We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/imt.10.2

In spite of the considerable successes that have been achieved in the treatment of chronic myeloid leukemia (CML), cure for the disease can only be obtained by the present means in a rather small minority of patients. During the past decade, considerable progress has been made in the understanding of the immunology of CML, which has raised hopes that this disease may be curable by supplementing the current targeted chemotherapy with immunotherapeutic approaches. More than ten small-scale clinical trials have been carried out with experimental vaccines predominantly based on the p210bcr–abl fusion protein. Their results suggested beneficial effects in some patients. Recent data obtained in human patients as well as in animal models indicate that the p210bcr–abl protein does not carry the immunodominant epitope(s). These observations, combined with the recognition of an ever increasing number of other immunogenic proteins in CML cells, strongly support the concept that gene-modified, cell-based vaccines containing the full spectrum of tumor antigens might be the most effective immunotherapeutic approach. Recently created mathematical models have provided important leads for the timing of the combination of targeted drug therapy with vaccine administration. A strategy of how targeted drug therapy might be combined with vaccination is outlined.

Papers of special note have been highlighted as: ▪ of interest

Bibliography

  • Buchdunger E, Cioffi CL, Law N et al.: Abl protein-tyrosine kinase inhibitor ST171 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J. Pharmacol. Exp. Ther.295,137–145 (2000).
  • Druker BJ, Guilhot F, O’Brien SG et al.: Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med.355,2408–2417 (2006).▪ Summarizes the remarkable success of treatment of chronic myeloid leukemia (CML) with imatinib mesylate.
  • Druker BJ, Sawyers C, Kantarjian H et al.: Activity of a specific inhibitor of the BCR–ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblasti leukemia with the Philadelphia chromosome. N. Engl. J. Med.344,1038–1042 (2001).
  • le Coutre P, Tassi E, Varella-Garcia M et al.: Induction of resistence to the Abelson inhibitor ST1571 in human leukemic cells through gene amplification. Blood95,1758–1766 (2000).
  • Hochhaus A, Kreil S, Corbin AS et al.: Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia16,2190–2196 (2002).
  • Azam M, Daley GQ: Anticipating clinical resistance to target-directed agents: the BCR–ABL paradigm. Mol. Diagn. Ther.10,67–76 (2006).
  • Shah NP, Tran NP, Lee FY et al.: Overriding imatinib resistence with a novel ABL kinase inhibitor. Science305,399–401 (2004).
  • Weisberg E, Manley PW, Breitenstrein W et al.: Characterization of AMN107, a selective inhibitor of native and mutant Bcr–Abl. Cancer Cell7,129–141 (2005).
  • Seggewiss R, Price DA, Purbhoo MA: Immunomodulatory effects of imatinib and second-generation tyrosine kinase inhibitors on T cells and dendritic cells: an update. Cytotherapy10,633–641 (2008).
  • 10  Berke Z, Andersen MH, Pedersen M, Fugger L, Zeuthen J, Haurum JS: Peptides spanning the junctional region of both the bcr–abl fusion proteins bind common HLA class I molecules. Leukemia14,419–426 (2000).
  • 11  Pittet MJ: Behaviour of immune players in the tumor microienvirnoment. Curr. Opin. Oncol.21,2153–2159 (2009).
  • 12  Stewart TJ, Abrams SI: How tumours escape mass destruction. Oncogene27,5894–5903 (2008).
  • 13  Bronte V, Mocellin S: Suppressive influences in the immune response to cancer. J. Immunother.32,1–11 (2009).
  • 14  Biernaux C, Loos M, Sels A, Huez G, Stryckmans P: Detection of major bcr–abl gene expression at a very low level in blood cells of some healthy individuals. Blood86,3118–3122 (1995).
  • 15  Bose S, Deininger M, Gora-Tybor J, Goldman JM, Melo JV: The presence of typical and atypical BCR–ABL fusion genes in leukocytes of normal individuals: biologic significance and implication for the assessment of minimal residual disease. Blood92,3362–3367 (1998).
  • 16  Posthuma EF, Falkenburg JH, Apperley JF et al.: HLA-B8 and HLA-A3 coexpressed with HLA B8 are associated with a reduced risk of the development of chronic myeloid leukemia. The Chronic Leukemia Working Party of the EBHT. Blood93,3863–3865 (1999).
  • 17  Khosravi F, Amirzargar A, Sarafnejad A et al : HLA class II allele and haplotype frequencies in Iranian patients with leukemia. Iran J. Allergy Asthma Immunol.6,137–142 (2007).
  • 18  Naugler C, Liwski R: HLA risk markers for chronic myelogenous leukemia in eastern Canada. Leuk. Lymphoma50,254–259 (2009).
  • 19  Chakrabarti D, Hultgren B, Stewart TA: IFN-α induces autoimmune T cells through the induction of intracellular adhesion molecule-1 and B7.2. J. Immunol.157,522–528 (1996).
  • 20  Molldrem JL, Lee PP, Wang C et al : Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat. Med.6,1018–1023 (2000).
  • 21  Burchert A, Wolfl S, Schmidt M et al.: Interferon-α but not the ABL-kinase inhibitor imatinib (STI571), induces expression of myeloblastin and specific T-cell response in chronic myeloid leukemia. Blood101,259–264 (2003).
  • 22  Gabriele L, Borghi P, Rozera C et al.: IFN-α promotes the rapid differentiation of monocytes from patients with chronic myeloid leukemia into activated dendritic cells tuned to undergo full maturation after LPS treatment. Blood103,980–987 (2004).
  • 23  Collins RH Jr, Spilberg O, Drobyski WR et al.: Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J. Clin. Oncol.15,433–434 (1997).
  • 24  Norde WJ, Overes IM, Maas F et al.: Myeloid leukemic progenitor cells can be specifically targeted by minor histocompatibility antigen LRH-1-reactive cytotoxic T cells. Blood113,2312–2323 (2009).
  • 25  Bocchia M, Wentworth PA, Southwood S et al.: Specific binding of leukemia oncogene fusion protein peptides to HLA class I molecules. Blood85,2680–2684 (1995)
  • 26  Bocchia M, Korontsvit T, Xu Q et al: Specific human cellular immunity to bcr-abl oncogene derived peptides. Blood87,3587–3592 (1996).
  • 27  ten Bosch GJ, Joosten AM, Kessler JH, Melief CJ, Leeksma OC: Recognition of BCR–ABL positive leukemic blasts by human CD4+ T cells elicited by primary in vitro immunization with a BCR–ABL breakpoint peptides. Blood88,3522–3527 (1996)
  • 28  ten Bosch GJ, Toornvliet AC, Friede T, Melief CJ, Leeksma OC: Recognition of peptides corresponding to the joining region of p210BCR–ABL protein by human T cells. Leukemia9,1344–1348 (1995).
  • 29  Pawelec G, Max H, Halder T et al.: BCR/ABL leukemia oncogene fusion peptides selectively bind to certain HLA-DR alleles and can be recognized by T cells found in low frequency in the repertoire of normal donors. Blood88,2118–2124 (1996).
  • 30  Osman Y, Takahashi M, Zheng Z et al.: Generation of bcr-abl-specific cytotoxic T-lymphocytes by using dendritic cells pulsed with bcr-abl (b3a2) peptide: its application for donor leukocyte transfusions in marrow grafted CML patients. Leukemia13,166–174 (1999).
  • 31  Pinilla-Ibarz J, Cathcart K, Scheinberg DA: CML vaccines as a paradigm of the specific immunotherapy of cancer. Blood Rev.14,11–20 (2000).
  • 32  Yotnda P, Firat P, Garcia-Pons F et al.: Cytotoxic T cells response against the chimeric p210 BCR–ABL protein in patients with chronic myelogenous leukaemia. J. Clin. Invest.101,2290–2296, (1998).
  • 33  Clark RE, Dodi IA, Hill SC et al.: Direkt evidence that leukemic cells present HLA-associated immunogenic peptides derived from BCR–ABL b3a2 fusion protein. Blood98,2887–2893 (2001).
  • 34  Wagner WM, Ouyang Q, Pawelec G: The abl-bcr gene product as a novel leukemia specific antigen: peptides spanning the fusion region of abl/bcr can be recognized by both CD4+ and CD8+ T lymphocytes. Cancer Immunol. Immunother.52,89–96 (2003).
  • 35  Gannagé M, Abel M, Michallet AS et al.: Ex vivo characterization of multiepitopic tumor-specific CD8 T cells in patients with chronic myeloid leukemia: implications for vaccine development and adoptive cellular immunotherapy. J. Immunol.174,8210–8218 (2005).
  • 36  El-Shami K, Smith BD: Immunotherapy for myeloid leukemias: current status and future directions. Leukemia22,1658–1664 (2008).
  • 37  Grünebach F, Mirakaj V, Mirakaj V, Miller MR, Brümmendorf T, Brossart P: BCR–ABL is not an immunodominant in chronic myeloid leukemia. Cancer Res.66,5892–5900 (2006)▪ Demonstrates convincing evidence that p210bcr–abl is not the immunodominant antigen in CML.
  • 38  Brauer KM, Werth D, von Schwarzenberg K et al.: BCR–ABL activity is critical for the immunogenicity of chronic myelogenous leukemia cells. Cancer Res.67,5489–5497 (2007)▪ p210bcr–abl plays the critical role in aberrant expression of a number of cellular proteins.
  • 39  Scheich F, Duyster J, Peschel C, Bernhardt H: The immunogenicity of Bcr–Abl-expressing dendritic cells is dependent on the Bcr–Abl kinase activity and dominated by Bcr–Abl-regulated antigens. Blood110,2556–2560 (2007).
  • 40  Witko-Sarsat V, Canteloup S, Durant S et al.: Cleavage of p21waf1 by proteinase 3, a myeloid-specific serine protease, potentiates cell proliferation. J. Biol. Chem.277,47338–47347 (2002).
  • 41  El-Ouriaghli F, Sloand E, Mainwaring L, Fujiwara H, Keyvanfar K, Melenhorst JJ: Clonal dominance of chronic myelogenous leukaemia is associated with diminished sensitivity to the antiproliferative effects of neutrophil elastase Blood15,3786–3792 (2003).
  • 42  Wilson TJ, Nannuru KC, Singh RK: Cathepsin G recruits osteoclast precursors via proteolytic activation of protease-activated receptor-1. Cancer Res.69,3186–3195 (2009).
  • 43  Reed JC, Pelecchia M: Apoptosis-based therapies for hematologic malignancies. Blood106,408–418 (2005).
  • 44  Lam JS, Pantuc AJ, Belldegrun AS, Figlin RA: G 250: a carbonic anhydrase IX monoclonal antibody. Curr. Oncol. Rep.7,109–115 (2005).
  • 45  Beatty GL, Vonderheide RH: Telomerase as a universal tumor antigen for cancer vaccines. Expert Rev. Vaccines7,881–887 (2008).
  • 46  Resto VA, Caballero OL, Buta MR et al.: A putative oncogenic role for MPP11 in head and neck squamous cell cancer. Cancer Res.60,5529–5535 (2000).
  • 47  Scanlan MJ, Simpson JG, Old LJ: The cancer/testis genes: review, standardization and commentary. Cancer Immunol.4,1–13 (2004).
  • 48  Oehler VG, Guthrie KA, Cummings CL et al.: The preferentially expressed antigen in melanoma (PRAME) inhibits myeloid differentiation in normal hematotopoietic and leukemic progenitor cells. Blood114,3299–3308 (2009).
  • 49  van Baren N, Chambost H, Ferrant A et al.: PRAME, a gene encoding an antigen recognized in human melanoma by cytolytic T cells, is expressed in acute leukaemia cells. Br. J. Haematol.102,1376–1379 (1998).
  • 50  Reiter R, Gais P, Jütting U et al.: Aurora-kinase A messenger RNA overexpression is correlated with tumor progression and shortened survival in head and neck squamous cell carcinoma. Clin. Cancer Res.12,5136–5141 (2006).
  • 51  Yang XF, Wu CJ, Chen L et al.: CML 28 is broadly immunogenic antigen, which is expressed in tumor cells. Cancer Res.62,5517–5522 (2002).
  • 52  Wang Q, Li M, Wang YJ et al: RNA interference targeting CML66, a novel tumor antigen, inhibits proliferation, invasion and metastasis of Hela cells. Cancer Lett.269,127–138 (2008).
  • 53  Schmidt SM, Schag K, Muller MR et al: Induction of adipophilin-specific cytotoxic lymphocytes using a novel HLA-A2-binding peptide that mediates tumor cell lysis. Cancer Res.64,1164–1170 (2004).
  • 54  Shin S, Sung BJ, Cho YS et al: An anti-apoptotic protein human survivin is direct inhibitor of caspase-3 and -7. Biochemistry40,1117–1123 (2001).
  • 55  Carter BZ, Mak DH, Schober WD et al: Regulation of survivin expression through Bcr–Abl/MARK cascade: targeting survivin overcomes imatinib resistence and increases imatinib sensitivity in imatinib-responsive CML cells. Blood107,1555–1563 (2006).
  • 56  Postel EH, Berberich SJ, Rooney JW, Kaetzel DM: Human NM23-H2 nucleoside diphosphate kinase regulates gene expression through DNA binding to nuclease-hypersensitive transcriptional elements. J. Bioenerg. Biomembr.32,277–284 (2000).
  • 57  Greiner J, Schmitt M: Leukemia-associated antigens as target structures for a specific immunotherapy in chronic myeloid leukemia. Eur. J. Haematol.80,461–468 (2008).
  • 58  Mumprecht S, Schurch C, Schwaller J, Solenthaler M, Ochsenbein AF: Programmed death 1 signaling on chronic myeloid leukemia-specific T cells results in T cell exhaustion and disease progression. Blood114,1528–1536 (2009).
  • 59  Papallardo F, Pennisi M, Castiglione F, Motta S: Vaccine protocols optimization: in silico experiments. Biotechnol. Adv.28,82–93 (2100).
  • 60  Gowthaman U, Agrewala JN: In silico methods for predicting the cell epitopes: Dr Jekyll or Mr Hyde? Expert Rev. Protomics6,527–537 (2010).
  • 61  He L, Feng H, Raymond A et al: Dendritic-cell-peptide immunization provides immunoprotection against bcr-abl-positive leukemia in mice. Cancer Immunol. Immunother.50,31–40 (2001).
  • 62  Kislin KL, Marron MT, Li G, Graner MW, Katsanis E: Chaperone-rich cell lysate embedded with BCR–ABL peptide demonstrates enhanced anti-tumor activity against a murine BCR–ABL positive leukemia. FASEB J.21,2173–2184 (2007).
  • 63  Krause DS, Van Etten RA: Adoptive immunotherapy of BCR–ABL-induced chronic myeloid leukemia-like myeloproliferative disease in a murine model Blood,104,4236–4244 (2004).
  • 64  Ling X, Wang Y, Dietrich MF, Andreeff M, Arlinghaus RB: Vaccination with leukemia cells expressing cell-surface-associated GM-CSF blocks leukemia induction in immunocompetent mice. Oncogene25,4483–4490 (2006).
  • 65  Deeb D, Gao X, Jiang H, Divine G, Dulchavsky SA, Gautam BC: Vaccination with leukemia-loaded dendritic cells eradicates residual diseases and prevent relapse. J. Exp. Ther. Oncol.5,183–193 (2006).
  • 66  McLaughlin J, Chianese E, Witte ON: In vitro transformation of immature haematopoietic cells by the P210 BCR/ABL oncogene product of the Philadelphia chromosome. Proc. Natl Acad. Sci USA84,6558–6562 (1987).
  • 67  Daley GQ, Baltimore D: Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukaemia-specific P210bcr/abl protein. Proc. Natl. Acd. Sci. USA85,9312–9316 (1988).
  • 68  Sobotková E, Ludvíková V, Petráčková M et al.: Characteristics of two mouse bcr-abl-transformed cell lines I. General properties of the cells. Folia Biol. (Praha)51,12–18 (2005).
  • 69  Jelínek F, Sobotková E, Vonka V: Characteristics of two mouse bcr-abl-transformed cell lines. II. Pathological lesions induced in mice. Folia Biol. (Praha)51,93–102 (2005).
  • 70  Lucanský V, Sobotková E, Tachezy R, Dušková M, Vonka V: DNA vaccination against bcr-abl-transfornmed cells in mice. Int. J. Oncol.35,941–951 (2009).▪ DNA fragment of the bcr–abl gene coding for the fusion zone of p210bcr–abl is not capable of uinducing protection against the challenge with bcr–abl-transformed cells in syngeneic Balb/c mice.
  • 71  Hrušková V, Morávková A, Babiarova K et al: Bcr-Abl fusion sequences do not induce immune responses in mice when administered in mouse polyomavirus based virus-like particles. Int. J. Oncol.35,1247–1256 (2009).▪ Polyomavirus-like-particles carrying a 171-amino-acid long fragment of the p210bcr–abl including its fusion zone, were not capable of inducing protection against the challenge with bcr–abl-transformed cells in syngeneic Balb/c mice.
  • 72  Petráčková M, Sobotková E, Dušková M, Jinoch P, Vonka V: Isolation and properties of gene-modified mouse bcr–abl-transformed cells expressing various immunostimulatory factors. Neoplasma56,194–201 (2009).
  • 73  Sobotková E, Dušková M, Tachezy R, Petrackova M, Vonka V: Combined chemo- and immunotherapy of tumors induced in mice by bcr-abl-transformed cells. Oncol. Rep.21,793–799 (2009).▪ Combination of chemotherapy with vaccination with gene-modified bcr–abl-transformed had a marked therapeutic effect in mice inoculated with syngeneic bcr–abl-transformed cells.
  • 74  Orsini E, Calabrese E, Maggio R et al.: Circulating myeloid dendritic cells directly isolated from patients with chronic myelogenous leukemia are functional and carry the bcr–abl translocation. Leuk. Res.30,785–794 (2006).
  • 75  Mumprecht S, Claus C, Schürch CH, Pavelic V, Matter MS, Ochsenbein AF: Defective homing and impaired induction of cytotoxic T cells by BCR/ABL-expressing dendritic cells. Blood113,4681–4689 (2009).
  • 76  Humlová Z, Klamová H, Janatková I et al.: Immunological profiles of patients with chronic myeloid leukaemia I. State before the start of treatment. Folia Biol. Prague)52,47–58 (2006).
  • 77  Reuschenbach M, von Knebel-Doeberitz M, Wentzensen N: A systemic review of humoral immune responses against tumor antigens. Cancer Immunol. Immunother.58,1535–1544 (2009).
  • 78  De Gruijl TD, van der Eertwegh AJ, Pinedo HM, Scheper RJ: Whole-cell cancer vaccination: from autologous to allogenic tumor- and dendritic cell-based vaccines. Cancer Immunol. Immunother.57,1569–1577 (2008).▪ Discusses the advantages and disadvantages of autologous and allogenic cell-based vaccines.
  • 79  Michor F, Hughes TP, Iwasa Y et al.: Dynamics of chronic myeloid leukaemia Nature435,1267–1270 (2005).
  • 80  Abbott LH, Michor F: Mathematical models of targeted cancer therapy. Br. J. Cancer95,1136–1141 (2006).
  • 81  Graham SM, Jorgensen HG, Allan E et al.: Primitive quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia cells are insensitive to STI571 in vitro. Blood99,319–325 (2002).
  • 82  Roeder I, Horn M, Glauche I, Hochaus A, Mueller MC, Loeffler M: Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implications Nat. Med.12,1181–1184 (2006).
  • 83  Chávez-Gonzáles A, Ayala-Sánchez M, Sánchez-Valle E et al.: Functional integrity in vitro of hematopoietic progenitor cells from patients with chronic myeloid leukemia that have achieved haematological remission after different therapeutic procedures. Leuk. Res.30,286–295(2006).
  • 84  Glauche I, Horn M, Roeder I: Leukemia stem cells: hit or miss? Br. J. Cancer96,677–678 (2007).
  • 85  Komarova NL, Wodarz D: Drug resistance in cancer. Principles of emergence and prevention. Proc. Natl Acad. Sci. USA102,9714–9719 (2005).
  • 86  Guo XY, Cuillerot T, Wang T et al.: Peptide containing the BCR oligomerization domain (AA 1–160) reverses the transformed phenotype of p210bcr–abl positive 32D myeloid leukemia cells. Oncogene17,825–833 (1998).
  • 87  Tolcher AW, Mita A, Lewis LD et al.: Phase I and pharmacokinetic study of YM155, a small-molecule inhibitor of survivin. J. Clin. Oncol.26,5198–5203 (2008).
  • 88  Tolcher A: Targeting Bcl-2 protein expression in solid tumors and haematological malignancies with antisense oligonucleotides. Clin. Adv. Hematol. Oncol.3,635–642 (2005).
  • 89  Jayanthan A, Howard SC, Trippett T et al.: Targeting the Bcl-2 family of proteins in Hodgkin lymphoma: in vitro cytotoxicity, target modulation and drug combination studies of the Bcl-2 homology 3 mimetic ABT-737. Leuk. Lymphoma50,1069–1072 (2009).
  • 90  Ochi T, Fujiwara H, Suemori K et al.: Aurora-A kinase: a novel target of cellular immunotherapy for leukaemia. Blood113,66–74 (2008).
  • 91  Chen CI, Maecker HT, Lee PP: Development and dynamics of robust T cell response to CML under imatinib treatment. Blood111,5342–5349 (2008).▪ Describes a strong but transitory immune response to CML cells in imatinib mesylate-treated patients.
  • 92  Kim PS, Lee PP, Levy D: Dynamics and potential impact of the immune response to chronic myelogenous leukemia. PLoS Comput. Biol.4,E1000095 (2008).▪ Presents a mathematical model substantiating the concept that chemotherapy followed by immunotherapy may result in the cure of CML.
  • 93  Pinilla-Ibarz J, Cathcart K, Korontsvit T et al.: Vaccination of patients with chronic myelogenous leukemia with bcr-abl oncogene breakpoint fusion peptides generates specific immune responses. Blood95,1781–1787 (2000).
  • 94  Takahashi T, Tanaka Y, Nieda M et al.: Dendritic cell vaccination for patients with chronic myelogenous leukemia. Leuk. Res.27,795–802 (2003).
  • 95  Ossenkoppele GJ, Stam AG, Westers TM et al.: Vaccination of chronic myeloid leukemia patients with autologous in vitro cultured leukemia dendritic cells. Leukemia17,1424–1426 (2003).
  • 96  Heslop HE, Stevenson FK, Molldrem JJ: Immunotherapy of hematologic malignancy. Hematology Am. Soc. Hematol. Educ. Program331–349 (2003).
  • 97  Cathcart K, Pinilla-Ibarz J, Korontsvit T et al.: A multivalent bcr-abl fusion peptide vaccination trial in patients with chronic myeloid leukemia. Blood103,1037–1042 (2004).
  • 98  Bocchia M, Gentili S, Abruzzese E et al.: Effect of a p210 multipeptide vaccine associated with imatinib or interferon in patients with chronic myeloid leukaemia and persistent residual disease: a multicentre observational trial. Lancet365,657–662 (2005).
  • 99  Li Z, Qiao Y, Liu B et al.: Combination of imatinib mesylate with autologous leukocyte-derived heat shock protein and chronic myelogenous leukemia. Clin. Cancer Res.11,4460–4468 (2005).
  • 100  Rojas JM, Knight K, Wang L, Clark RE: Clinical evaluation of BCR–ABL peptide immunisation in chronic myeloid leukemia: results of the EPIC study. Leukemia21,2287–2295 (2007).
  • 101  Westermann J, Koop J, van Lessen A et al.: Vaccination with autologous non-irradiated dendritic cells in patients with bcr-abl+ chronic myeloid leukemia. Br. J. Hematol.137,297–306 (2007).
  • 102  Rezvani K, Yong AS, Mielke S et al : Leukemia-associated antigen-specific T cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood111,236–242 (2008).
  • 103  Jain N, Reuben JM, Kantarjian H et al.: Synthetic tumor-specific breakpoint vaccine in patients with chronic myeloid leukaemia and minimal residual disease: a Phase 2 trial. Cancer115,3924–3934 (2009).
  • 104  Maslak PG, Dao T, Gomez M et al.: A pilot vaccination trial of synthetic analog peptides derived from the BCR–ABL breakpoints in CML patients with minimal disease. Leukemia22,1613–1616 (2008).
  • 105  Bellantuono I, Gao L, Parry S et al: Two distinct HLA-A0201-presented epitopes of the Wilms tumor antigen 1 can function as targets for leukemia-reactive CTL. Blood100,3835–3837 (2002).
  • 106  Millerem JJ, Lee PP, Wang C, Champlin RE, Davis MM: A Pr1- human antigen-A2 tetramer can be used to isolate low-frequency cytotoxic T lymphocytes from healthy donors that selectively lyse chronic myelologenous leukemia. Cancer Res.59,2675–2681 (1999).
  • 107  Schmitt M, Li L, Giannopoulos K et al.: Chronic myeloid leukemia cells express tumor-associated antigens eliciting specific CD8+ T-cell responses and are lacking co-stimulatory molecules. Exp. Hematol.34,1709–1719 (2006).
  • 108  Yong AS, Keyvanfar K, Eniafe R et al.: Hematopoietic stem cells and progenitors of chronic myeloid leukemia express leukaemia-associated antigens: implications for the graft-versus-leukemia effects and peptide vaccine based immunotherapy. Leukemia22,1721–1727 (2008).
  • 109  Fujiwara H, Melenhorts JJ, Ouriaghli F et al.: In vitro induction of myeloid leukaemia-specific CD4 and CD8 T cells by CD40 ligand-activated B cells gene modified to express primary granule proteins. Clin. Cancer Res.11,4495–4503 (2005).
  • 110  Adams SP, Sahota SS, Milovic A et al: Frequent expression of HAGE in presentation chronic myeloid leukemias. Leukemia16,2238–2242 (2002).
  • 111  Riley CL, Mathieu MG, Clark RE, McArdle SE, Rees R: Tumour antigen-targeted immunotherapy for chronic myeloid leukemia: is it still viable? Cancer Immunol. Immunother.58,1489–1499 (2009).
  • 112  Rezvani K, Yong AS, Tawab A et al.: Ex vivo characterization of polyclonal memory CD8+ T cell responses to PRAME- specific peptides in patients with acute lymphoblastic leukemia and acute and chronic myeloid leukemia. Blood113,2245–2255 (2009).
  • 113  Kessler JH, Beekman NJ, Bres-Vloemans SA et al.: Efficient identification of novel HLA-A(*)0201-presented cytotoxic T lymphocyte epitopes in the widely expressed tumor antigen PRAME by proteasome-mediated digestion analysis. J. Exp. Med.193,73–88 (2001).
  • 114  Quintarelli C, Dotti G, DeAngelis B et al.: Cytoxic T lymphocytes directed to the perefertially expressed antigen of melanoma (PRAME) target chronic myelod leukemia. Blood112,1876–1885 (2008).
  • 115  Ochi T, Fujiwara H, Suemori K et al.: Aurora-A kinase: a novel target of cellular immunotherapy for leukemia. Blood113,66–74 (2009).
  • 116  Han JF, Zhao TT, Liu HL et al.: Identification of a new HLA-A 0201-restricted cytotoxic T. lymphocyte epitope from CLM28. Cancer Immunol. Immunother.55,1575–1583 (2006)
  • 117  Suemori K, Fujiwara H, Ochi T et al.: Identification of an epitope derived from CML 66 a novel tumor-associated antigen expressed broadly in human leukaemia, recognized by human leukocyte antigen-A*2402-restricted cytotoxic T lymhocytes. Cancer Sci.99,1414–1419 (2008).
  • 118  Chen J, Schmitt A, Bunjes D et al: The receptor for hyaluronic acid-mediated motility induces specific CD8+ T cell response in healthy donors and patients with chronic myeloid leukemia after allogenic stem cell transplantation. Int. J. Oncol.30,1119–1127 (2007).
  • 119  Hernández-Boluda JC, Bellosillo B, Vela MC, Colomer D, Alvarez-Larrán A, Cervantes F: Survivin expression in the progression of chronic myeloid leukemia: a sequential study in 16 patients. Leuk. Lymphoma46,717–722(2005).
  • 120  Zeis M, Siegel S, Wagner A et al.: Generation of cytotoxic responses in mice and human individuals against hematological malignancies using survivin-RNA-transfected dendritic cells. J. Immunol.170,5391–5397 (2003).
  • 121  Tschiedel S, Gentilini C, Lange T et al.: Indentification of NM23-H2 as a tumour-associated antigen in chronic myeloid leukaemia. Leukemia22,1542–1550 (2008).
  • 122  Andersen MH, Svane IM, Kvistborg P et al.: Immunogenicity of Bcl-2 in patients with cancer. Blood105,728–734 (2004).
  • 123  Andersen MH, Reker S, Kvistborg P, Becker JC, thor Straten P: Spontaneous immunity against Bcl-xL in cancer patients. J. Immunol.175,2709–2714 (2005).
  • 124  Greiner J, Schmitt M, Li L et al.: Expression of tumor-associated antigens in acute myeloid leukemia: implications for specific immunotherapeutic approaches. Blood108,4109–4117 (2006).
  • 125  Schmidt SM, Schag K, Müller MR et al.: Induction of adipophillin-specific cytotoxic T lymphocytes using a novel HLA-A2-binding peptide that mediates tumor cell lysis. Cancer Res.64,1164–1170 (2004).
  • 126  Aqui NA, Vonderheide RH: Survinin as a universal tumor antigen for novel cancer immunotherapy. Cancer Biol. Ther.1888–1889 (2008).
  • 127  Smith BD, Kasamon YL, Kowalski J, Gocke C, Murphy K, Miller CB: K562/GM-CSF immunotherapy reduces tumor burden in chronic myeloid leukemia patients with residual disese on imatinib mesylate. Clin. Cancer Res.16,338–347 (2010).