We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Pro-metastatic tumor–stroma interactions in breast cancer

    Sharath Gangadhara

    School of Pharmacy & Pharmaceutical Sciences, Redwood Building, Cardiff University, CF10 3NB, UK

    Velindre Cancer Centre, Velindre Road, Whitchurch, Cardiff, UK

    ,
    Peter Barrett-Lee

    Velindre Cancer Centre, Velindre Road, Whitchurch, Cardiff, UK

    ,
    Robert I Nicholson

    School of Pharmacy & Pharmaceutical Sciences, Redwood Building, Cardiff University, CF10 3NB, UK

    &
    Stephen Hiscox

    * Author for correspondence

    School of Pharmacy & Pharmaceutical Sciences, Redwood Building, Cardiff University, CF10 3NB, UK.

    Published Online:https://doi.org/10.2217/fon.12.134

    The vast majority of breast cancer-related deaths are due to metastatic disease. Reciprocal and complex interactions between epithelial tumor cells and the various components of the tumor microenvironment influence tumor progression and metastases although the molecular mechanisms underlying these metastasis-promoting effects are not fully characterized. Identifying and understanding pathways of tumor–stroma cross-talk are likely to lead to the development of novel prognostic biomarkers for metastasis and strategies to prevent metastasis at its earliest stages, resulting in improved patient outcomes.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Weigelt B, Peterse JL, Van’T Veer LJ. Breast cancer metastasis: markers and models. Nat. Rev. Cancer5(8),591–602 (2005).
    • Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev.8(2),98–101 (1989).▪▪ Based on the investigation of breast cancer autopsy reports, the author proposed the ‘seed and soil’ theory of tumor metastasis.
    • Ewing J. Neoplastic Diseases: A Textbook on Tumors (4th Edition). WB Saunders, PA, USA (1928).
    • Sugarbaker EV. Cancer metastasis: a product of tumor–host interactions. Curr. Probl. Cancer3(7),1–59 (1979).
    • Polyak K, Haviv I, Campbell IG. Co-evolution of tumor cells and their microenvironment. Trends Genet.25(1),30–38 (2009).
    • Hu M, Polyak K. Molecular characterisation of the tumour microenvironment in breast cancer. Eur. J. Cancer44(18),2760–2765 (2008).
    • De Wever O, Demetter P, Mareel M, Bracke M. Stromal myofibroblasts are drivers of invasive cancer growth. Int. J. Cancer123(10),2229–2238 (2008).
    • Heldin CH, Rubin K, Pietras K, Ostman A. High interstitial fluid pressure – an obstacle in cancer therapy. Nat. Rev. Cancer4(10),806–813 (2004).
    • Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer2(3),161–174 (2002).
    • 10  Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat. Rev. Cancer6(5),392–401 (2006).
    • 11  Egeblad M, Nakasone ES, Werb Z. Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell18(6),884–901 (2010).▪▪ In-depth review of the complex interaction of cancer cells with their surroundings, both locally in the tumor organ and systemically in the whole body. The authors highlight the importance of such tissue organization in metastases, and also review microenvironments that confer promoting or inhibiting effects on cancer cells.
    • 12  Levental KR, Yu H, Kass L et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell139(5),891–906 (2009).
    • 13  Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ. Collagen reorganization at the tumor–stromal interface facilitates local invasion. BMC Med.4(1),38 (2006).
    • 14  Bergamaschi A, Tagliabue E, Sorlie T et al. Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome. J. Pathol.214(3),357–367 (2008).▪ Describes the classification of primary breast tumors on the basis of extracellular matrix composition and shows that such classification provides relevant information on the clinical outcome of breast carcinomas, further supporting the hypothesis that clinical outcome is strongly related to stromal characteristics.
    • 15  Casey T, Bond J, Tighe S et al. Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Res. Treat.114(1),47–62 (2009).
    • 16  Ma XJ, Dahiya S, Richardson E, Erlander M, Sgroi DC. Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res.11(1),R7 (2009).
    • 17  Kang Y, Siegel PM, Shu W et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell3(6),537–549 (2003).
    • 18  Minn AJ, Gupta GP, Siegel PM et al. Genes that mediate breast cancer metastasis to lung. Nature436(7050),518–524 (2005).
    • 19  Finak G, Bertos N, Pepin F et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat. Med.14(5),518–527 (2008).
    • 20  Brouty-Boye D. Developmental biology of fibroblasts and neoplastic disease. Prog. Mol. Subcell Biol.40,55–77 (2005).
    • 21  Rasanen K, Vaheri A. Activation of fibroblasts in cancer stroma. Exp. Cell. Res.316(17),2713–2722 (2010).
    • 22  Desmouliere A, Guyot C, Gabbiani G. The stroma reaction myofibroblast: a key player in the control of tumor cell behavior. Int. J. Dev. Biol.48(5–6),509–517 (2004).
    • 23  Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G. The myofibroblast: one function, multiple origins. Am. J. Pathol.170(6),1807–1816 (2007).
    • 24  Mcanulty RJ. Fibroblasts and myofibroblasts: their source, function and role in disease. Int. J. Biochem. Cell. Biol.39(4),666–671 (2007).
    • 25  Ostman A, Augsten M. Cancer-associated fibroblasts and tumor growth – bystanders turning into key players. Curr. Opin. Genet. Dev.19(1),67–73 (2009).
    • 26  Tsujino T, Seshimo I, Yamamoto H et al. Stromal myofibroblasts predict disease recurrence for colorectal cancer. Clin. Cancer Res.13(7),2082–2090 (2007).
    • 27  Allinen M, Beroukhim R, Cai L et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell6(1),17–32 (2004).▪ A report of the gene expression profiles of different cell types within normal breast tissue and in situ and invasive breast carcinomas, revealing the importance of paracrine influence of myofibroblasts within the microenvironment.
    • 28  Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature454(7203),436–444 (2008).
    • 29  Lin EY, Gouon-Evans V, Nguyen AV, Pollard JW. The macrophage growth factor CSF-1 in mammary gland development and tumor progression. J. Mammary Gland Biol. Neoplasia7(2),147–162 (2002).
    • 30  Mantovani A, Allavena P, Sozzani S, Vecchi A, Locati M, Sica A. Chemokines in the recruitment and shaping of the leukocyte infiltrate of tumors. Semin. Cancer Biol.14(3),155–160 (2004).
    • 31  Andreu P, Johansson M, Affara NI et al. FcRγ activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell17(2),121–134 (2010).
    • 32  Dannenberg AJ, Subbaramaiah K. Targeting cyclooxygenase-2 in human neoplasia: rationale and promise. Cancer Cell4(6),431–436 (2003).
    • 33  Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer3(6),401–410 (2003).
    • 34  Lyden D, Hattori K, Dias S et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med.7(11),1194–1201 (2001).
    • 35  Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat. Rev. Cancer8(8),618–631 (2008).
    • 36  Rajala MW, Scherer PE. Minireview: the adipocyte – at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology144(9),3765–3773 (2003).
    • 37  Trujillo ME, Scherer PE. Adipose tissue-derived factors: impact on health and disease. Endocr. Rev.27(7),762–778 (2006).
    • 38  Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer4(8),579–591 (2004).
    • 39  Majed B, Moreau T, Senouci K, Salmon RJ, Fourquet A, Asselain B. Is obesity an independent prognosis factor in woman breast cancer? Breast Cancer Res. Treat.111(2),329–342 (2008).
    • 40  Dirat B, Bochet L, Escourrou G, Valet P, Muller C. Unraveling the obesity and breast cancer links: a role for cancer-associated adipocytes? Endocr. Dev.19,45–52 (2010).
    • 41  Carmichael AR. Obesity and prognosis of breast cancer. Obesity Rev.7(4),333–340 (2006).
    • 42  Dirat B, Bochet L, Dabek M et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res.71(7),2455–2465 (2011).
    • 43  Motrescu ER, Rio MC. Cancer cells, adipocytes and matrix metalloproteinase 11: a vicious tumor progression cycle. Biol. Chem.389(8),1037–1041 (2008).
    • 44  Cho JA, Park H, Lim EH, Lee KW. Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells. Int. J. Oncol.40(1),130–138 (2012).▪ Suggests that tumor-derived exosomes can contribute to progression of tumor cells by converting adipose tissue-derived mesenchymal stem cells within tumor stroma into tumor-associated myofibroblasts, further demonstrating the importance of adipose tissue in tumor progression.
    • 45  Langley RR, Fidler IJ. Tumor cell–organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocr. Rev.28(3),297–321 (2007).
    • 46  Micke P, Ostman A. Tumour–stroma interaction: cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer45(Suppl. 2),S163–S175 (2004).
    • 47  Orimo A, Weinberg RA. Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle5(15),1597–1601 (2006).
    • 48  Gaggioli C, Hooper S, Hidalgo-Carcedo C et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat. Cell. Biol.9(12),1392–1400 (2007).
    • 49  Chiquet M, Gelman L, Lutz R, Maier S. From mechanotransduction to extracellular matrix gene expression in fibroblasts. Biochim. Biophys. Acta1793(5),911–920 (2009).
    • 50  Kumar S, Weaver VM. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev.28(1–2),113–127 (2009).
    • 51  Tschumperlin DJ, Dai G, Maly IV et al. Mechanotransduction through growth-factor shedding into the extracellular space. Nature429(6987),83–86 (2004).
    • 52  De Wever O, Nguyen QD, Van Hoorde L et al. Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. FASEB J.18(9),1016–1018 (2004).
    • 53  Olsen CJ, Moreira J, Lukanidin EM, Ambartsumian NS. Human mammary fibroblasts stimulate invasion of breast cancer cells in a three-dimensional culture and increase stroma development in mouse xenografts. BMC Cancer10,444 (2010).
    • 54  Shimoda M, Mellody KT, Orimo A. Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Semin. Cell Dev. Biol.21(1),19–25 (2010).
    • 55  Ioachim E, Michael M, Stavropoulos NE, Kitsiou E, Salmas M, Malamou-Mitsi V. A clinicopathological study of the expression of extracellular matrix components in urothelial carcinoma. BJU Int.95(4),655–659 (2005).
    • 56  Ioachim E, Charchanti A, Briasoulis E et al. Immunohistochemical expression of extracellular matrix components tenascin, fibronectin, collagen type IV and laminin in breast cancer: their prognostic value and role in tumour invasion and progression. Eur. J. Cancer38(18),2362–2370 (2002).▪ Prognostic value of selected extracellular matrix proteins within the tumor stroma is demonstrated in this clinical analysis.
    • 57  Schmalhofer O, Brabletz S, Brabletz T. E-cadherin, β-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev.28(1–2),151–166 (2009).
    • 58  Lochter A, Galosy S, Muschler J, Freedman N, Werb Z, Bissell MJ. Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J. Cell. Biol.139(7),1861–1872 (1997).
    • 59  Vleminckx K, Vakaet L Jr, Mareel M, Fiers W, Van Roy F. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell66(1),107–119 (1991).
    • 60  Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature392(6672),190–193 (1998).
    • 61  Yoshida R, Kimura N, Harada Y, Ohuchi N. The loss of E-cadherin, α- and β-catenin expression is associated with metastasis and poor prognosis in invasive breast cancer. Int. J. Oncol.18(3),513–520 (2001).
    • 62  Borley AC, Hiscox S, Gee J et al. Anti-oestrogens but not oestrogen deprivation promote cellular invasion in intercellular adhesion-deficient breast cancer cells. Breast Cancer Res.10(6),R103 (2008).▪ Recent data have suggested an intriguing link between E-cadherin and endocrine response in breast cancer, where low or absent E-cadherin expression in ER+, ductal breast cancers receiving tamoxifen appears to predict for poor survival.
    • 63  Hiscox S, Rakha E, Smith C et al. Loss of E-cadherin expression in clinical breast cancer is associated with an adverse outcome on tamoxifen. Cancer Res.71(24), Supplement 3 (2011).
    • 64  Guo W, Giancotti FG. Integrin signalling during tumour progression. Nat. Rev. Mol. Cell Biol.5(10),816–826 (2004).
    • 65  Aplin AE, Howe AK, Juliano RL. Cell adhesion molecules, signal transduction and cell growth. Curr. Opin. Cell Biol.11(6),737–744 (1999).
    • 66  Erler JT, Weaver VM. Three-dimensional context regulation of metastasis. Clin. Exp. Metastasis26(1),35–49 (2009).
    • 67  Gimond C, Van Der Flier A, Van Delft S et al. Induction of cell scattering by expression of β1 integrins in β1-deficient epithelial cells requires activation of members of the ρ family of GTPases and downregulation of cadherin and catenin function. J. Cell Biol.147(6),1325–1340 (1999).
    • 68  De Jong JS, Van Diest PJ, Van Der Valk P, Baak JP. Expression of growth factors, growth-inhibiting factors, and their receptors in invasive breast cancer. II: correlations with proliferation and angiogenesis. J. Pathol.184(1),53–57 (1998).
    • 69  Stupp R, Ruegg C. Integrin inhibitors reaching the clinic. J. Clin. Oncol.25(13),1637–1638 (2007).
    • 70  Hariharan S, Gustafson D, Holden S et al. Assessment of the biological and pharmacological effects of the αn β3 and αn β5 integrin receptor antagonist, cilengitide (EMD 121974), in patients with advanced solid tumors. Ann. Oncol.18(8),1400–1407 (2007).
    • 71  Cabodi S, Di Stefano P, Leal Mdel P et al. Integrins and signal transduction. Adv. Exp. Med. Biol.674,43–54 (2010).
    • 72  Ilic D, Furuta Y, Kanazawa S et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature377(6549),539–544 (1995).
    • 73  Gabarra-Niecko V, Schaller MD, Dunty JM. FAK regulates biological processes important for the pathogenesis of cancer. Cancer Metastasis Rev.22(4),359–374 (2003).
    • 74  Parsons JT, Slack-Davis J, Tilghman R, Roberts WG. Focal adhesion kinase: targeting adhesion signaling pathways for therapeutic intervention. Clin. Cancer Res.14(3),627–632 (2008).
    • 75  Kim TH, Kim HI, Soung YH, Shaw LA, Chung J. Integrin (α6β4) signals through Src to increase expression of S100A4, a metastasis-promoting factor: implications for cancer cell invasion. Mol. Cancer Res.7(10),1605–1612 (2009).
    • 76  Summy JM, Gallick GE. Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev.22(4),337–358 (2003).
    • 77  Hiscox S, Jordan NJ, Morgan L, Green TP, Nicholson RI. Src kinase promotes adhesion-independent activation of FAK and enhances cellular migration in tamoxifen-resistant breast cancer cells. Clin. Exp. Metastasis24(3),157–167 (2007).
    • 78  Schweppe RE, Kerege AA, French JD, Sharma V, Grzywa RL, Haugen BR. Inhibition of Src with AZD0530 reveals the Src-Focal Adhesion kinase complex as a novel therapeutic target in papillary and anaplastic thyroid cancer. J. Clin. Endocrinol. Metab.94(6),2199–2203 (2009).
    • 79  Hiscox S, Morgan L, Green TP, Barrow D, Gee J, Nicholson RI. Elevated Src activity promotes cellular invasion and motility in tamoxifen resistant breast cancer cells. Breast Cancer Res. Treat.97(3),263–274 (2006).
    • 80  Hadler-Olsen E, Fadnes B, Sylte I, Uhlin-Hansen L, Winberg JO. Regulation of matrix metalloproteinase activity in health and disease. FEBS J.278(1),28–45 (2011).
    • 81  Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J.278(1),16–27 (2011).
    • 82  Coussens LM, Werb Z. Matrix metalloproteinases and the development of cancer. Chem. Biol.3(11),895–904 (1996).
    • 83  Basset P, Bellocq JP, Wolf C et al. A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature348(6303),699–704 (1990).
    • 84  Zhao YG, Xiao AZ, Park HI et al. Endometase/matrilysin-2 in human breast ductal carcinoma in situ and its inhibition by tissue inhibitors of metalloproteinases-2 and -4: a putative role in the initiation of breast cancer invasion. Cancer Res.64(2),590–598 (2004).
    • 85  Lebeau A, Nerlich AG, Sauer U, Lichtinghagen R, Lohrs U. Tissue distribution of major matrix metalloproteinases and their transcripts in human breast carcinomas. Anticancer Res.19(5B),4257–4264 (1999).
    • 86  Wiechmann L, Kuerer HM. The molecular journey from ductal carcinoma in situ to invasive breast cancer. Cancer112(10),2130–2142 (2008).
    • 87  Cichon MA, Degnim AC, Visscher DW, Radisky DC. Microenvironmental influences that drive progression from benign breast disease to invasive breast cancer. J. Mammary Gland. Biol. Neoplasia15(4),389–397 (2010).
    • 88  Schuetz CS, Bonin M, Clare SE et al. Progression-specific genes identified by expression profiling of matched ductal carcinomas in situ and invasive breast tumors, combining laser capture microdissection and oligonucleotide microarray analysis. Cancer Res.66(10),5278–5286 (2006).
    • 89  Borrello MG, Alberti L, Fischer A et al. Induction of a proinflammatory program in normal human thyrocytes by the RET/PTC1 oncogene. Proc. Natl Acad. Sci. USA102(41),14825–14830 (2005).
    • 90  Soucek L, Lawlor ER, Soto D, Shchors K, Swigart LB, Evan GI. Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nat. Med.13(10),1211–1218 (2007).
    • 91  Sparmann A, Bar-Sagi D. Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell6(5),447–458 (2004).
    • 92  Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis30(7),1073–1081 (2009).
    • 93  Harmey JH, Dimitriadis E, Kay E, Redmond HP, Bouchier-Hayes D. Regulation of macrophage production of vascular endothelial growth factor (VEGF) by hypoxia and transforming growth factor β-1. Ann. Surg. Oncol.5(3),271–278 (1998).
    • 94  Doedens AL, Stockmann C, Rubinstein MP et al. Macrophage expression of hypoxia-inducible factor-1 α suppresses T-cell function and promotes tumor progression. Cancer Res.70(19),7465–7475 (2010).
    • 95  Pollard JW. Macrophages define the invasive microenvironment in breast cancer. J. Leukoc. Biol.84(3),623–630 (2008).
    • 96  Coussens LM, Werb Z. Inflammation and cancer. Nature420(6917),860–867 (2002).
    • 97  Leek RD, Talks KL, Pezzella F et al. Relation of hypoxia-inducible factor-2 α (HIF-2 α) expression in tumor-infiltrative macrophages to tumor angiogenesis and the oxidative thymidine phosphorylase pathway in human breast cancer. Cancer Res.62(5),1326–1329 (2002).
    • 98  Luo Y, Zhou H, Krueger J et al. Targeting tumor-associated macrophages as a novel strategy against breast cancer. J. Clin. Invest.116(8),2132–2141 (2006).
    • 99  Byzova TV, Goldman CK, Pampori N et al. A mechanism for modulation of cellular responses to VEGF: activation of the integrins. Mol. Cell6(4),851–860 (2000).
    • 100  Klein S, Bikfalvi A, Birkenmeier TM, Giancotti FG, Rifkin DB. Integrin regulation by endogenous expression of 18-kDa fibroblast growth factor-2. J. Biol. Chem.271(37),22583–22590 (1996).
    • 101  Fernandez-Sauze S, Grall D, Cseh B, Van Obberghen-Schilling E. Regulation of fibronectin matrix assembly and capillary morphogenesis in endothelial cells by Rho family GTPases. Exp. Cell Res.315(12),2092–2104 (2009).
    • 102  Jin H, Aiyer A, Su J et al. A homing mechanism for bone marrow-derived progenitor cell recruitment to the neovasculature. J. Clin. Invest.116(3),652–662 (2006).
    • 103  Stacker SA, Caesar C, Baldwin ME et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat. Med.7(2),186–191 (2001).
    • 104  Van Zijl F, Mair M, Csiszar A et al. Hepatic tumor–stroma crosstalk guides epithelial to mesenchymal transition at the tumor edge. Oncogene28(45),4022–4033 (2009).
    • 105  Orimo A, Gupta PB, Sgroi DC et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell121(3),335–348 (2005).
    • 106  Ao M, Williams K, Bhowmick NA, Hayward SW. Transforming growth factor-β promotes invasion in tumorigenic but not in nontumorigenic human prostatic epithelial cells. Cancer Res.66(16),8007–8016 (2006).
    • 107  Bhowmick NA, Chytil A, Plieth D et al. TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science303(5659),848–851 (2004).
    • 108  Niu YN, Xia SJ. Stroma–epithelium crosstalk in prostate cancer. Asian J. Androl.11(1),28–35 (2009).
    • 109  Hernandez L, Smirnova T, Kedrin D et al. The EGF/CSF-1 paracrine invasion loop can be triggered by heregulin β1 and CXCL12. Cancer Res.69(7),3221–3227 (2009).
    • 110  Potter SM, Dwyer RM, Hartmann MC et al. Influence of stromal-epithelial interactions on breast cancer in vitro and in vivo . Breast Cancer Res. Treat.131(2),401–411 (2012).
    • 111  Paulsson J, Sjoblom T, Micke P et al. Prognostic significance of stromal platelet-derived growth factor β-receptor expression in human breast cancer. Am. J. Pathol.175(1),334–341 (2009).
    • 112  Witkiewicz AK, Dasgupta A, Sotgia F et al. An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. Am. J. Pathol.174(6),2023–2034 (2009).
    • 113  Sotgia F, Martinez-Outschoorn UE, Howell A, Pestell RG, Pavlides S, Lisanti MP. Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms. Annu. Rev. Pathol.7,423–467 (2012).
    • 114  Auvinen P, Tammi R, Parkkinen J et al. Hyaluronan in peritumoral stroma and malignant cells associates with breast cancer spreading and predicts survival. Am. J. Pathol.156(2),529–536 (2000).
    • 115  Kim MY, Oskarsson T, Acharyya S et al. Tumor self-seeding by circulating cancer cells. Cell139(7),1315–1326 (2009).
    • 116  Nguyen DX, Bos PD, Massague J. Metastasis: from dissemination to organ-specific colonization. Nat. Rev. Cancer9(4),274–284 (2009).
    • 117  Kaplan RN, Riba RD, Zacharoulis S et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature438(7069),820–827 (2005).
    • 118  Hiratsuka S, Nakamura K, Iwai S et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell2(4),289–300 (2002).
    • 119  Erler JT, Bennewith KL, Cox TR et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell15(1),35–44 (2009).
    • 120  Kim S, Takahashi H, Lin WW et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature457(7225),102–106 (2009).
    • 121  Meltzer A. Dormancy and breast cancer. J. Surg. Oncol.43(3),181–188 (1990).
    • 122  Black WC, Welch HG. Advances in diagnostic imaging and overestimations of disease prevalence and the benefits of therapy. N. Engl. J. Med.328(17),1237–1243 (1993).
    • 123  Folkman J, Kalluri R. Cancer without disease. Nature427(6977),787 (2004).
    • 124  Allan AL, Vantyghem SA, Tuck AB, Chambers AF. Tumor dormancy and cancer stem cells: implications for the biology and treatment of breast cancer metastasis. Breast Dis.26,87–98 (2006).
    • 125  Naumov GN, Macdonald IC, Weinmeister PM et al. Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res.62(7),2162–2168 (2002).
    • 126  Naumov GN, Townson JL, Macdonald IC et al. Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or late-developing metastases. Breast Cancer Res. Treat.82(3),199–206 (2003).
    • 127  Marsden CG, Wright MJ, Pochampally R, Rowan BG. Breast tumor-initiating cells isolated from patient core biopsies for study of hormone action. Methods Mol. Biol. (Clifton, N. J.)590,363–375 (2009).
    • 128  Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat. Rev. Cancer3(12),895–902 (2003).
    • 129  Millerot-Serrurot E, Guilbert M, Fourre N et al. 3D collagen type I matrix inhibits the antimigratory effect of doxorubicin. Cancer Cell Int.10,26 (2010).▪▪ These data highlight the importance of the 3D matrix configuration on tumor cell response to anti-invasive drugs. This article supports the use of appropriate in vitro models that more closely reflect the tumor microenvironment to determine the response of chemotherapeutic agents.
    • 130  Sethi T, Rintoul RC, Moore SM et al. Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat. Med.5(6),662–668 (1999).
    • 131  Fridman R, Giaccone G, Kanemoto T, Martin GR, Gazdar AF, Mulshine JL. Reconstituted basement membrane (matrigel) and laminin can enhance the tumorigenicity and the drug resistance of small cell lung cancer cell lines. Proc. Natl Acad. Sci. USA87(17),6698–6702 (1990).
    • 132  Berube M, Talbot M, Collin C et al. Role of the extracellular matrix proteins in the resistance of SP6.5 uveal melanoma cells toward cisplatin. Int. J. Oncol.26(2),405–413 (2005).
    • 133  Hiscox S, Barrett-Lee P, Nicholson RI. Therapeutic targeting of tumor–stroma interactions. Expert Opin. Ther. Targets15(5),609–621 (2011).▪▪ Highlights the molecular elements in the tumor stroma that might represent novel therapeutic targets.
    • 134  Stupp R, Hegi ME, Neyns B et al. Phase I/IIa study of cilengitide and temozolomide with concomitant radiotherapy followed by cilengitide and temozolomide maintenance therapy in patients with newly diagnosed glioblastoma. J. Clin. Oncol.28(16),2712–2718 (2010).
    • 135  Nam JM, Chung Y, Hsu HC, Park CC. β1 integrin targeting to enhance radiation therapy. Int. J. Radiat. Biol.85(11),923–928 (2009).
    • 136  Kim TJ, Landen CN, Lin YG et al. Combined anti-angiogenic therapy against VEGF and integrin αVβ3 in an orthotopic model of ovarian cancer. Cancer Biol. Ther.8(23),2263–2272 (2009).
    • 137  Hehlgans S, Lange I, Eke I, Cordes N. 3D cell cultures of human head and neck squamous cell carcinoma cells are radiosensitized by the focal adhesion kinase inhibitor TAE226. Radiother. Oncol.92(3),371–378 (2009).
    • 138  Loeffler M, Kruger JA, Niethammer AG, Reisfeld RA. Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J. Clin. Invest.116(7),1955–1962 (2006).