Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter December 28, 2012

Pharmacological inhibition of GSK3 attenuates DNA damage-induced apoptosis via reduction of p53 mitochondrial translocation and Bax oligomerization in neuroblastoma SH-SY5Y CELLS

  • Patchara Ngok-Ngam EMAIL logo , Piyajit Watcharasit , Apinya Thiantanawat and Jutamaad Satayavivad

Abstract

Glycogen synthase kinase-3 (GSK3) and p53 play crucial roles in the mitochondrial apoptotic pathway and are known to interact in the nucleus. However, it is not known if GSK3 has a regulatory role in the mitochondrial translocation of p53 that participates in apoptotic signaling following DNA damage. In this study, we demonstrated that lithium and SB216763, which are pharmacological inhibitors of GSK3, attenuated p53 accumulation and caspase-3 activation, as shown by PARP cleavage induced by the DNA-damaging agents doxorubicin, etoposide and camptothecin. Furthermore, each of these agents induced translocation of p53 to the mitochondria and activated the mitochondrial pathway of apoptosis, as evidenced by the release of cytochrome C from the mitochondria. Both mitochondrial translocation of p53 and mitochondrial release of cytochrome C were attenuated by inhibition of GSK3, indicating that GSK3 promotes the DNA damage-induced mitochondrial translocation of p53 and the mitochondrial apoptosis pathway. Interestingly, the regulation of p53 mitochondrial translocation by GSK3 was only evident with wild-type p53, not with mutated p53. GSK3 inhibition also reduced the phosphorylation of wild-type p53 at serine 33, which is induced by doxorubicin, etoposide and camptothecin in the mitochondria. Moreover, inhibition of GSK3 reduced etoposide-induced association of p53 with Bcl2 and Bax oligomerization. These findings show that GSK3 promotes the mitochondrial translocation of p53, enabling its interaction with Bcl2 to allow Bax oligomerization and the subsequent release of cytochrome C. This leads to caspase activation in the mitochondrial pathway of intrinsic apoptotic signaling.

[1] Beurel, E. and Jope, R.S. The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog. Neurobiol. 79 (2006) 173–189. http://dx.doi.org/10.1016/j.pneurobio.2006.07.00610.1016/j.pneurobio.2006.07.006Search in Google Scholar

[2] Kaidanovich-Beilin, O. and Woodgett, J.R. GSK-3: functional insights from cell biology and animal models. Front Mol. Neurosci. 4 (2011) 40. http://dx.doi.org/10.3389/fnmol.2011.0004010.3389/fnmol.2011.00040Search in Google Scholar

[3] Gomez-Sintes, R., Hernandez, F., Lucas, J.J. and Avila, J. GSK-3 mouse models to study neuronal apoptosis and neurodegeneration. Front. Mol. Neurosci. 4 (2011) 45. http://dx.doi.org/10.3389/fnmol.2011.0004510.3389/fnmol.2011.00045Search in Google Scholar

[4] Watcharasit, P., Bijur, G.N., Zmijewski, J.W., Song, L., Zmijewska, A., Chen, X., Johnson, G.V. and Jope, R.S. Direct, activating interaction between glycogen synthase kinase-3beta and p53 after DNA damage. Proc. Natl. Acad. Sci. USA 99 (2002) 7951–7955. http://dx.doi.org/10.1073/pnas.12206229910.1073/pnas.122062299Search in Google Scholar

[5] Qu, L., Huang, S., Baltzis, D., Rivas-Estilla, A.M., Pluquet, O., Hatzoglou, M., Koumenis, C., Taya, Y., Yoshimura, A. and Koromilas, A.E. Endoplasmic reticulum stress induces p53 cytoplasmic localization and prevents p53-dependent apoptosis by a pathway involving glycogen synthase kinase-3beta. Genes Dev. 18 (2004) 261–277. http://dx.doi.org/10.1101/gad.116580410.1101/gad.1165804Search in Google Scholar

[6] Song, L., De Sarno, P. and Jope, R.S. Central role of glycogen synthase kinase-3beta in endoplasmic reticulum stress-induced caspase-3 activation. J. Biol. Chem. 277 (2002) 44701–44708. http://dx.doi.org/10.1074/jbc.M20604720010.1074/jbc.M206047200Search in Google Scholar

[7] Kim, A.J., Shi, Y., Austin, R.C. and Werstuck, G.H. Valproate protects cells from ER stress-induced lipid accumulation and apoptosis by inhibiting glycogen synthase kinase-3. J. Cell Sci. 118 (2005) 89–99. http://dx.doi.org/10.1242/jcs.0156210.1242/jcs.01562Search in Google Scholar

[8] King, T.D., Bijur, G.N. and Jope, R.S. Caspase-3 activation induced by inhibition of mitochondrial complex I is facilitated by glycogen synthase kinase-3beta and attenuated by lithium. Brain Res. 919 (2001) 106–114. http://dx.doi.org/10.1016/S0006-8993(01)03005-010.1016/S0006-8993(01)03005-0Search in Google Scholar

[9] King, T.D. and Jope, R.S. Inhibition of glycogen synthase kinase-3 protects cells from intrinsic but not extrinsic oxidative stress. Neuroreport 16 (2005) 597–601. http://dx.doi.org/10.1097/00001756-200504250-0001610.1097/00001756-200504250-00016Search in Google Scholar PubMed

[10] Pap, M. and Cooper, G.M. Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-Kinase/Akt cell survival pathway. J. Biol. Chem. 273 (1998) 19929–19932. http://dx.doi.org/10.1074/jbc.273.32.1992910.1074/jbc.273.32.19929Search in Google Scholar PubMed

[11] Watcharasit, P., Bijur, G.N., Song, L., Zhu, J., Chen, X. and Jope, R.S. Glycogen synthase kinase-3beta (GSK3beta) binds to and promotes the actions of p53. J. Biol. Chem. 278 (2003) 48872–48879. http://dx.doi.org/10.1074/jbc.M30587020010.1074/jbc.M305870200Search in Google Scholar

[12] Turenne, G.A. and Price, B.D. Glycogen synthase kinase3 beta phosphorylates serine 33 of p53 and activates p53’s transcriptional activity. BMC Cell Biol. 2 (2001) 12. http://dx.doi.org/10.1186/1471-2121-2-1210.1186/1471-2121-2-12Search in Google Scholar

[13] Greenblatt, M.S., Bennett, W.P., Hollstein, M. and Harris, C.C. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54 (1994) 4855–4878. Search in Google Scholar

[14] Harms, K., Nozell, S. and Chen, X. The common and distinct target genes of the p53 family transcription factors. Cell. Mol. Life Sci. 61 (2004) 822–842. http://dx.doi.org/10.1007/s00018-003-3304-410.1007/s00018-003-3304-4Search in Google Scholar

[15] Dumont, P., Leu, J.I., Della Pietra, A.C. III, George, D.L. and Murphy, M. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat. Genet. 33 (2003) 357–365. http://dx.doi.org/10.1038/ng109310.1038/ng1093Search in Google Scholar

[16] Marchenko, N., Zaika, A. and Moll, U. Death signal-induced localization of p53 protein to mitochondria A potential role in apoptotic signaling. J. Biol. Chem. 275 (2000) 16202–16212. http://dx.doi.org/10.1074/jbc.275.21.1620210.1074/jbc.275.21.16202Search in Google Scholar

[17] Mihara, M., Erster, S., Zaika, A., Petrenko, O., Chittenden, T., Pancoska, P. and Moll, U.M. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell 11 (2003) 577–590. http://dx.doi.org/10.1016/S1097-2765(03)00050-910.1016/S1097-2765(03)00050-9Search in Google Scholar

[18] Moll, U.M., Wolff, S., Speidel, D. and Deppert, W. Transcription-independent pro-apoptotic functions of p53. Curr. Opin. Cell Biol. 17 (2005) 631–636. http://dx.doi.org/10.1016/j.ceb.2005.09.00710.1016/j.ceb.2005.09.007Search in Google Scholar PubMed

[19] Murphy, M.E., Leu, J.I. and George, D.L. p53 moves to mitochondria: a turn on the path to apoptosis. Cell Cycle 3 (2004) 836–839. http://dx.doi.org/10.4161/cc.3.7.95610.4161/cc.3.7.956Search in Google Scholar

[20] Watcharasit, P., Thiantanawat, A. and Satayavivad, J. GSK3 promotes arsenite-induced apoptosis via facilitation of mitochondria disruption. J. Appl. Toxicol. 28 (2008) 466–474. http://dx.doi.org/10.1002/jat.129610.1002/jat.1296Search in Google Scholar PubMed

[21] Chabner, B.A., Amrein, P.C., Druker, B.J., Michaelson, M.D., Mitsiades, C.S., Goss, P.E., Ryan, D.P., Ramachandra, S., Richardson, P.G., Supko, J.G. and Wilson, W.H. Antineoplastic Agents. in: Goodman and Gilman’s The Pharmacological Basis of Therapeutics (Brunton, L.L., Ed.), 11th Edition, The McGraw-Hill Co. Inc., New York, 2005, 1315–1403. Search in Google Scholar

[22] Chalecka-Franaszek, E. and Chuang, D.M. Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons. Proc. Natl. Acad. Sci. USA 96 (1999) 8745–8750. http://dx.doi.org/10.1073/pnas.96.15.874510.1073/pnas.96.15.8745Search in Google Scholar PubMed PubMed Central

[23] De Sarno, P., Li, X. and Jope, R.S. Regulation of Akt and glycogen synthase kinase-3 beta phosphorylation by sodium valproate and lithium. Neuropharmacology 43 (2002) 1158–1164. http://dx.doi.org/10.1016/S0028-3908(02)00215-010.1016/S0028-3908(02)00215-0Search in Google Scholar

[24] Coghlan, M.P., Culbert, A.A., Cross, D.A., Corcoran, S.L., Yates, J.W., Pearce, N.J., Rausch, O.L., Murphy, G.J., Carter, P.S., Roxbee Cox, L., Mills, D., Brown, M.J., Haigh, D., Ward, R.W., Smith, D.G., Murray, K.J., Reith, A.D. and Holder, J.C. Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem. Biol. 7 (2000) 793–803. http://dx.doi.org/10.1016/S1074-5521(00)00025-910.1016/S1074-5521(00)00025-9Search in Google Scholar

[25] Erster, S., Mihara, M., Kim, R., Petrenko, O. and Moll, U. In vivo mitochondrial p53 translocation triggers a rapid first wave of cell death in response to DNA damage that can precede p53 target gene activation. Mol. Cell. Biol. 24 (2004) 6728–6741. http://dx.doi.org/10.1128/MCB.24.15.6728-6741.200410.1128/MCB.24.15.6728-6741.2004Search in Google Scholar PubMed PubMed Central

[26] Chen, X., Ko, L.J., Jayaraman, L. and Prives, C. p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev. 10 (1996) 2438–2451. http://dx.doi.org/10.1101/gad.10.19.243810.1101/gad.10.19.2438Search in Google Scholar PubMed

[27] Haupt, Y., Rowan, S., Shaulian, E., Vousden, K.H. and Oren, M. Induction of apoptosis in HeLa cells by trans-activation-deficient p53. Genes Dev. 9 (1995) 2170–2183. http://dx.doi.org/10.1101/gad.9.17.217010.1101/gad.9.17.2170Search in Google Scholar PubMed

[28] Ahn, B.Y., Trinh, D.L., Zajchowski, L.D., Lee, B., Elwi, A.N. and Kim, S.W. Tid1 is a new regulator of p53 mitochondrial translocation and apoptosis in cancer. Oncogene 29 (2010) 1155–1166. http://dx.doi.org/10.1038/onc.2009.41310.1038/onc.2009.413Search in Google Scholar PubMed

[29] O’Connor, P.M., Jackman, J., Bae, I., Myers, T.G., Fan, S., Mutoh, M., Scudiero, D.A., Monks, A., Sausville, E.A., Weinstein, J.N., Friend, S., Fornace, A.J. Jr. and Kohn, K. W. Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res. 57 (1997) 4285–4300. Search in Google Scholar

[30] Olsson, A., Manzl, C., Strasser, A. and Villunger, A. How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression? Cell Death Differ. 14 (2007) 1561–1575. http://dx.doi.org/10.1038/sj.cdd.440219610.1038/sj.cdd.4402196Search in Google Scholar PubMed

[31] Vaseva, A.V. and Moll, U.M. The mitochondrial p53 pathway. Biochim. Biophys. Acta 1787 (2009) 414–420. http://dx.doi.org/10.1016/j.bbabio.2008.10.00510.1016/j.bbabio.2008.10.005Search in Google Scholar PubMed PubMed Central

[32] Chipuk, J., Kuwana, T., Bouchier-Hayes, L., Droin, N., Newmeyer, D., Schuler, M. and Green, D. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303 (2004) 1010–1014. http://dx.doi.org/10.1126/science.109273410.1126/science.1092734Search in Google Scholar PubMed

[33] Marchenko, N.D., Wolff, S., Erster, S., Becker, K. and Moll, U.M. Monoubiquitylation promotes mitochondrial p53 translocation. EMBO J. 26 (2007) 923–934. http://dx.doi.org/10.1038/sj.emboj.760156010.1038/sj.emboj.7601560Search in Google Scholar PubMed PubMed Central

[34] David, R. Apoptosis: A lipid trigger of MOMP. Nat. Rev. Mol. Cell Biol. 13 (2012) 208–209. http://dx.doi.org/10.1038/nrm332010.1038/nrm3320Search in Google Scholar

[35] Moll, U., Marchenko, N. and Zhang, X. p53 and Nur77/TR3-transcription factors that directly target mitochondria for cell death induction. Oncogene 25 (2006) 4725–4743. http://dx.doi.org/10.1038/sj.onc.120960110.1038/sj.onc.1209601Search in Google Scholar PubMed

[36] Linseman, D.A., Butts, B.D., Precht, T.A., Phelps, R.A., Le, S.S., Laessig, T.A., Bouchard, R.J., Florez-McClure, M.L. and Heidenreich, K.A. Glycogen synthase kinase-3beta phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J. Neurosci. 24 (2004) 9993–10002. http://dx.doi.org/10.1523/JNEUROSCI.2057-04.200410.1523/JNEUROSCI.2057-04.2004Search in Google Scholar PubMed PubMed Central

[37] Tan, J., Zhuang, L., Leong, H.S., Iyer, N.G., Liu, E.T. and Yu, Q. Pharmacologic modulation of glycogen synthase kinase-3beta promotes p53-dependent apoptosis through a direct Bax-mediated mitochondrial pathway in colorectal cancer cells. Cancer Res. 65 (2005) 9012–9020. http://dx.doi.org/10.1158/0008-5472.CAN-05-122610.1158/0008-5472.CAN-05-1226Search in Google Scholar PubMed

[38] Polakis, P. Wnt signaling and cancer. Genes Dev. 14 (2000) 1837–1851. Search in Google Scholar

[39] Nemajerova, A., Erster, S. and Moll, U.M. The post-translational phosphorylation and acetylation modification profile is not the determining factor in targeting endogenous stress-induced p53 to mitochondria. Cell Death Differ. 12 (2005) 197–200. http://dx.doi.org/10.1038/sj.cdd.440152610.1038/sj.cdd.4401526Search in Google Scholar PubMed

[40] Guan, L., Huang, F., Li, Z., Han, B., Jiang, Q., Ren, Y., Yang, Y. and Xu, C. P53 transcription-independent activity mediates selenite-induced acute promyelocytic leukemia NB4 cell apoptosis. BMB Rep. 41 (2008) 745–750. http://dx.doi.org/10.5483/BMBRep.2008.41.10.74510.5483/BMBRep.2008.41.10.745Search in Google Scholar PubMed

[41] Park, B.S., Song, Y.S., Yee, S.B., Lee, B.G., Seo, S.Y., Park, Y.C., Kim, J.M., Kim, H. M. and Yoo, Y.H. Phospho-ser 15-p53 translocates into mitochondria and interacts with Bcl-2 and Bcl-xL in eugenol-induced apoptosis. Apoptosis 10 (2005) 193–200. http://dx.doi.org/10.1007/s10495-005-6074-710.1007/s10495-005-6074-7Search in Google Scholar PubMed

[42] Bijur, G.N. and Jope, R.S. Glycogen synthase kinase-3 beta is highly activated in nuclei and mitochondria. Neuroreport 14 (2003) 2415–2419. http://dx.doi.org/10.1097/00001756-200312190-0002510.1097/00001756-200312190-00025Search in Google Scholar PubMed

[43] Talos, F., Petrenko, O., Mena, P. and Moll, U.M. Mitochondrially targeted p53 has tumor suppressor activities in vivo. Cancer Res. 65 (2005) 9971–9981. http://dx.doi.org/10.1158/0008-5472.CAN-05-108410.1158/0008-5472.CAN-05-1084Search in Google Scholar PubMed

Published Online: 2012-12-28
Published in Print: 2013-3-1

© 2012 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 24.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-012-0039-y/html
Scroll to top button