Skip to main content
Log in

Negative Binomial Factor Analysis

  • Published:
Behaviormetrika Aims and scope Submit manuscript

Abstract

A latent variable model for observed variables representing frequencies is proposed. The data type for the model is a subjects by variables two-way frequency table. The model has two groups of latent variables. The first group of latent variables represents the characteristics of subjects and corresponds to common factors in factor analysis. On the other hand, each of latent variables in the second group is related to one of the manifest variables and corresponds to a specific factor in factor analysis. The manifest variables in the model, when given the values of common latent variables, follow the negative binomial distributions. The latent variables in the first and second groups are integrated out of the model. The parameters in the model are estimated by the marginal maximum likelihood method, using a kind of the EM algorithm. The communality, specificity, and reliability for an observed variable are defined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archer, C.O. & Jennrich, R.I. (1973). Standard errors for rotated factor loadings. Psyckometrika, 38, 581–592.

    Article  MathSciNet  Google Scholar 

  • Bishop, Y.M.M., Fienberg, S.E. & Holland, P.W. (1975). Discrete multivariate analysis: Theory and practice. Cambridge, Massachusetts: MIT Press.

    MATH  Google Scholar 

  • Bock, R.D. & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: An application of an EM algorithm. Psyckometrika, 46, 443–459.

    Article  MathSciNet  Google Scholar 

  • Clogg, C.C. (1986). Discussion of paper by L.A. Goodman (1986) Some useful extension of the usual correspondence analysis approach and the usual log-linear models approach in the analysis of contingency tables. International Statistical Review, 54, 243–309.

    Article  MathSciNet  Google Scholar 

  • Engel, J. (1984). Models for response data showing extra-Poisson variation. Statistica Neerlandica, 38, 159–167.

    Article  Google Scholar 

  • Gardner, W., Mulvey, E.P. & Shaw, E.G. (1995). Regression analysis of counts and rates: Poisson, overdispersed Poisson, and negative binomial models. Psychological Bulletin, 118, 392–404.

    Article  Google Scholar 

  • Goodman, L.A. (1985). The analysis of cross-classified data having ordered and/or unordered categories: Association models, correlation models, and asymmetry models for contingency tables with or without missing entries. Annals of Statistics, 13, 10–69.

    Article  MathSciNet  Google Scholar 

  • Goodman, L.A. (1986). Some useful extension of the usual correspondence analysis approach and the usual log-linear models approach in the analysis of contingency tables (with discussion). International Statistical Review, 54, 243–309.

    Article  MathSciNet  Google Scholar 

  • Goodman, L.A. (1991). Measures, models, and graphical displays in the analysis of cross-classified data (with discussion). Journal of the American Statistical Association, 86, 1085–1138.

    Article  MathSciNet  Google Scholar 

  • Harman, H. (1976). Modern factor analysis (3rd ed.). Chicago: University of Chicago Press.

    MATH  Google Scholar 

  • Jansen, M.G.H. & Van Duijn, M.A.J. (1992). Extensions of Rasch’s multiplicative Poisson model. Psyckometrika, 57, 405–414.

    Article  Google Scholar 

  • Jöreskog, K.G. (1978). Structural analysis of covariance and correlation matrices. Psyckometrika, 43, 443–447.

    Article  MathSciNet  Google Scholar 

  • Jöreskog, K.G. & Sörbom, D. (1976). Statistical models and methods for test-retest situations. In D.N.M. De Gruijter and L.J.Th. van der Kamp (Eds.), Advances in psychological and educational measurement (pp. 135-157). Wiley: New York.

    Google Scholar 

  • Lawless, J.F. (1987). Negative binomial and mixed Poisson regression. The Canadian Journal of Statistics, 15, 209–225.

    Article  MathSciNet  Google Scholar 

  • Lord, F.M. & Novick, M.R. (1968). Statistical theories of mental test scores. Reading, Mass.: Addison-Wesley.

    MATH  Google Scholar 

  • Louis, T.A. (1982). Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society, B, 44, 226–233.

    MathSciNet  MATH  Google Scholar 

  • Meredith, W. (1971). Poisson distributions of error in mental test theory. British Journal of Mathematical and Statistical Psychology, 24, 49–82.

    Article  Google Scholar 

  • Mislevy, R.J. (1984). Estimating latent distributions. Psyckometrika, 49, 359–381.

    Article  Google Scholar 

  • Mislevy, R.J. & Sheehan, K.M. (1989). Information matrices in latent-variable models. Journal of Educational Statistics, 14, 335–359.

    Article  Google Scholar 

  • Moustaki, I. (1996). A latent trait and a latent class model for mixed observed variables. British Journal of Mathematical and Statistical Psychology, 49, 313–334.

    Article  Google Scholar 

  • Ogasawara, H. (1996a). A proposal of Poisson factor analysis. Abstracts of the 26th International Congress of Psychology (p. 421).

    Google Scholar 

  • Ogasawara, H. (1996b). Rasch’s multiplicative Poisson model with covariates. Psyckometrika, 61, 73–92.

    Article  MathSciNet  Google Scholar 

  • Ogasawara, H. (1998a). A factor analysis model for a mixture of various types of variables. Bekaviormetrika, 25, 1–12.

    Article  Google Scholar 

  • Ogasawara, H. (1998b). A log-bilinear model with latent variables. Bekaviormetrika, 25, 95–110.

    Article  Google Scholar 

  • Rao, C.R. (1973). Linear statistical inference and its applications (2nd ed.). New-York: Wiley.

    Book  Google Scholar 

  • Rasch, G. (1980). Probabilistic models for some intelligence and attainment tests. Chicago: The University of Chicago Press, (original work published in 1960).

    Google Scholar 

  • Sammel, M.D., Louise, M.R. & Legier, J.M. (1997). Latent variable models for mixed discrete and continuous outcomes. Journal of Royal Statistical Society, B, 59, 667–678.

    Article  Google Scholar 

  • Silvey, S.D. (1975). Statistical inference. London: Chapman & Hall.

    MATH  Google Scholar 

  • Tsutakawa, R.K. (1988). Mixed model for analyzing geographic variability in mortality rates. Journal of the American Statistical Association, 83, 37–42.

    Article  Google Scholar 

  • Van Duijn, M.AJ. (1993). Mixed models for repeated count data. Leiden: DSWO Press.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruhiko Ogasawara.

About this article

Cite this article

Ogasawara, H. Negative Binomial Factor Analysis. Behaviormetrika 26, 235–250 (1999). https://doi.org/10.2333/bhmk.26.235

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2333/bhmk.26.235

Key Words and Phrases

Navigation