We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Potential targets for pancreatic cancer immunotherapeutics

    ,
    William G Hawkins

    Washington University School of Medicine, Department of Surgery, 660 S. Euclid Avenue, Box 8109, Saint Louis MO 63110, USA

    &
    Peter Goedegebuure

    Washington University School of Medicine, Department of Surgery, 660 S. Euclid Avenue, Box 8109, Saint Louis MO 63110, USA

    Published Online:https://doi.org/10.2217/imt.11.10

    Pancreatic adenocarcinoma is the fourth leading cause of cancer death with an overall 5-year survival of less than 5%. As there is ample evidence that pancreatic adenocarcinomas elicit antitumor immune responses, identification of pancreatic cancer-associated antigens has spurred the development of vaccination-based strategies for treatment. While promising results have been observed in animal tumor models, most clinical studies have found only limited success. As most trials were performed in patients with advanced pancreatic cancer, the contribution of immune suppressor mechanisms should be taken into account. In this article, we detail recent work in tumor antigen vaccination and the recently identified mechanisms of immune suppression in pancreatic cancer. We offer our perspective on how to increase the clinical efficacy of vaccines for pancreatic cancer.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Jemal A, Siegel R, Xu J, Ward E: Cancer statistics. CA Cancer J. Clin.60(5),277–300 (2010).
    • Cress RD, Yin D, Clarke L, Bold R, Holly EA: Survival among patients with adenocarcinoma of the pancreas: a population-based study (United States). Cancer Causes Control17(4),403–409 (2006).
    • Winter JM, Cameron JL, Campbell KA et al.: 1423 pancreaticoduodenectomies for pancreatic cancer: a single-institution experience. J. Gastrointest. Surg.10(9),1199–1210 (2006).
    • Garcea G, Dennison AR, Pattenden CJ, Neal CP, Sutton CD, Berry DP: Survival following curative resection for pancreatic ductal adenocarcinoma. A systematic review of the literature. J. Oncol. Pract.9(2),99–132 (2008).
    • Roy R, Maraveyas A: Chemoradiation in pancreatic adenocarcinoma: a literature review. Oncologist15(3),259–269 (2010).
    • Mackenzie RP, McCollum AD: Novel agents for the treatment of adenocarcinoma of the pancreas. Expert Rev. Anticancer Ther.9(10),1473–1485 (2009).
    • Goldman B, DeFrancesco L: The cancer vaccine roller coaster. Nat. Biotechnol.27(2),129–139 (2009).
    • Yokokawa J, Palena C, Arlen P et al.: Identification of novel human CTL epitopes and their agonist epitopes of mesothelin. Clin. Cancer Res.11(17),6342–6351 (2005).
    • Andersen MH, Pedersen LO, Becker JC, Straten PT: Identification of a cytotoxic T lymphocyte response to the apoptosis inhibitor protein survivin in cancer patients. Cancer Res.161(3),869–872 (2001).
    • 10  Johnston FM, Tan MC, Tan BR Jr et al.: Circulating mesothelin protein and cellular antimesothelin immunity in patients with pancreatic cancer. Clin. Cancer Res.15(21),6511–6518 (2009).
    • 11  Kotera Y, Fontenot JD, Pecher G, Metzgar RS, Finn OJ: Humoral immunity against a tandem repeat epitope of human mucin MUC-1 in sera from breast, pancreatic, and colon cancer patients. Cancer Res.54(11),2856–2860 (1994).
    • 12  Kubuschok B, Neumann F, Breit R et al.: Naturally occurring T-cell response against mutated p21 ras oncoprotein in pancreatic cancer. Clin. Cancer Res.12(4),1365–1372 (2006).
    • 13  Wenandy L, Sorensen RB, Sengelov L, Svane IM, Thor SP, Andersen MH: The immunogenicity of the hTERT540–548 peptide in cancer. Clin. Cancer Res.14(1),4–7 (2008).
    • 14  Yanagimoto H, Mine T, Yamamoto K et al.: Immunological evaluation of personalized peptide vaccination with gemcitabine for pancreatic cancer. Cancer Sci.98(4),605–611 (2007).
    • 15  Dunn GP, Koebel CM, Schreiber RD: Interferons, immunity and cancer immunoediting. Nat. Rev. Immunol.6(11),836–848 (2006).▪▪ Summarizes the evidence for immune surveillance of cancer, in particular through interferons, and offers a model for how tumors escape from immune recognition.
    • 16  Swann JB, Smyth MJ: Immune surveillance of tumors. J. Clin. Invest.117(5),1137–1146 (2007).
    • 17  Hamanaka Y, Suehiro Y, Fukui M, Shikichi K, Imai K, Hinoda Y: Circulating anti-MUC1 IgG antibodies as a favorable prognostic factor for pancreatic cancer. Int. J. Cancer103(1),97–100 (2003).
    • 18  Pages F, Galon J, Dieu-Nosjean MC, Tartour E, Sautes-Fridman C, Fridman WH: Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene29(8),1093–1102 (2010).
    • 19  Clark CE, Beatty GL, Vonderheide RH: Immunosurveillance of pancreatic adenocarcinoma: insights from genetically engineered mouse models of cancer. Cancer Lett.279(1),1–7 (2009).
    • 20  Fong L, Small EJ: Anti-cytotoxic T-lymphocyte antigen-4 antibody: the first in an emerging class of immunomodulatory antibodies for cancer treatment. J. Clin. Oncol.26(32),5275–5283 (2008).
    • 21  Paulos CM, June CH: Putting the brakes on BTLA in T cell-mediated cancer immunotherapy. J. Clin. Invest.120(1),76–80 (2010).
    • 22  Pardoll D: Does the immune system see tumors as foreign or self? Annu. Rev. Immunol.21,807–839 (2003).
    • 23  Ikemoto T, Yamaguchi T, Morine Y et al.: Clinical roles of increased populations of Foxp3+CD4+ T cells in peripheral blood from advanced pancreatic cancer patients. Pancreas33(4),386–390 (2006).
    • 24  Hiraoka N, Onozato K, Kosuge T, Hirohashi S: Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin. Cancer Res.12(18),5423–5434 (2006).
    • 25  Nomi T, Sho M, Akahori T et al.: Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin. Cancer Res.13(7),2151–2157 (2007).
    • 26  Hori S, Nomura T, Sakaguchi S: Control of regulatory T cell development by the transcription factor Foxp3. Science299(5609),1057–1061 (2003).
    • 27  Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M: Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol.155(3),1151–1164 (1995).▪▪ The first description of Treg cells as regulators of autoimmunity.
    • 28  Fontenot JD, Gavin MA, Rudensky AY: Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol.4(4),330–336 (2003).
    • 29  Khattri R, Cox T, Yasayko SA, Ramsdell F: An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol.4(4),337–342 (2003).
    • 30  Linehan DC, Goedegebuure PS: CD25+ CD4+ regulatory T-cells in cancer. Immunol. Res.32(1–3),155–168 (2005).
    • 31  van der Bruggen P, Traversari C, Chomez P et al.: A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science254(5038),1643–1647 (1991).▪▪ The first paper describing the molecular identification of a human tumor antigen recognized by cytolytic T cells.
    • 32  Peoples GE: HER2 vaccination in high-risk breast cancer. Clin. Adv. Hematol. Oncol.7(11),715–717 (2009).
    • 33  Weden S, Klemp M, Gladhaug IP et al.: Long term follow-up of resected pancreatic cancer patients following vaccination against mutant K-RAS. Int. J. Cancer12 (2010).▪ Provides evidence that vaccination against mutated K-Ras peptides offers long-term protection against recurrence in some patients with pancreatic cancer.
    • 34  Hensler T, Hecker H, Heeg K et al.: Distinct mechanisms of immunosuppression as a consequence of major surgery. Infect. Immun.65(6),2283–2291 (1997).
    • 35  Shakhar G, Ben-Eliyahu S: Potential prophylactic measures against postoperative immunosuppression: could they reduce recurrence rates in oncological patients? Ann. Surg. Oncol.10(8),972–992 (2003).
    • 36  Weighardt H, Heidecke CD, Emmanuilidis K et al.: Sepsis after major visceral surgery is associated with sustained and interferon-γ-resistant defects of monocyte cytokine production. Surgery127(3),309–315 (2000).
    • 37  Saito H, Dubsky P, Dantin C, Finn OJ, Banchereau J, Palucka AK: Cross-priming of cyclin B1, MUC-1 and survivin-specific CD8+ T cells by dendritic cells loaded with killed allogeneic breast cancer cells. Breast Cancer Res.8(6),R65 (2006).
    • 38  Thomas AM, Santarsiero LM, Lutz ER et al.: Mesothelin-specific CD8+ T cell responses provide evidence of in vivo cross-priming by antigen-presenting cells in vaccinated pancreatic cancer patients. J. Exp. Med.200(3),297–306 (2004).
    • 39  Jaffee EM, Hruban RH, Biedrzycki B et al.: Novel allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a Phase I trial of safety and immune activation. J. Clin. Oncol.19(1),145–156 (2001).
    • 40  Hassan R, Ho M: Mesothelin targeted cancer immunotherapy. Eur. J. Cancer44(1),46–53 (2008).
    • 41  Beatson RE, Taylor-Papadimitriou J, Burchell JM: MUC1 immunotherapy. Immunotherapy2(3),305–327 (2010).
    • 42  Mandell RB, Flick R, Staplin WR et al.: The αGal HyperAcute® technology: enhancing immunogenicity of antiviral vaccines by exploiting the natural αGal-mediated zoonotic blockade. Zoonoses Public Health56(6–7),391–406, (2009).
    • 43  Macher BA, Galili U: The Galα1,3Galβ1,4GlcNAc-R (α-Gal) epitope: a carbohydrate of unique evolution and clinical relevance. Biochim. Biophys. Acta1780(2),75–88 (2008).
    • 44  Deguchi T, Tanemura M, Miyoshi E et al.: Increased immunogenicity of tumor-associated antigen, mucin 1, engineered to express α-Gal epitopes: a novel approach to immunotherapy in pancreatic cancer. Cancer Res.70,5259 (2010).
    • 45  Rossi GR, Unfer RC, Seregina T, Link CJ: Complete protection against melanoma in absence of autoimmune depigmentation after rejection of melanoma cells expressing α(1,3)galactosyl epitopes. Cancer Immunol. Immunother.54(10),999–1009 (2005).
    • 46  Rossi GR, Mautino MR, Awwad DZ et al.: Allogeneic melanoma vaccine expressing αGal epitopes induces antitumor immunity to autologous antigens in mice without signs of toxicity. J. Immunother.31(6),545–554 (2008).
    • 47  Koido S, Hara E, Homma S et al.: Cancer vaccine by fusions of dendritic and cancer cells. Clin. Dev. Immunol.2009,657369 (2009).
    • 48  Schmidt T, Ziske C, Marten A et al.: Intratumoral immunization with tumor RNA-pulsed dendritic cells confers antitumor immunity in a C57BL/6 pancreatic murine tumor model. Cancer Res.63(24),8962–8967 (2003).
    • 49  Kyte JA, Mu L, Aamdal S, Kvalheim G, Dueland S, Hauser M et al.: Phase I/II trial of melanoma therapy with dendritic cells transfected with autologous tumor-mRNA. Cancer Gene Ther.13(10),905–918 (2006).
    • 50  Kyte JA, Kvalheim G, Lislerud K et al.: T cell responses in melanoma patients after vaccination with tumor-mRNA transfected dendritic cells. Cancer Immunol. Immunother.56(5),659–675 (2007).
    • 51  Schnurr M, Scholz C, Rothenfusser S et al.: Apoptotic pancreatic tumor cells are superior to cell lysates in promoting cross-priming of cytotoxic T cells and activate NK and γδ T cells. Cancer Res.62(8),2347–2352 (2002).
    • 52  Kantoff PW, Higano CS, Shore ND et al.: Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med.363(5),411–422 (2010).
    • 53  Mazzolini G, Alfaro C, Sangro B et al.: Intratumoral injection of dendritic cells engineered to secrete interleukin-12 by recombinant adenovirus in patients with metastatic gastrointestinal carcinomas. J. Clin. Oncol.23(5),999–1010 (2005).
    • 54  Koido S, Homma S, Hara E et al.: Antigen-specific polyclonal cytotoxic T lymphocytes induced by fusions of dendritic cells and tumor cells. J. Biomed. Biotechnol.752381 (2010).▪ Reviews on the use of dendritic cell–tumor cell fusions and their ability to induce antigen-specific T-cell responses.
    • 55  Yamamoto M, Kamigaki T, Yamashita K et al.: Enhancement of anti-tumor immunity by high levels of Th1 and Th17 with a combination of dendritic cell fusion hybrids and regulatory T cell depletion in pancreatic cancer. Oncol. Rep.22(2),337–343 (2009).
    • 56  Pecher G, Haring A, Kaiser L, Thiel E: Mucin gene (MUC1) transfected dendritic cells as vaccine: results of a Phase I/II clinical trial. Cancer Immunol. Immunother.51(11–12),669–673 (2002).
    • 57  Lepisto AJ, Moser AJ, Zeh H et al.: A Phase I/II study of a MUC1 peptide pulsed autologous dendritic cell vaccine as adjuvant therapy in patients with resected pancreatic and biliary tumors. Cancer Ther.6(B),955–964 (2008).
    • 58  Aloysius MM, Mc Kechnie AJ, Robins RA et al.: Generation in vivo of peptide-specific cytotoxic T cells and presence of regulatory T cells during vaccination with hTERT (class I and II) peptide-pulsed DCs. J. Transl. Med.7,18 (2009).
    • 59  Carbone DP, Ciernik IF, Kelley MJ et al.: Immunization with mutant p53- and K-ras-derived peptides in cancer patients: immune response and clinical outcome. J. Clin. Oncol.23(22),5099–5107 (2005).
    • 60  Ramanathan RK, Lee KM, McKolanis J et al.: Phase I study of a MUC1 vaccine composed of different doses of MUC1 peptide with SB-AS2 adjuvant in resected and locally advanced pancreatic cancer. Cancer Immunol. Immunother.54(3),254–264 (2005).
    • 61  Yamamoto K, Ueno T, Kawaoka T et al.: MUC1 peptide vaccination in patients with advanced pancreas or biliary tract cancer. Anticancer Res.25(5),3575–3579 (2005).
    • 62  Bernhardt SL, Gjertsen MK, Trachsel S et al.: Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: a dose escalating Phase I/II study. Br. J. Cancer95(11),1474–1482 (2006).
    • 63  Buanes T, Maurel J, Liauw W, Hebbar M, Nemunaitis J: A randomized Phase III study of gemcitabine (G) versus GV1001 in sequential combination with G in patients with unresectable and metastatic pancreatic cancer (PC). J. Clin. Oncol.27(Suppl. 15), Abstract 4601 (2009).
    • 64  Miyazawa M, Ohsawa R, Tsunoda T et al.: Phase I clinical trial using peptide vaccine for human vascular endothelial growth factor receptor 2 in combination with gemcitabine for patients with advanced pancreatic cancer. Cancer Sci.101(2),433–439 (2010).
    • 65  Toubaji A, Achtar M, Provenzano M et al.: Pilot study of mutant ras peptide-based vaccine as an adjuvant treatment in pancreatic and colorectal cancers. Cancer Immunol. Immunother.57(9),1413–1420 (2008).
    • 66  Begley J, Ribas A: Targeted therapies to improve tumor immunotherapy. Clin. Cancer Res.14(14),4385–4391 (2008).
    • 67  Chapatte L, Ayyoub M, Morel S et al.: Processing of tumor-associated antigen by the proteasomes of dendritic cells controls in vivo T-cell responses. Cancer Res.1566(10),5461–5468 (2006).
    • 68  Houghton AN, Guevara-Patino JA: Immune recognition of self in immunity against cancer. J. Clin. Invest.114(4),468–471 (2004).
    • 69  Weiner LM, Surana R, Murray J: Vaccine prevention of cancer: can endogenous antigens be targeted? Cancer Prev. Res. (Phila.)3(4),410–415 (2010).
    • 70  Yu Z, Theoret MR, Touloukian CE et al.: Poor immunogenicity of a self/tumor antigen derives from peptide–MHC-I instability and is independent of tolerance. J. Clin. Invest.114(4),551–559 (2004).
    • 71  Tsang KY, Palena C, Gulley J, Arlen P, Schlom J: A human cytotoxic T-lymphocyte epitope and its agonist epitope from the nonvariable number of tandem repeat sequence of MUC-1. Clin. Cancer Res.10(6),2139–2149 (2004).
    • 72  Wobser M, Keikavoussi P, Kunzmann V, Weininger M, Andersen MH, Becker JC: Complete remission of liver metastasis of pancreatic cancer under vaccination with a HLA-A2 restricted peptide derived from the universal tumor antigen survivin. Cancer Immunol. Immunother.55(10),1294–1298 (2006).▪ Clinical evidence that vaccination against a pancreas cancer-associated antigen can induce a protective immune response.
    • 73  Charalambous A, Oks M, Nchinda G, Yamazaki S, Steinman RM: Dendritic cell targeting of survivin protein in a xenogeneic form elicits strong CD4+ T cell immunity to mouse survivin. J. Immunol.177(12),8410–8421 (2006).
    • 74  Wang B, Kuroiwa JM, He LZ, Charalambous A, Keler T, Steinman RM: The human cancer antigen mesothelin is more efficiently presented to the mouse immune system when targeted to the DEC-205/CD205 receptor on dendritic cells. Ann. NY Acad. Sci.1174,6–17 (2009).
    • 75  Shibagaki N, Udey MC: Dendritic cells transduced with protein antigens induce cytotoxic lymphocytes and elicit antitumor immunity. J. Immunol.168(5),2393–2401 (2002).
    • 76  Bae MY, Cho NH, Seong SY: Protective anti-tumour immune responses by murine dendritic cells pulsed with recombinant Tat-carcinoembryonic antigen derived from Escherichia coli. Clin. Exp. Immunol.157(1),128–138 (2009).
    • 77  Tanaka Y, Dowdy SF, Linehan DC, Eberlein TJ, Goedegebuure PS: Induction of antigen-specific CTL by recombinant HIV trans-activating fusion protein-pulsed human monocyte-derived dendritic cells. J. Immunol.170(3),1291–1298 (2003).
    • 78  Viehl CT, Tanaka Y, Chen T et al.: Tat mammaglobin fusion protein transduced dendritic cells stimulate mammaglobin-specific CD4 and CD8 T cells. Breast Cancer Res. Treat.91(3),271–278 (2005).
    • 79  Viehl CT, Becker-Hapak M, Lewis JS et al.: A Tat fusion protein-based tumor vaccine for breast cancer. Ann. Surg. Oncol.12(7),517–525 (2005).
    • 80  Saha A, Chatterjee SK, Foon KA, Bhattacharya-Chatterjee M: Anti-idiotype antibody induced cellular immunity in mice transgenic for human carcinoembryonic antigen. Immunology118(4),483–496 (2006).
    • 81  Saha A, Baral RN, Chatterjee SK et al.: CpG oligonucleotides enhance the tumor antigen-specific immune response of an anti-idiotype antibody-based vaccine strategy in CEA transgenic mice. Cancer Immunol. Immunother.55(5),515–527 (2006).
    • 82  Saha A, Chatterjee SK, Foon KA, Celis E, Bhattacharya-Chatterjee M: Therapy of established tumors in a novel murine model transgenic for human carcinoembryonic antigen and HLA-A2 with a combination of anti-idiotype vaccine and CTL peptides of carcinoembryonic antigen. Cancer Res.67(6),2881–2892 (2007).
    • 83  Yanagimoto H, Shiomi H, Satoi S et al.: A Phase II study of personalized peptide vaccination combined with gemcitabine for non-resectable pancreatic cancer patients. Oncol. Rep.24(3),795–801 (2010).
    • 84  Bodles-Brakhop AM, Draghia-Akli R: DNA vaccination and gene therapy: optimization and delivery for cancer therapy. Expert Rev. Vaccines7(7),1085–1101 (2008).
    • 85  Zhu K, Qin H, Cha SC et al.: Survivin DNA vaccine generated specific antitumor effects in pancreatic carcinoma and lymphoma mouse models. Vaccine25(46),7955–7961 (2007).
    • 86  Rong Y, Jin D, Wu W et al.: Induction of protective and therapeutic anti-pancreatic cancer immunity using a reconstructed MUC1 DNA vaccine. BMC Cancer9,191 (2009).
    • 87  Chang CL, Wu TC, Hung CF: Control of human mesothelin-expressing tumors by DNA vaccines. Gene Ther.14(16),1189–1198 (2007).
    • 88  Dong Y, Qian J, Ibrahim R, Berzofsky JA, Khleif SN: Identification of H-2Db-specific CD8+ T-cell epitopes from mouse VEGFR2 that can inhibit angiogenesis and tumor growth. J. Immunother.29(1),32–40 (2006).
    • 89  Johansson S, Ek M, Wahren B, Stout R, Liu M, Hallermalm K: Intracellular targeting of CEA results in Th1-type antibody responses following intradermal genetic vaccination by a needle-free jet injection device. ScientificWorldJournal7,987–999 (2007).
    • 90  Brave A, Hallengard D, Gudmundsdotter L et al.: Late administration of plasmid DNA by intradermal electroporation efficiently boosts DNA-primed T and B cell responses to carcinoembryonic antigen. Vaccine27(28),3692–3696 (2009).
    • 91  Hallermalm K, Johansson S, Brave A et al.: Pre-clinical evaluation of a CEA DNA prime/protein boost vaccination strategy against colorectal cancer. Scand. J. Immunol.66(1),43–51 (2007).
    • 92  Yu YY, Netuschil N, Lybarger L, Connolly JM, Hansen TH: Cutting edge: single-chain trimers of MHC class I molecules form stable structures that potently stimulate antigen-specific T cells and B cells. J. Immunol.168(7),3145–3149 (2002).
    • 93  Huang CH, Peng S, He L et al.: Cancer immunotherapy using a DNA vaccine encoding a single-chain trimer of MHC class I linked to an HPV-16 E6 immunodominant CTL epitope. Gene Ther.12(15),1180–1186 (2005).
    • 94  Li L, Herndon JM, Truscott SM et al.: Engineering superior DNA vaccines: MHC class I single chain trimers bypass antigen processing and enhance the immune response to low affinity antigens. Vaccine2328(8),1911–1918 (2010).
    • 95  Zhang Y, Li S, Shan M et al.: Hepatitis B virus core antigen epitopes presented by HLA-A2 single-chain trimers induce functional epitope-specific CD8+ T-cell responses in HLA-A2.1/Kb transgenic mice. Immunology121(1),105–112 (2007).
    • 96  Cheung YK, Cheng SC, Sin FW, Chan KT, Xie Y: Induction of T-cell response by a DNA vaccine encoding a novel HLA-A*0201 severe acute respiratory syndrome coronavirus epitope. Vaccine25(32),6070–6077 (2007).
    • 97  Cheung YK, Cheng SC, Ke Y, Xie Y: Two novel HLA-A*0201 T-cell epitopes in avian H5N1 viral nucleoprotein induced specific immune responses in HHD mice. Vet Res.41(2),24 (2010).
    • 98  Huang B, Mao CP, Peng S, He L, Hung CF, Wu TC: Intradermal administration of DNA vaccines combining a strategy to bypass antigen processing with a strategy to prolong dendritic cell survival enhances DNA vaccine potency. Vaccine25(45),7824–7831 (2007).
    • 99  Hung CF, Calizo R, Tsai YC, He L, Wu TC: A DNA vaccine encoding a single-chain trimer of HLA-A2 linked to human mesothelin peptide generates anti-tumor effects against human mesothelin-expressing tumors. Vaccine25(1),127–135 (2007).
    • 100  Kim S, Li L, McMurtrey CP et al.: Single-chain HLA-A2 MHC trimers that incorporate an immundominant peptide elicit protective T cell immunity against lethal West Nile virus infection. J. Immunol.184(8),4423–4430 (2010).
    • 101  Pejawar-Gaddy S, Rajawat Y, Hilioti Z et al.: Generation of a tumor vaccine candidate based on conjugation of a MUC1 peptide to polyionic papillomavirus virus-like particles. Cancer Immunol. Immunother.59(11),1685–1696 (2010).
    • 102  Gabitzsch ES, Xu Y, Balint JP Jr, Hartman ZC, Lyerly HK, Jones FR: Anti-tumor immunotherapy despite immunity to adenovirus using a novel adenoviral vector Ad5 [E1-, E2b-]-CEA. Cancer Immunol. Immunother.59(7),1131–1135 (2010).
    • 103  Kaufman HL, Kim-Schulze S, Manson K et al.: Poxvirus-based vaccine therapy for patients with advanced pancreatic cancer. J. Transl. Med.5,60 (2007).
    • 104  Morse MA, Hobeika AC, Osada T et al.: An alphavirus vector overcomes the presence of neutralizing antibodies and elevated numbers of Tregs to induce immune responses in humans with advanced cancer. J. Clin. Invest.120(9),3234–3241 (2010).▪ Describes the successful clinical intervention in patients with advanced cancer, including pancreatic cancer, by inducing a protective immune response despite an immunosuppressive environment.
    • 105  Ryman KD, Klimstra WB: Host responses to alphavirus infection. Immunol. Rev.225,27–45 (2008).
    • 106  Yang L, Yang H, Rideout K et al.: Engineered lentivector targeting of dendritic cells for in vivo immunization. Nat. Biotechnol.26(3),326–334 (2008).
    • 107  Bernstein MB, Chakraborty M, Wansley EK et al.: Recombinant Saccharomyces cerevisiae (yeast-CEA) as a potent activator of murine dendritic cells. Vaccine26(4),509–521 (2008).
    • 108  Remondo C, Cereda V, Mostbock S et al.: Human dendritic cell maturation and activation by a heat-killed recombinant yeast (Saccharomyces cerevisiae) vector encoding carcinoembryonic antigen. Vaccine27(7),987–994 (2009).
    • 109  Boehm AL, Higgins J, Franzusoff A, Schlom J, Hodge JW: Concurrent vaccination with two distinct vaccine platforms targeting the same antigen generates phenotypically and functionally distinct T-cell populations. Cancer Immunol. Immunother.59(3),397–408 (2010).
    • 110  Wansley EK, Chakraborty M, Hance KW et al.: Vaccination with a recombinant Saccharomyces cerevisiae expressing a tumor antigen breaks immune tolerance and elicits therapeutic antitumor responses. Clin. Cancer Res.14(13),4316–4325 (2008).
    • 111  Lu Y, Bellgrau D, Dwyer-Nield LD et al.: Mutation-selective tumor remission with Ras-targeted, whole yeast-based immunotherapy. Cancer Res.64(15),5084–5088 (2004).
    • 112  Paterson Y, Guirnalda PD, Wood LM: Listeria and Salmonella bacterial vectors of tumor-associated antigens for cancer immunotherapy. Semin. Immunol.22(3),183–189 (2010).
    • 113  Le DT, Nir-Paz R, Hampl J et al.: Results of Phase I studies testing two live-attenuated listeria vaccines, ANZ-100 and CRS-207, for the treatment of cancer. In: Tumor Immunology: Basic and Clinical Advances. AACR Program and Proceedings. Abstract B12 (2010).
    • 114  Ishizaki H, Song GY, Srivastava T et al.: Heterologous prime/boost immunization with p53-based vaccines combined with Toll-like receptor stimulation enhances tumor regression. J. Immunother.33(6),609–617 (2010).
    • 115  Seavey MM, Maciag PC, Al-Rawi N, Sewell D, Paterson Y: An anti-vascular endothelial growth factor receptor 2/fetal liver kinase-1 Listeria monocytogenes anti-angiogenesis cancer vaccine for the treatment of primary and metastatic Her-2/neu+ breast tumors in a mouse model. J. Immunol.182(9),5537–5546 (2009).
    • 116  Seavey MM, Pan ZK, Maciag PC et al.: A novel human Her-2/neu chimeric molecule expressed by Listeria monocytogenes can elicit potent HLA-A2 restricted CD8-positive T cell responses and impact the growth and spread of Her-2/neu-positive breast tumors. Clin. Cancer Res.115(3),924–932 (2009).
    • 117  Shahabi V, Seavey MM, Maciag PC, Rivera S, Wallecha A: Development of a live and highly attenuated Listeria monocytogenes-based vaccine for the treatment of Her2/neu-overexpressing cancers in human. Cancer Gene Ther.18,53–62 (2010).
    • 118  Niethammer AG, Primus FJ, Xiang R et al.: An oral DNA vaccine against human carcinoembryonic antigen (CEA) prevents growth and dissemination of Lewis lung carcinoma in CEA transgenic mice. Vaccine20(3–4),421–429 (2001).
    • 119  Xiang R, Primus FJ, Ruehlmann JM et al.: A dual-function DNA vaccine encoding carcinoembryonic antigen and CD40 ligand trimer induces T cell-mediated protective immunity against colon cancer in carcinoembryonic antigen-transgenic mice. J. Immunol.167(8),4560–4565 (2001).
    • 120  Xiong G, Husseiny MI, Song L et al.: Novel cancer vaccine based on genes of Salmonella pathogenicity island 2. Int. J. Cancer126(11),2622–2634 (2010).
    • 121  Hellstrom I, Friedman E, Verch T et al.: Anti-mesothelin antibodies and circulating mesothelin relate to the clinical state in ovarian cancer patients. Cancer Epidemiol. Biomarkers Prev.17(6),1520–1526 (2008).
    • 122  Ho M, Hassan R, Zhang J et al.: Humoral immune response to mesothelin in mesothelioma and ovarian cancer patients. Clin. Cancer Res.11(10),3814–3820 (2005).
    • 123  Reichert JM, Valge-Archer VE: Development trends for monoclonal antibody cancer therapeutics. Nat. Rev. Drug Discov.6(5),349–356 (2007).
    • 124  Arnould L, Gelly M, Penault-Llorca F et al.: Trastuzumab-based treatment of HER2-positive breast cancer: an antibody-dependent cellular cytotoxicity mechanism? Br. J. Cancer94(2),259–267 (2006).
    • 125  Clynes R, Takechi Y, Moroi Y, Houghton A, Ravetch JV: Fc receptors are required in passive and active immunity to melanoma. Proc. Natl Acad. Sci. USA95(2),652–656 (1998).
    • 126  Weiner LM, Surana R, Wang S: Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat. Rev. Immunol.10(5),317–327 (2010).▪ Comprehensive overview on the role of antibodies in immune therapy.
    • 127  Hassan R, Bullock S, Premkumar A et al.: Phase I study of SS1P, a recombinant anti-mesothelin immunotoxin given as a bolus I.V. infusion to patients with mesothelin-expressing mesothelioma, ovarian, and pancreatic cancers. Clin. Cancer Res.13(17),5144–5149 (2007).
    • 128  Filpula D, Zhao H: Releasable PEGylation of proteins with customized linkers. Adv. Drug Deliv. Rev.60(1),29–49 (2008).
    • 129  Kreitman RJ, Hassan R, Fitzgerald DJ, Pastan I: Phase I trial of continuous infusion anti-mesothelin recombinant immunotoxin SS1P. Clin. Cancer Res.15(16),5274–5279 (2009).
    • 130  Hassan R, Ebel W, Routhier EL et al.: Preclinical evaluation of MORAb-009, a chimeric antibody targeting tumor-associated mesothelin. Cancer Immun.7,20 (2007).
    • 131  Feng Y, Xiao X, Zhu Z et al.: A novel human monoclonal antibody that binds with high affinity to mesothelin-expressing cells and kills them by antibody-dependent cell-mediated cytotoxicity. Mol. Cancer Ther.8(5),1113–1118 (2009).
    • 132  Ho M, Feng M, Fisher RJ, Rader C, Pastan I: A novel high affinity human monoclonal antibody to mesothelin. Int. J. Cancer128(9),2020–2030 (2011).
    • 133  Richman PI, Bodmer WF: Monoclonal antibodies to human colorectal epithelium: markers for differentiation and tumour characterization. Int. J. Cancer39(3),317–328 (1987).
    • 134  Stewart LM, Young S, Watson G et al.: Humanisation and characterisation of PR1A3, a monoclonal antibody specific for cell-bound carcinoembryonic antigen. Cancer Immunol. Immunother.47(6),299–306 (1999).
    • 135  Ashraf SQ, Umana P, Mossner E et al.: Humanised IgG1 antibody variants targeting membrane-bound carcinoembryonic antigen by antibody-dependent cellular cytotoxicity and phagocytosis. Br. J. Cancer101(10),1758–1768 (2009).
    • 136  Conaghan P, Ashraf S, Tytherleigh M et al.: Targeted killing of colorectal cancer cell lines by a humanised IgG1 monoclonal antibody that binds to membrane-bound carcinoembryonic antigen. Br. J. Cancer98(7),1217–1225 (2008).
    • 137  Blumenthal RD, Osorio L, Hayes MK, Horak ID, Hansen HJ, Goldenberg DM: Carcinoembryonic antigen antibody inhibits lung metastasis and augments chemotherapy in a human colonic carcinoma xenograft. Cancer Immunol. Immunother.54(4),315–327 (2005).
    • 138  Danielczyk A, Stahn R, Faulstich D et al.: PankoMab: a potent new generation anti-tumour MUC1 antibody. Cancer Immunol. Immunother.55(11),1337–1347 (2006).
    • 139  Fan XN, Karsten U, Goletz S, Cao Y: Reactivity of a humanized antibody (hPankoMab) towards a tumor-related MUC1 epitope (TA-MUC1) with various human carcinomas. Pathol. Res. Pract.206(8),585–589 (2010).
    • 140  Pratesi G, Petrangolini G, Tortoreto M et al.: Antitumor efficacy of trastuzumab in nude mice orthotopically xenografted with human pancreatic tumor cells expressing low levels of HER-2/neu. J. Immunother.31(6),537–544 (2008).
    • 141  Saeki H, Yanoma S, Takemiya S et al.: Antitumor activity of a combination of trastuzumab (Herceptin) and oral fluoropyrimidine S-1 on human epidermal growth factor receptor 2-overexpressing pancreatic cancer. Oncol. Rep.18(2),433–439 (2007).
    • 142  Larbouret C, Robert B, Navarro-Teulon I et al.: In vivo therapeutic synergism of anti-epidermal growth factor receptor and anti-HER2 monoclonal antibodies against pancreatic carcinomas. Clin. Cancer Res.13(11),3356–3362 (2007).
    • 143  Larbouret C, Robert B, Bascoul-Mollevi C et al.: Combined cetuximab and trastuzumab are superior to gemcitabine in the treatment of human pancreatic carcinoma xenografts. Ann. Oncol.21(1),98–103 (2010).
    • 144  Hung CF, Tsai YC, He L, Wu TC: Control of mesothelin-expressing ovarian cancer using adoptive transfer of mesothelin peptide-specific CD8+ T cells. Gene Ther.14(12),921–929 (2007).
    • 145  Kawaoka T, Oka M, Takashima M et al.: Adoptive immunotherapy for pancreatic cancer: cytotoxic T lymphocytes stimulated by the MUC1-expressing human pancreatic cancer cell line YPK-1. Oncol. Rep.20(1),155–163 (2008).
    • 146  Kondo H, Hazama S, Kawaoka T et al.: Adoptive immunotherapy for pancreatic cancer using MUC1 peptide-pulsed dendritic cells and activated T lymphocytes. AntiCancer Res.28(1B),379–387 (2008).
    • 147  Carpenito C, Milone MC, Hassan R et al.: Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc. Natl Acad. Sci. USA106(9),3360–3365 (2009).
    • 148  Davies DM, Maher J: Adoptive T-cell immunotherapy of cancer using chimeric antigen receptor-grafted T cells. Arch. Immunol. Ther. Exp. (Warsz.)58(3),165–178 (2010).
    • 149  Emtage PC, Lo AS, Gomes EM, Liu DL, Gonzalo-Daganzo RM, Junghans RP: Second-generation anti-carcinoembryonic antigen designer T cells resist activation-induced cell death, proliferate on tumor contact, secrete cytokines, and exhibit superior antitumor activity in vivo: a preclinical evaluation. Clin. Cancer Res.14(24),8112–8122 (2008).
    • 150  Shirasu N, Shibaguci H, Kuroki M, Yamada H, Kuroki M: Construction and molecular characterization of human chimeric T-cell antigen receptors specific for carcinoembryonic antigen. Anti. Cancer Res.30(7),2731–2738 (2010).
    • 151  Wilkie S, Burbridge SE, Chiapero-Stanke L et al.: Selective expansion of chimeric antigen receptor-targeted T-cells with potent effector function using interleukin-4. J. Biol. Chem.285(33),25538–25544 (2010).
    • 152  Bakhtiari SH, Rahbarizadeh F, Hasannia S, Ahmadvand D, Iri-Sofla FJ, Rasaee MJ: Anti-MUC1 nanobody can redirect T-body cytotoxic effector function. Hybridoma (Larchmt)28(2),85–92 (2009).
    • 153  Wang H, Wei H, Zhang R et al.: Genetically targeted T cells eradicate established breast cancer in syngeneic mice. Clin. Cancer Res.15(3),943–950 (2009).
    • 154  Zhao Y, Wang QJ, Yang S et al.: A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J. Immunol.183(9),5563–5574 (2009).
    • 155  Koos D, Josephs SF, Alexandrescu DT et al.: Tumor vaccines in 2010: need for integration. Cell Immunol.263(2),138–147 (2010).
    • 156  Liyanage UK, Moore TT, Joo HG et al.: Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J. Immunol.169(5),2756–2761 (2002).
    • 157  Tian M, Neil JR, Schiemann WP: Transforming growth factor-β and the hallmarks of cancer. Cell Signal.23(6),951–962 (2011).
    • 158  von Bernstorff W, Spanjaard RA, Chan AK et al.: Pancreatic cancer cells can evade immune surveillance via nonfunctional Fas (APO-1/CD95) receptors and aberrant expression of functional Fas ligand. Surgery125(1),73–84 (1999).
    • 159  Derre L, Rivals JP, Jandus C et al.: BTLA mediates inhibition of human tumor-specific CD8+ T cells that can be partially reversed by vaccination. J. Clin. Invest.120(1),157–167 (2010).
    • 160  Witkiewicz A, Williams TK, Cozzitorto J et al.: Expression of indoleamine 2,3-dioxygenase in metastatic pancreatic ductal adenocarcinoma recruits regulatory T cells to avoid immune detection. J. Am. Coll. Surg.206(5),849–854 (2008).
    • 161  Gabrilovich DI, Nagaraj S: Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol.9(3),162–174 (2009).▪ Comprehensive overview of the suppressor cells population, myeloid-derived supressor cells, and how they can be targeted clinically.
    • 162  Almand B, Clark JI, Nikitina E et al.: Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J. Immunol.166(1),678–689 (2001).
    • 163  Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ: Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol. Immunother.58(1),49–59 (2009).
    • 164  Mishra P, Banerjee D, Ben-Baruch A: Chemokines at the crossroads of tumor-fibroblast interactions that promote malignancy. J. Leukoc. Biol.89(1),31–39 (2011).
    • 165  Tan MC, Goedegebuure PS, Belt BA et al.: Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. J. Immunol. 1 182(3),1746–1755 (2009).
    • 166  Munn DH, Mellor AL: Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J. Clin. Invest.117(5),1147–1154 (2007).
    • 167  Katz JB, Muller AJ, Prendergast GC: Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. Immunol. Rev.222,206–221 (2008).
    • 168  Weber J: Immune checkpoint proteins: a new therapeutic paradigm for cancer – preclinical background: CTLA-4 and PD-1 blockade. Semin. Oncol.37(5),430–439 (2010).
    • 169  Agarwala SS, Ribas A: Current experience with CTLA4-blocking monoclonal antibodies for the treatment of solid tumors. J. Immunother.33(6),557–569 (2010).
    • 170  Hodi FS, O’Day SJ, McDermott DF et al.: Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med.363(8),711–723 (2010).
    • 171  Royal RE, Levy C, Turner K et al.: Phase 2 trial of single agent ipilimumab (anti-CTLA-4) for locally advanced or metastatic Ppancreatic adenocarcinoma. J. Immunother.33(8),828–833 (2010).
    • 172  Brahmer JR, Drake CG, Wollner I et al.: Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol.28(19),3167–3175 (2010).
    • 173  Berger R, Rotem-Yehudar R, Slama G et al.: Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin. Cancer Res.14(10),3044–3051 (2008).
    • 174  Melani C, Sangaletti S, Barazzetta FM, Werb Z, Colombo MP: Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res.67(23),11438–11446 (2007).
    • 175  Yang L, DeBusk LM, Fukuda K et al.: Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell6(4),409–421 (2004).
    • 176  Zhang B, Zhang Y, Bowerman NA et al.: Equilibrium between host and cancer caused by effector T cells killing tumor stroma. Cancer Res.68(5),1563–1571 (2008).
    • 177  Nishikawa H, Kato T, Tanida K et al.: CD4+ CD25+ T cells responding to serologically defined autoantigens suppress antitumor immune responses. Proc. Natl Acad. Sci. USA100(19),10902–10906 (2003).
    • 178  Wang HY, Lee DA, Peng G et al.: Tumor-specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy. Immunity20(1),107–118 (2004).
    • 179  Ding L, Ellis MJ, Li S et al.: Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature464(7291),999–1005 (2010).▪▪ Describes the successful sequencing of a breast cancer genome, opening up the near-future development of personalized treatments for solid tumors.
    • 180  Ley TJ, Mardis ER, Ding L et al.: DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature456(7218),66–72 (2008).
    • 181  Campbell PJ, Yachida S, Mudie LJ et al.: The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature467(7319),1109–1113 (2010).
    • 182  Yachida S, Jones S, Bozic I et al.: Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature467(7319),1114–1117 (2010).
    • 183  Segal NH, Parsons DW, Peggs KS et al.: Epitope landscape in breast and colorectal cancer. Cancer Res.68(3),889–892 (2008).
    • 184  Sensi M, Anichini A: Unique tumor antigens: evidence for immune control of genome integrity and immunogenic targets for T cell-mediated patient-specific immunotherapy. Clin. Cancer Res.12(17),5023–5032 (2006).
    • 185  Huang EH, Kaufman HL: CEA-based vaccines. Expert Rev. Vaccines1(1),49–63 (2002).
    • 186  Beatty JD, Romero C, Brown PW, Lawrence W Jr, Terz JJ: Clinical value of carcinoembryonic antigen: diagnosis, prognosis, and follow-up of patients with cancer. Arch. Surg.114(5),563–567 (1979).
    • 187  Ona FV, Zamcheck N, Dhar P, Moore T, Kupchik HZ: Carcinoembryonic antigen (CEA) in the diagnosis of pancreatic cancer. Cancer31(2),324–327 (1973).
    • 188  Ladjemi MZ, Jacot W, Chardes T, Pelegrin A, Navarro-Teulon I: Anti-HER2 vaccines: new prospects for breast cancer therapy. Cancer Immunol. Immunother.59(9),1295–1312 (2010).
    • 189  Lei S, Appert HE, Nakata B, Domenico DR, Kim K, Howard JM: Overexpression of HER2/neu oncogene in pancreatic cancer correlates with shortened survival. Int. J. Pancreatol.17(1),15–21 (1995).
    • 190  Yamanaka Y, Friess H, Kobrin MS et al.: Overexpression of HER2/neu oncogene in human pancreatic carcinoma. Hum. Pathol.24(10),1127–1134 (1993).
    • 191  Downward J: Targeting RAS and PI3K in lung cancer. Nat. Med.14(12),1315–1316 (2008).
    • 192  Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M: Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell53(4),549–554 (1988).
    • 193  Li M, Bharadwaj U, Zhang R et al.: Mesothelin is a malignant factor and therapeutic vaccine target for pancreatic cancer. Mol. Cancer Ther.7(2),286–296 (2008).
    • 194  Hassan R, Laszik ZG, Lerner M, Raffeld M, Postier R, Brackett D: Mesothelin is overexpressed in pancreaticobiliary adenocarcinomas but not in normal pancreas and chronic pancreatitis. Am. J. Clin. Pathol.124(6),838–845 (2005).
    • 195  Argani P, Iacobuzio-Donahue C, Ryu B et al.: Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE). Clin. Cancer Res.7(12),3862–3868 (2001).
    • 196  Kaneko O, Gong L, Zhang J et al.: A binding domain on mesothelin for CA125/MUC16. J. Biol. Chem.6284(6),3739–3749 (2009).
    • 197  Tang CK, Katsara M, Apostolopoulos V: Strategies used for MUC1 immunotherapy: human clinical studies. Expert Rev. Vaccines7(7),963–975 (2008).
    • 198  Qu CF, Li Y, Song YJ et al.: MUC1 expression in primary and metastatic pancreatic cancer cells for in vitro treatment by (213)Bi-C595 radioimmunoconjugate. Br. J. Cancer91(12),2086–2093 (2004).
    • 199  Chen F, Wang W, El-Deiry WS: Current strategies to target p53 in cancer. Biochem. Pharmacol.80(5),724–730 (2010).
    • 200  Scarpa A, Capelli P, Mukai K et al.: Pancreatic adenocarcinomas frequently show p53 gene mutations. Am. J. Pathol.142(5),1534–1543 (1993).
    • 201  Ryan BM, O’Donovan N, Duffy MJ: Survivin: a new target for anti-cancer therapy. Cancer Treat. Rev.35(7),553–562 (2009).
    • 202  Kanwar RK, Cheung CH, Chang JY, Kanwar JR: Recent advances in anti-survivin treatments for cancer. Curr. Med. Chem.17(15),1509–1515 (2010).
    • 203  Qiao JG, Zhang YQ, Yin YC, Tan Z: Expression of Survivin in pancreatic cancer and its correlation to expression of Bcl-2. World J. Gastroenterol.10(18),2759–2761 (2004).
    • 204  Satoh K, Kaneko K, Hirota M, Masamune A, Satoh A, Shimosegawa T: Expression of survivin is correlated with cancer cell apoptosis and is involved in the development of human pancreatic duct cell tumors. Cancer92(2),271–278 (2001).
    • 205  Liu JP, Chen W, Schwarer AP, Li H: Telomerase in cancer immunotherapy. Biochim. Biophys. Acta1805(1),35–42 (2010).
    • 206  Hiyama E, Kodama T, Shinbara K et al.: Telomerase activity is detected in pancreatic cancer but not in benign tumors. Cancer Res.57(2),326–331 (1997).
    • 207  Shibuya M: Vascular endothelial growth factor (VEGF)-receptor2: its biological functions, major signaling pathway, and specific ligand VEGF-E. Endothelium13(2),63–69 (2006).
    • 208  Itakura J, Ishiwata T, Friess H et al.: Enhanced expression of vascular endothelial growth factor in human pancreatic cancer correlates with local disease progression. Clin. Cancer Res.3(8),1309–1316 (1997).
    • 301  The International Clinical Trials Registry offers a registration of all interventional clinical trials conforming to WHO standards International Clinical Trials registry ID number: JPRN-UMIN000001664 http://apps.who.int/trialsearch/trial.aspx?trialid=JPRN-UMIN000001664
    • 302  Amplimmune Inc. is a company that is involved in developing immune-based biologics to treat patients in the fields of cancer, autoimmunity, transplantation and infectious disease www.amplimmune.com