We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Nanomedicine and nanotoxicology: the pros and cons for neurodegeneration and brain cancer

    Johanna Catalan-Figueroa

    Department of Pharmaceutical Science & Technology, School of Chemical & Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile

    Laboratory of Neuroplasticity & Neurogenetics, School of Chemical & Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile

    ,
    Sujey Palma-Florez

    Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380494, Chile

    ,
    Gonzalo Alvarez

    Department of Pharmaceutical Science & Technology, School of Chemical & Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile

    ,
    Hans F Fritz

    Department of Pharmaceutical Science & Technology, School of Chemical & Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile

    ,
    Miguel O Jara

    Department of Pharmaceutical Science & Technology, School of Chemical & Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile

    &
    Javier O Morales

    *Author for correspondence:

    E-mail Address: jomorales@ciq.uchile.cl

    Department of Pharmaceutical Science & Technology, School of Chemical & Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile

    Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380494, Chile

    Published Online:https://doi.org/10.2217/nnm.15.189

    Current strategies for brain diseases are mostly symptomatic and noncurative. Nanotechnology has the potential to facilitate the transport of drugs across the blood–brain barrier and to enhance their pharmacokinetic profile. However, to reach clinical application, an understanding of nanoneurotoxicity in terms of oxidative stress and inflammation is required. Emerging evidence has also shown that nanoparticles have the ability to alter autophagy, which can induce inflammation and oxidative stress, or vice versa. These effects may increase neurodegenerative processes damage, but on the other hand, they may have benefits for brain cancer therapies. In this review, we emphasize how nanomaterials may induce neurotoxic effects focusing on neurodegeneration, and how these effects could be exploited toward brain cancer treatment.

    References

    • 1 Clarke DD, Sokoloff L. Regulation of cerebral metabolic rate. In: Basic Neurochemistry: Molecular, Cellular and Medical Aspects (6th Edition). Siegel GJ, Agranoff BW, Albers RW et al. (Eds). Lippincott-Raven, PA, USA (1999).
    • 2 Celardo I, Martins LM, Gandhi S. Unravelling mitochondrial pathways to Parkinson's disease. Br. J. Pharmacol. 171(8), 1943–1957 (2014).
    • 3 Kamat JP, Devasagayam TPA, Priyadarsini KI, Mohan H. Reactive oxygen species mediated membrane damage induced by fullerene derivatives and its possible biological implications. Toxicology 155(1–3), 55–61 (2000).
    • 4 Chaudhari N, Talwar P, Parimisetty A et al. A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress. Front. Cell Neurosci. 8, 213 (2014).
    • 5 Abbott NJ, Patabendige AA, Dolman DE et al. Structure and function of the blood–brain barrier. Neurobiol. Dis. 37(1), 13–25 (2010).
    • 6 Eyal S, Hsiao P, Unadkat JD. Drug interactions at the blood–brain barrier: fact or fantasy? Pharmacol. Ther. 123(1), 80–104 (2009).
    • 7 Gelperina S, Maksimenko O, Khalansky A et al. Drug delivery to the brain using surfactant-coated poly (lactide-co-glycolide) nanoparticles: influence of the formulation parameters. Eur. J. Pharm. Biopharm. 74(2), 157–163 (2010).
    • 8 Petri B, Bootz A, Khalansky A et al. Chemotherapy of brain tumour using doxorubicin bound to surfactant-coated poly(butyl cyanoacrylate) nanoparticles: revisiting the role of surfactants. J. Control. Release 117(1), 51–58 (2007).
    • 9 Kreuter J, Shamenkov D, Petrov V et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood–brain barrier. J. Drug Target 10(4), 317–325 (2002).
    • 10 Gendelman HE, Mosley RL, Boska MD, McMillan J. The promise of nanoneuromedicine. Nanomedicine 9(2), 171–176 (2014).
    • 11 Pardridge WM. The blood–brain barrier: bottleneck in brain drug development. NeuroRx 2(1), 3–14 (2005).
    • 12 Fuentes P, Catalan J. A clinical perspective: anti Tau's treatment in Alzheimer's disease. Curr. Alzheimer Res. 8(6), 686–688 (2011).
    • 13 Pardridge WM. Drug transport across the blood–brain barrier. J. Cereb. Blood Flow Metab. 32(11), 1959–1972 (2012).
    • 14 Gabathuler R. Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol. Dis. 37(1), 48–57 (2010).
    • 15 Larsen JM, Martin DR, Byrne ME. Recent advances in delivery through the blood–brain barrier. Curr. Top. Med. Chem. 14(9), 1148–1160 (2014).
    • 16 Kreuter J. Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv. Drug Deliv. Rev. 71, 2–14 (2014).
    • 17 Kreuter J. Mechanism of polymeric nanoparticle-based drug transport across the blood–brain barrier (BBB). J. Microencapsul. 30(1), 49–54 (2013).
    • 18 Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood–brain barrier by nanoparticles. J. Control. Release 161(2), 264–273 (2012).
    • 19 Hervé F, Ghinea N, Scherrmann J-M. CNS delivery via adsorptive transcytosis. AAPS J. 10(3), 455–472 (2008).
    • 20 Yang H. Nanoparticle-mediated brain-specific drug delivery, imaging, and diagnosis. Pharm. Res. 27(9), 1759–1771 (2010).
    • 21 Anselmo AC, Mitragotri S. An overview of clinical and commercial impact of drug delivery systems. J. Control. Release 190, 15–28 (2014).
    • 22 BiOasis technologies attracts astrazeneca (AZN), abbvie (ABBV) to blood–brain barrier platform. http://www.midasletter.com/2015/01/bioasis-technologies-inc-blood-brain-barrier-platform-attracts-majors/.
    • 23 Jain KK. Nanobiotechnology-based strategies for crossing the blood–brain barrier. Nanomedicine 7(8), 1225–1233 (2012).
    • 24 Gozzi Alessandro, Swarz Adam, Valerio C et al. Use of short chain oligo-glycerolipids to improve BBB permeability: application to Manganese-Enhanced MRI (MEMRI). Presented at: roceedings of the International Society for Magnetic Resonance in Medicine Scientific Meeting and Exhibition. Toronto, Canada, 3–9 May 2008 (Abstract 527).
    • 25 James K, Dewan SS, Lawson K, Nagavarapu U. Advanced drug delivery systems: mAb, RNAi, & breaking the blood–brain barrier. Drug Dev. Deliv. 14(9), 46–50 (2014).
    • 26 Cerense. www.cerense.com/.
    • 27 Gaillard PJ. Case study: to-BBB's G-Technology, getting the best from drug-delivery research with industry-academia partnerships. Ther. Deliv. 2(11), 1391–1394 (2011).
    • 28 Business Wire. to-BBB announces positive data from Phase 1 clinical study. Business Wire (2014). www.businesswire.com/news/home/20140912005148/en/to-BBB-Announces-Positive-Data-Phase-1-Clinical#.VczqoLPjLMw.
    • 29 Lanone S, Boczkowski J. Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Curr. Mol. Med. 6(6), 651–663 (2006).
    • 30 Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4), MR17–MR71 (2007).
    • 31 Devasena T, Francis AP. Alzheimers disease & parkinsonism. Brain 29, 31 (2015).
    • 32 Halliwell B. Role of free radicals in the neurodegenerative diseases. Drugs Aging 18(9), 685–716 (2001).
    • 33 Blanka HK, Catherine CB, Seher G-A, Lucienne J-J. Induction of oxidative stress, lysosome activation and autophagy by nanoparticles in human brain-derived endothelial cells. Biochem. J. 441(3), 813–821 (2012).
    • 34 Bermudez E, Mangum JB, Asgharian B et al. Long-term pulmonary responses of three laboratory rodent species to subchronic inhalation of pigmentary titanium dioxide particles. Toxicol. Sci. 70(1), 86–97 (2002).
    • 35 Lee JH, Kim YS, Song KS et al. Biopersistence of silver nanoparticles in tissues from Sprague-Dawley rats. Part Fibre Toxicol. 10(36), 16968–16973 (2013).
    • 36 Li Y, Li J, Yin J et al. Systematic influence induced by 3 nm titanium dioxide following intratracheal instillation of mice. J. Nanosci. Nanotechnol. 10(12), 8544–8549 (2010).
    • 37 Wang J, Liu Y, Jiao F et al. Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology 254(1), 82–90 (2008).
    • 38 Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL. Alzheimer's disease: cell-specific pathology isolates the hippocampal formation. Science 225(4667), 1168–1170 (1984).
    • 39 Ball MJ, Hachinski V, Fox A et al. A new definition of Alzheimer's disease: a hippocampal dementia. Lancet 325(8419), 14–16 (1985).
    • 40 Ze Y, Zheng L, Zhao X et al. Molecular mechanism of titanium dioxide nanoparticles-induced oxidative injury in the brain of mice. Chemosphere 92(9), 1183–1189 (2013).
    • 41 Nrf2 antioxidant stress response: managing its ‘Dark Side’ (2015). www.caymanchem.com/app/template/Article.vm/article/2168.
    • 42 Huerta-García E, Pérez-Arizti JA, Márquez-Ramírez SG et al. Titanium dioxide nanoparticles induce strong oxidative stress and mitochondrial damage in glial cells. Free Radic. Biol. Med. 73, 84–94 (2014).
    • 43 Lawrence T. The nuclear factor NF-κB pathway in inflammation. Cold Spring Harb. Perspect. Biol. 1(6), a001651 (2009).
    • 44 Montiel-Dávalos A, Ventura-Gallegos JL, Alfaro-Moreno E et al. TiO2 nanoparticles induce dysfunction and activation of human endothelial cells. Chem. Res. Toxicol. 25(4), 920–930 (2012).
    • 45 Xue Y, Wu J, Sun J. Four types of inorganic nanoparticles stimulate the inflammatory reaction in brain microglia and damage neurons in vitro. Toxicol. Lett. 214(2), 91–98 (2012).
    • 46 Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J. Interferon Cytokine Res. 29(6), 313–326 (2009).
    • 47 Graeber MB. Changing face of microglia. Science 330(6005), 783–788 (2010).
    • 48 Anthony DC, Pitossi FJ. Special issue commentary: the changing face of inflammation in the brain. Mol. Cell. Neurosci. 53, 1–5 (2013).
    • 49 Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8(1), 57–69 (2007).
    • 50 Wang Y, Wang B, Zhu MT et al. Microglial activation, recruitment and phagocytosis as linked phenomena in ferric oxide nanoparticle exposure. Toxicol. Lett. 205(1), 26–37 (2011).
    • 51 Zhang XD, Wu HY, Wu D et al. Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int. J. Nanomedicine 5, 771 (2010).
    • 52 Sonavane G, Tomoda K, Makino K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf. B Biointerfaces 66(2), 274–280 (2008).
    • 53 Yu LE, Lanry Yung LY, Ong CN et al. Translocation and effects of gold nanoparticles after inhalation exposure in rats. NanoToxicology 1(3), 235–242 (2007).
    • 54 Siddiqi NJ, Abdelhalim MA, El-Ansary AK et al. Identification of potential biomarkers of gold nanoparticle toxicity in rat brains. J. Neuroinflammation 9, 123 (2012).
    • 55 Kregel KC. Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol. 92(5), 2177–2186 (2002).
    • 56 Porter AG, Jänicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 6(2), 99–104 (1999).
    • 57 Li JJ, Hartono D, Ong CN, Bay B-H, Yung L-YL. Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials 31(23), 5996–6003 (2010).
    • 58 Codreanu SG, Ullery JC, Zhu J et al. Alkylation damage by lipid electrophiles targets functional protein systems. Mol. Cell Proteomics 13(3), 849–859 (2014).
    • 59 Jilani A, Ramotar D, Slack C et al. Molecular cloning of the human gene, PNKP, encoding a polynucleotide kinase 3’-phosphatase and evidence for its role in repair of DNA strand breaks caused by oxidative damage. J. Biol. Chem. 274(34), 24176–24186 (1999).
    • 60 Funk CD, FitzGerald GA. COX-2 inhibitors and cardiovascular risk. J. Cardiovasc. Pharmacol. 50(5), 470–479 (2007).
    • 61 Maier-Hauff K, Ulrich F, Nestler D et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol. 103(2), 317–324 (2011).
    • 62 Hare D, Ayton S, Bush A, Lei P. A delicate balance: iron metabolism and diseases of the brain. Front. Aging Neurosci. 5, 34 (2013).
    • 63 Wang B, Feng WY, Wang M et al. Transport of intranasally instilled fine Fe2O3 particles into the brain: micro-distribution, chemical states, and histopathological observation. Biol. Trace Elem. Res. 118(3), 233–243 (2007).
    • 64 Wu J, Ding T, Sun J. Neurotoxic potential of iron oxide nanoparticles in the rat brain striatum and hippocampus. NeuroToxicology 34, 243–253 (2013).
    • 65 Kim JS, Yoon TJ, Yu KN et al. Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol. Sci. 89(1), 338–347 (2006).
    • 66 Liu CH, Ren JQ, You Z et al. Noninvasive detection of neural progenitor cells in living brains by MRI. FASEB J. 26(4), 1652–1662 (2012).
    • 67 Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol. Pharm. 5(2), 316–327 (2008).
    • 68 Wang J, Chen Y, Chen B et al. Pharmacokinetic parameters and tissue distribution of magnetic Fe(3)O(4) nanoparticles in mice. Int. J. Nanomedicine 5, 861–866 (2010).
    • 69 Kumari M, Rajak S, Singh SP et al. Biochemical alterations induced by acute oral doses of iron oxide nanoparticles in Wistar rats. Drug Chem. Toxicol. 36(3), 296–305 (2013).
    • 70 Kim Y, Kong SD, Chen LH, Pisanic TR, Jin S, Shubayev VI. in vivo nanoneurotoxicity screening using oxidative stress and neuroinflammation paradigms. Nanomed. Nanotechnol. Biol. Med. 9(7), 1057–1066 (2013).
    • 71 Liochev SI, Fridovich I. The Haber–Weiss cycle – 70 years later: an alternative view. Redox Rep. Commun. Free Radic. Res. 7(1), 55–57; author reply 59–60 (2002).
    • 72 Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed. Res. Int. 2013, e942916 (2013).
    • 73 Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist. Updat. 7(2), 97–110 (2004).
    • 74 Eidi H, Joubert O, Némos C et al. Drug delivery by polymeric nanoparticles induces autophagy in macrophages. Int. J. Pharm. 422(1–2), 495–503 (2012).
    • 75 Arnoult D, Grodet A, Lee YJ, Estaquier J, Blackstone C. Release of OPA1 during apoptosis participates in the rapid and complete release of cytochrome c and subsequent mitochondrial fragmentation. J. Biol. Chem. 280(42), 35742–35750 (2005).
    • 76 Nakamura K, Nemani VM, Azarbal F et al. Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein alpha-synuclein. J. Biol. Chem. 286(23), 20710–20726 (2011).
    • 77 Wang H, Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 27(5–6), 612–616 (1999).
    • 78 Lockman PR, Koziara JM, Mumper RJ, Allen DD. Nanoparticle surface charges alter blood–brain barrier integrity and permeability. J. Drug Target. 12(9–10), 635–641 (2004).
    • 79 Yuan ZY, Hu YL, Gao JQ. Brain localization and neurotoxicity evaluation of polysorbate 80-modified chitosan nanoparticles in rats. PLoS ONE 10(8), e0134722 (2015).
    • 80 Hu YL, Gao JQ. Potential neurotoxicity of nanoparticles. Int. J. Pharm. 394(1–2), 115–121 (2010).
    • 81 Zhao M, Hu J, Zhang L et al. Study of amphotericin B magnetic liposomes for brain targeting. Int. J. Pharm. 475(1–2), 9–16 (2014).
    • 82 Kolter M, Ott M, Hauer C, Reimold I, Fricker G. Nanotoxicity of poly(n-butylcyano-acrylate) nanoparticles at the blood–brain barrier, in human whole blood and in vivo. J. Control. Release 197, 165–179 (2015).
    • 83 Paris I, Segura-Aguilar J. The role of metal ions in dopaminergic neuron degeneration in Parkinsonism and Parkinson's disease. Monatshefte Für Chem. 142(4), 365–374 (2011).
    • 84 Halliwell B. Oxidative stress and neurodegeneration: where are we now? J. Neurochem. 97(6), 1634–1658 (2006).
    • 85 Mizushima N. Autophagy: process and function. Genes Dev. 21(22), 2861–2873 (2007).
    • 86 Ravikumar B, Futter M, Jahreiss L et al. Mammalian macroautophagy at a glance. J. Cell Sci. 122(Pt 11), 1707–1711 (2009).
    • 87 Komatsu M, Ichimura Y. Selective autophagy regulates various cellular functions. Genes Cells Devoted Mol. Cell. Mech. 15(9), 923–933 (2010).
    • 88 Stern ST, Adiseshaiah PP, Crist RM. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part. Fibre Toxicol. 9(1), 20 (2012).
    • 89 Gelino S, Hansen M. Autophagy - an emerging anti-aging mechanism. J. Clin. Exp. Pathol. 12(Suppl. 4), pii: 006 (2012).
    • 90 Ichimura Y, Komatsu M. Selective degradation of p62 by autophagy. Semin. Immunopathol. 32(4), 431–436 (2010).
    • 91 Wu YN, Yang LX, Shi XY et al. The selective growth inhibition of oral cancer by iron core-gold shell nanoparticles through mitochondria-mediated autophagy. Biomaterials 32(20), 4565–4573 (2011).
    • 92 Ueng TH, Kang JJ, Wang HW, Cheng YW, Chiang LY. Suppression of microsomal cytochrome P450-dependent monooxygenases and mitochondrial oxidative phosphorylation by fullerenol, a polyhydroxylated fullerene C60. Toxicol. Lett. 93(1), 29–37 (1997).
    • 93 Shcharbin D, Jokiel M, Klajnert B, Bryszewska M. Effect of dendrimers on pure acetylcholinesterase activity and structure. Bioelectrochem. Amst. Neth. 68(1), 56–59 (2006).
    • 94 Ravikumar B, Sarkar S, Davies JE et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol. Rev. 90(4), 1383–1435 (2010).
    • 95 Bellettato CM, Scarpa M. Pathophysiology of neuropathic lysosomal storage disorders. J. Inherit. Metab. Dis. 33(4), 347–362 (2010).
    • 96 Aldenhoven M, Sakkers RJB, Boelens J, de Koning TJ, Wulffraat NM. Musculoskeletal manifestations of lysosomal storage disorders. Ann. Rheum. Dis. 68(11), 1659–1665 (2009).
    • 97 Nel AE, Mädler L, Velegol D et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8(7), 543–557 (2009).
    • 98 Rivera-Gil P, Jimenez de Aberasturi D, Wulf V et al. The challenge to relate the physicochemical properties of colloidal nanoparticles to their cytotoxicity. Acc. Chem. Res. 46(3), 743–749 (2013).
    • 99 Hussain S, Thomassen LC, Ferecatu I et al. Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells. Part. Fibre Toxicol. 7, 10 (2010).
    • 100 Meunier E, Coste A, Olagnier D et al. Double-walled carbon nanotubes trigger IL-1β release in human monocytes through NLRP3 inflammasome activation. Nanomed. Nanotechnol. Biol. Med. 8(6), 987–995 (2012).
    • 101 Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat. Immunol. 10(3), 241–247 (2009).
    • 102 Hamilton RF, Wu N, Porter D, Buford M, Wolfarth M, Holian A. Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part. Fibre Toxicol. 6, 35 (2009).
    • 103 Lunov O, Syrovets T, Loos C et al. Amino-functionalized polystyrene nanoparticles activate the NLRP3 inflammasome in human macrophages. ACS Nano 5(12), 9648–9657 (2011).
    • 104 Futerman AH, van Meer G. The cell biology of lysosomal storage disorders. Nat. Rev. Mol. Cell Biol. 5(7), 554–565 (2004).
    • 105 Kroemer G, Jäättelä M. Lysosomes and autophagy in cell death control. Nat. Rev. Cancer 5(11), 886–897 (2005).
    • 106 Loos B, Engelbrecht AM, Lockshin RA, Klionsky DJ, Zakeri Z. The variability of autophagy and cell death susceptibility: unanswered questions. Autophagy 9(9), 1270–1285 (2013).
    • 107 Harhaji L, Isakovic A, Raicevic N et al. Multiple mechanisms underlying the anticancer action of nanocrystalline fullerene. Eur. J. Pharmacol. 568(1–3), 89–98 (2007).
    • 108 Stern ST, Zolnik BS, McLeland CB, Clogston J, Zheng J, McNeil SE. Induction of autophagy in porcine kidney cells by quantum dots: a common cellular response to nanomaterials? Toxicol. Sci. 106(1), 140–152 (2008).
    • 109 Chen Y, Yang L, Feng C, Wen L-P. Nano neodymium oxide induces massive vacuolization and autophagic cell death in non-small cell lung cancer NCI-H460 cells. Biochem. Biophys. Res. Commun. 337(1), 52–60 (2005).
    • 110 Seleverstov O, Zabirnyk O, Zscharnack M et al. Quantum dots for human mesenchymal stem cells labeling. A size-dependent autophagy activation.. Nano Lett. 6(12), 2826–2832 (2006).
    • 111 He C, Klionsky DJ. Regulation mechanisms and signalling pathways of autophagy. Annu. Rev. Genet. 43, 67–93 (2009).
    • 112 Calzolai L, Franchini F, Gilliland D, Rossi F. Protein–nanoparticle interaction: identification of the ubiquitin–gold nanoparticle interaction site. Nano Lett. 10(8), 3101–3105 (2010).
    • 113 Li H, Li Y, Jiao J, Hu HM. Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response. Nat. Nanotechnol. 6(10), 645–650 (2011).
    • 114 Zheng YT, Shahnazari S, Brech A, Lamark T, Johansen T, Brumell JH. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J. Immunol. Baltim. MD 183(9), 5909–5916 (2009).
    • 115 Mizushima N, Noda T, Ohsumi Y. Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J. 18(14), 3888–3896 (1999).
    • 116 Berry CC, Wells S, Charles S, Curtis ASG. Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials. 24(25), 4551–4557 (2003).
    • 117 Gupta AK, Gupta M, Yarwood SJ, Curtis ASG. Effect of cellular uptake of gelatin nanoparticles on adhesion, morphology and cytoskeleton organisation of human fibroblasts. J. Control. Release 95(2), 197–207 (2004).
    • 118 Goldberg AL, Dice JF. Intracellular protein degradation in mammalian and bacterial cells. Annu. Rev. Biochem. 43(0), 835–869 (1974).
    • 119 Xiong R, Siegel D, Ross D. The activation sequence of cellular protein handling systems after proteasomal inhibition in dopaminergic cells. Chem. Biol. Interact. 204(2), 116–124 (2013).
    • 120 Muchowski PJ, Wacker JL. Modulation of neurodegeneration by molecular chaperones. Nat. Rev. Neurosci. 6(1), 11–22 (2005).
    • 121 Lehman NL. The ubiquitin proteasome system in neuropathology. Acta Neuropathol. (Berl.) 118(3), 329–347 (2009).
    • 122 Ventruti A, Cuervo AM. Autophagy and neurodegeneration. Curr. Neurol. Neurosci. Rep. 7(5), 443–451 (2007).
    • 123 Komatsu M, Waguri S, Chiba T et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095), 880–884 (2006).
    • 124 Olzmann JA, Chin L-S. Parkin-mediated K63-linked polyubiquitination: a signal for targeting misfolded proteins to the aggresome-autophagy pathway. Autophagy 4(1), 85–87 (2008).
    • 125 Chin LS, Olzmann JA, Li L. Parkin-mediated ubiquitin signalling in aggresome formation and autophagy. Biochem. Soc. Trans. 38(Pt 1), 144 (2010).
    • 126 Chari RVJ. Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc. Chem. Res. 41(1), 98–107 (2008).
    • 127 Lalatsa A, Moreira Leite D, Pilkington GJ. Nanomedicines and the future of glioma. Oncol. News 10(2), 51–57 (2015).
    • 128 Taggart LE, McMahon SJ, Currell FJ, Prise KM, Butterworth KT. The role of mitochondrial function in gold nanoparticle mediated radiosensitisation. Cancer Nanotechnol. 5(1), 5 (2014).
    • 129 Khan MI, Mohammad A, Patil G, Naqvi SAH, Chauhan LKS, Ahmad I. Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials 33(5), 1477–1488 (2012).
    • 130 Zhou SF. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica 38(7–8), 802–832 (2008).
    • 131 Rosenfeldt MT, Ryan KM. The role of autophagy in tumour development and cancer therapy. Expert Rev. Mol. Med. 11, e36 (2009).
    • 132 Amaravadi RK, Lippincott-Schwartz J, Yin XM et al. Principles and current strategies for targeting autophagy for cancer treatment. Clin. Cancer Res. 17(4), 654–666 (2011).
    • 133 Wu YN, Chen DH, Shi X-Y et al. Cancer-cell-specific cytotoxicity of non-oxidized iron elements in iron core-gold shell NPs. Nanomedicine 7(4), 420–427 (2011).
    • 134 Wang S, Li Y, Fan J et al. The role of autophagy in the neurotoxicity of cationic PAMAM dendrimers. Biomaterials 35(26), 7588–7597 (2014).
    • 135 Nixon RA, Wegiel J, Kumar A et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J. Neuropathol. Exp. Neurol. 64(2), 113–122 (2005).
    • 136 Anglade P, Vyas S, Javoy-Agid F et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol. Histopathol. 12(1), 25–31 (1997).
    • 137 Xilouri M, Stefanis L. Autophagic pathways in Parkinson disease and related disorders. Expert Rev. Mol. Med. 13, e8 (2011).
    • 138 Ravikumar B, Vacher C, Berger Z et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36(6), 585–595 (2004).
    • 139 Hara T, Nakamura K, Matsui M et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441(7095), 885–889 (2006).
    • 140 Boland B, Kumar A, Lee S et al. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease. J. Neurosci. 28(27), 6926–6937 (2008).
    • 141 Tanida I, Yamasaki M, Komatsu M, Ueno T. The FAP motif within human ATG7, an autophagy-related E1-like enzyme, is essential for the E2-substrate reaction of LC3 lipidation. Autophagy 8(1), 88–97 (2012).
    • 142 UK CR. Statistics and outlook for brain tumours (2015). www.cancerresearchuk.org/about-cancer/type/brain-tumour/treatment/statistics-and-outlook-for-brain-tumours#glioma.