf AJ, Desvignes L, Linas B et al.: Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J. Exp. Med.205,105–115 (2008).
  • 66  Pedrosa J, Saunders BM, Appelberg R, Orme IM, Silva MT, Cooper AM: Neutrophils play a protective nonphagocytic role in systemic Mycobacterium tuberculosis infection of mice. Infect. Immun.68,577–583 (2000).
  • 67  Dannenberg AM: Immunopathogenesis of pulmonary tuberculosis. Hosp. Pract.28,51–58 (1993).
  • 68  Dannenberg AM: Roles of cytotoxic delayed-type hypersensitivity and macrophage-activating cell-mediated immunity in the pathogenesis of tuberculosis. Immunobiology191,461–473 (1994).
  • 69  Russell DG, Barry CE, Flynn JL: Tuberculosis: what we don’t know can, and does, hurt us. Science28,852–856 (2010).
  • 70  Basaraba RJ, Smith EE, Shanley CA, Orme IM: Pulmonary lymphatics are primary sites of Mycobacterium tuberculosis infection in guinea pigs infected by aerosol. Infect. Immun.74,5397–5401 (2006).
  • 71  Lenaerts AJ, Hoff D, Aly S et al.: Location of persisting mycobacteria in a Guinea pig model of tuberculosis revealed by r207910. Antimicrob. Agents Chemother.51,3338–3345 (2007).
  • 72  Ryan GJ, Hoff DR, Driver ER et al.: Multiple M. tuberculosis phenotypes in mouse and guinea pig lung tissue revealed by a dual-staining approach. PLoS ONE5,E11108 (2010).
  • 73  Via LE, Lin PL, Ray SM et al.: Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect. Immun.76,2333–2340 (2008).
  • 74  Rustad TR, Sherrid AM, Minch KJ, Sherman DR: Hypoxia: a window into Mycobacterium tuberculosis latency. Cell Microbiol.11,1151–1159 (2009).
  • 75  Dye C, Williams BG: The population dynamics and control of tuberculosis. Science328,856–861 (2010).
  • 76  Lienhardt C, Vernon A, Raviglione MC: New drugs and new regimens for the treatment of tuberculosis: review of the drug development pipeline and implications for national programmes. Curr. Opin. Pulm. Med.16,186–193 (2010).
  • 77  Kliiman K, Altraja A: Predictors of poor treatment outcome in multi- and extensively drug-resistant pulmonary TB. Eur. Respir. J.33,1085–1094 (2009).
  • 78  Mak A, Thomas A, Del Granado M, Zaleskis R, Mouzafarova N, Menzies D: Influence of multidrug resistance on tuberculosis treatment outcomes with standardized regimens. Am. J. Respir. Crit. Care Med.178,306–312 (2008).
  • 79  Ginsberg AM, Spigelman M: Challenges in tuberculosis drug research and development. Nat. Med.13,290–294 (2007).
  • 80  Lenaerts AJ, Degroote MA, Orme IM: Preclinical testing of new drugs for tuberculosis: current challenges. Trends Microbiol.16,48–54 (2008).
  • 81  Nuermberger EL, Yoshimatsu T, Tyagi S et al.: Moxifloxacin-containing regimen greatly reduces time to culture conversion in murine tuberculosis. Am. J. Respir. Crit. Care Med.169,421–426 (2004).
  • 82  Dorman SE, Johnson JL, Goldberg S et al.: Substitution of moxifloxacin for isoniazid during intensive phase treatment of pulmonary tuberculosis. Am. J. Respir. Crit. Care Med.180,273–280 (2009).
  • 83  Brooks JV, Furney SK, Orme IM: Metronidazole therapy in mice infected with tuberculosis. Antimicrob. Agents Chemother.43,1285–1288 (1999).
  • 84  Dhillon J, Allen BW, Hu YM, Coates AR, Mitchison DA: Metronidazole has no antibacterial effect in Cornell model murine tuberculosis. Int. J. Tuberc. Lung Dis.2,736–742 (1998).
  • 85  Hoff DR, Caraway ML, Brooks EJ et al.: Metronidazole lacks antibacterial activity in guinea pigs infected with Mycobacterium tuberculosis. Antimicrob. Agents Chemother.52,4137–4140 (2008).
  • 86  Klinkenberg LG, Sutherland LA, Bishai WR, Karakousis PC: Metronidazole lacks activity against Mycobacterium tuberculosis in an in vivo hypoxic granuloma model of latency. J. Infect. Dis.198,275–283 (2008).
  • 87  Dutt AK, Stead WW: Tuberculosis in the elderly. Med. Clin. North Am.77,1353–1368 (1993).
  • 88  Barry CE 3rd, Boshoff HI, Dartois V et al.: The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat. Rev. Microbiol.7,845–855 (2009).
  • 89  Tufariello JM, Chan J, Flynn JL: Latent tuberculosis: mechanisms of host and bacillus that contribute to persistent infection. Lancet Infect. Dis.3,578–590 (2003).
  • 90  Chiang CY, Riley LW: Exogenous reinfection in tuberculosis. Lancet Infect. Dis.5,629–636 (2005).
  • 91  Orme IM: The latent tuberculosis bacillus (I’ll let you know if I ever meet one). Int. J. Tuberc. Lung Dis.5,589–593 (2001).
  • 92  Gomez JE, McKinney JD: M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis (Edinb.)84,29–44 (2004).
  • 93  Manabe YC, Bishai WR: Latent Mycobacterium tuberculosis-persistence, patience, and winning by waiting. Nat. Med.6,1327–1329 (2000).
  • 94  Smith DW, Balasubramanian V, Wiegeshaus E: A guinea pig model of experimental airborne tuberculosis for evaluation of the response to chemotherapy: the effect on bacilli in the initial phase of treatment. Tubercle72,223–231 (1991).
  • 95  Basaraba RJ, Bielefeldt-Ohmann H, Eschelbach EK et al.: Increased expression of host iron-binding proteins precedes iron accumulation and calcification of primary lung lesions in experimental tuberculosis in the guinea pig. Tuberculosis (Edinb.)88,69–79 (2008).
  • 96  Ojha AK, Baughn AD, Sambandan D et al.: Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol. Microbiol.69,164–174 (2008).▪ Important study showing Mycobacterium tuberculosis can form biofilms.
  • 97  Beresford B, Sadoff JC: Update on research and development pipeline: tuberculosis vaccines. Clin. Infect. Dis.50(Suppl. 3),S178–S183 (2010).
  • 98  Andersen P: TB vaccines: progress and problems. Trends Immunol.22,160–168 (2001).
  • 99  Kaufmann SH: Is the development of a new tuberculosis vaccine possible? Nat. Med.6,955–960 (2000).
  • 100  Orme IM: The search for new vaccines against tuberculosis. J. Leukoc. Biol.70,1–10 (2001).
  • 101  Orme IM, McMurray DN, Belisle JT: Tuberculosis vaccine development: recent progress. Trends Microbiol.9,115–118 (2001).
  • 102  Skeiky YA, Sadoff JC: Advances in tuberculosis vaccine strategies. Nat. Rev. Microbiol.4,469–476 (2006).
  • 103  Aagaard C, Hoang TT, Izzo A et al.: Protection and polyfunctional T cells induced by Ag85B-TB10.4/IC31 against Mycobacterium tuberculosis is highly dependent on the antigen dose. PLoS ONE4,E5930 (2009).
  • 104  Skeiky YA, Alderson MR, Ovendale PJ et al.: Differential immune responses and protective efficacy induced by components of a tuberculosis polyprotein vaccine, Mtb72F, delivered as naked DNA or recombinant protein. J. Immunol.172,7618–7628 (2004).
  • 105  Brandt L, Skeiky YA, Alderson MR et al.: The protective effect of the Mycobacterium bovis BCG vaccine is increased by coadministration with the Mycobacterium tuberculosis 72-kilodalton fusion polyprotein Mtb72F in M. tuberculosis-infected guinea pigs. Infect. Immun.72,6622–6632 (2004).
  • 106  Reed SG, Coler RN, Dalemans W et al.: Defined tuberculosis vaccine, Mtb72F/AS02A, evidence of protection in cynomolgus monkeys. Proc. Natl Acad. Sci. USA106,2301–2306 (2009).
  • 107  Baldwin SL, Bertholet S, Kahn M et al.: Intradermal immunization improves protective efficacy of a novel TB vaccine candidate. Vaccine27,3063–3071 (2009).
  • 108  Bertholet S, Ireton GC, Kahn M et al.: Identification of human T cell antigens for the development of vaccines against Mycobacterium tuberculosis. J. Immunol.181,7948–7957 (2008).
  • 109  Coler RN, Dillon DC, Skeiky YA et al.: Identification of Mycobacterium tuberculosis vaccine candidates using human CD4+ T-cells expression cloning. Vaccine27,223–233 (2009).
  • 110  Bertholet S, Ireton GC, Ordway DJ et al.: A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug resistant Mycobacterium tuberculosis. Sci. Transl. Med.2(53),53ra74 (2010).
  • 111  Orme IM: Current progress in tuberculosis vaccine development. Vaccine23,2105–2108 (2005).
  • 112  de Cassan SC, Pathan AA, Sander CR et al.: Investigating the induction of vaccine-induced Th17 and regulatory T cells in healthy, Mycobacterium bovis BCG-immunized adults vaccinated with a new tuberculosis vaccine, MVA85A. Clin. Vaccine Immunol.17,1066–1073 (2010).
  • 113  Kolibab K, Yang A, Derrick SC, Waldmann TA, Perera LP, Morris SL: Highly persistent and effective prime/boost regimens against tuberculosis that use a multivalent modified vaccine virus Ankara-based tuberculosis vaccine with interleukin-15 as a molecular adjuvant. Clin. Vaccine Immunol.17,793–801 (2010).
  • 114  Sun R, Skeiky YA, Izzo A et al.: Novel recombinant BCG expressing perfringolysin O and the over-expression of key immunodominant antigens; pre-clinical characterization, safety and protection against challenge with Mycobacterium tuberculosis. Vaccine27,4412–4423 (2009).
  • 115  Manca C, Tsenova L, Bergtold A et al.: Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-α /β. Proc. Natl Acad. Sci. USA98,5752–5757 (2001).
  • 116  Jeon BY, Derrick SC, Lim J et al.: Mycobacterium bovis BCG immunization induces protective immunity against nine different Mycobacterium tuberculosis strains in mice. Infect. Immun.76,5173–5180 (2008).
  • 117  Grode L, Seiler P, Baumann S et al.: Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette–Guerin mutants that secrete listeriolysin. J. Clin. Invest.115,2472–2479 (2005).
  • 118  van der Wel N, Hava D, Houben D et al.: M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell129,1287–1298 (2007).
  • 119  Park JS, Tamayo MH, Gonzalez-Juarrero M, Orme IM, Ordway DJ: Virulent clinical isolates of Mycobacterium tuberculosis grow rapidly and induce cellular necrosis but minimal apoptosis in murine macrophages. J. Leukoc. Biol.79,80–86 (2006).
  • 120  Magalhaes I, Sizemore DR, Ahmed RK et al.: rBCG induces strong antigen-specific T cell responses in rhesus macaques in a prime-boost setting with an adenovirus 35 tuberculosis vaccine vector. PLoS ONE3,E3790 (2008).
  • 121  Madakamutil LT, Christen U, Lena CJ et al.: CD8αα-mediated survival and differentiation of CD8 memory T cell precursors. Science304,590–593 (2004).
  • 122  Wang R, Natarajan K, Margulies DH: Structural basis of the CD8 α β/MHC class I interaction: focused recognition orients CD8 β to a T cell proximal position. J. Immunol.183,2554–2564 (2009).
  • 123  Cheroutre H, Lambolez F: Doubting the TCR coreceptor function of CD8αα. Immunity28,149–159 (2008).
  • 124  Abel B, Tameris M, Mansoor N et al.: The novel tuberculosis vaccine, AERAS-402, induces robust and polyfunctional CD4+ and CD8+ T cells in adults. Am. J. Respir. Crit. Care Med.181,1407–1417 (2010).
  • 125  Orme IM: The Achilles heel of BCG. Tuberculosis (Edinb.)90(6),329–332 (2010).
  • 126  Goldsack L, Kirman JR: Half-truths and selective memory: interferon γ, CD4+ T cells and protective memory against tuberculosis. Tuberculosis (Edinb.)87,465–473 (2007).
  • 127  Seder RA, Darrah PA, Roederer M: T-cell quality in memory and protection: implications for vaccine design. Nat. Rev. Immunol.8,247–258 (2008).
  • 128  Kagina BM, Abel B, Scriba TJ et al.: Specific T cell frequency and cytokine expression profile do not correlate with protection against tuberculosis, following BCG vaccination of newborns. Am. J. Respir. Crit. Care Med.182(8),1073–1079 (2010).
  • 129  Lindenstrom T, Agger EM, Korsholm KS et al.: Tuberculosis subunit vaccination provides long-term protective immunity characterized by multifunctional CD4 memory T cells. J. Immunol.182,8047–8055 (2009).
  • 130  Kraft SL, Dailey D, Kovach M et al.: Magnetic resonance imaging of pulmonary lesions in guinea pigs infected with Mycobacterium tuberculosis. Infect. Immun.72,5963–5971 (2004).
  • 131  Henao-Tamayo MI, Ordway DJ, Irwin SM, Shang S, Shanley C, Orme IM: Phenotypic definition of effector and memory T-lymphocyte subsets in mice chronically infected with Mycobacterium tuberculosis. Clin. Vaccine Immunol.17,618–625 (2010).
  • 132  Palanisamy G, DuTeau N, Eisenach K et al.: Clinical strains of Mycobacterium tuberculosis display a wide range of virulence in guinea pigs. Tuberculosis (Edinb.)89,203–209 (2009).
  • 133  Palanisamy GS, Smith EE, Shanley CA, Ordway DJ, Orme IM, Basaraba RJ: Disseminated disease severity as a measure of virulence of Mycobacterium tuberculosis in the guinea pig model. Tuberculosis (Edinb.)88,295–306 (2008).
  • 134  Green AM, Mattila JT, Bigbee CL, Bongers KS, Lin PL, Flynn JL: CD4+ regulatory T cells in a cynomolgus macaque model of Mycobacterium tuberculosis infection. J. Infect. Dis.202,533–541 (2010).
  • 135  Kremer K, van-der-Werf MJ, Au BK et al.: Vaccine-induced immunity circumvented by typical Mycobacterium tuberculosis Beijing strains. Emerg. Infect. Dis.15,335–339 (2009).
  • 136  Cardona PJ, Asensio JG, Arbues A et al.: Extended safety studies of the attenuated live tuberculosis vaccine SO2 based on phoP mutant. Vaccine27,2499–2505 (2009).
  • 137  Comas I, Chakravartti J, Small PM et al.: Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat. Genet.42,498–503 (2010).▪ Very important study showing bacterial epitopes are hyperconserved, which may confound vaccine design.
  • 138  Mackaness GB: The immunological basis of acquired cellular resistance. J. Exp. Med.120,105–120 (1964).
  • 139  Mackaness GB. Resistance to intracellular infection. J. Infect. Dis.123,439–445 (1971).
  • 140  Orme IM: Characteristics and specificity of acquired immunologic memory to Mycobacterium tuberculosis infection. J. Immunol.140,3589–3593 (1988).
  • 141  Orme IM: Induction of nonspecific acquired resistance and delayed-type hypersensitivity, but not specific acquired resistance in mice inoculated with killed mycobacterial vaccines. Infect. Immun.56,3310–3312 (1988).
  • 142  Orme IM, Andersen P, Boom WH: T cell response to Mycobacterium tuberculosis. J. Infect. Dis.167,1481–1497 (1993).