Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 1, 2006

Mouse model for analysis of non-MHC genes that influence allogeneic response: recombinant congenic strains of OcB/Dem series that carry identical H2 locus

  • Helena Havelková EMAIL logo , Vladimír Holáň , Igor Kárník and Marie Lipoldová
From the journal Open Life Sciences

Abstract

Alloreactivity is the strongest known primary immune response. Its clinical manifestations are graft rejection, graft-versus-host disease and graft-versus-leukemia effect. The strongest stimulation by allogeneic cells is due to incompatibility at the major histocompatibility complex (MHC) genes. However, the non-MHC genes also participate in allogeneic response. Here we present a mouse model for study of the role of non-MHC genes in regulation of alloreactivity and show that they besides encoding antigens also regulate the responsiveness. Recombinant congenic strains (RCS) of O20/A (O20)-c-B10.O20/Dem (OcB/Dem) series have been derived from the parental strains O20 and B10.O20, which carry identical MHC haplotypes (H2pz) and therefore their differences in alloantigen response depend only on non-MHC genes. We have tested a MLR response by spleen cells of the strains O20, B10.O20, and 16 OcB/Dem strains through stimulation by cells from strains C57BL/10 (H2b), BALB/c (H2d), CBA (H2k), and DBA/1 (H2q) alloantigens. Proliferative response of O20, B10.O20 and OcB/Dem strains to these four alloantigens exhibited a similar but not completely identical pattern of reactivity. The responses to different alloantigens were highly correlated: C57BL/10-BALB/c r = 0.87, C57BL/10-CBA r = 0.84, C57BL/10-DBA/1 r = 0.83. Cluster analysis of the responses by O20, B10.O20, and OcB mice identified groups of strains with distinct patterns of response. This data shows that two main types of genes influence MLR: 1. structural genes for major and minor alloantigens and 2. genes regulating T-cell receptor signal transduction or mediating costimulatory signals by antigen-presenting cells.

[1] S. Friedman, D. Sillcocks and H. Cantor: “Alloreactivity of an OVA-specific T-cell clone. I. Stimulation by class II MHC and novel non-MHC B-cell determinants”, Immunogenetics, Vol. 26, (1987), pp. 193–203. http://dx.doi.org/10.1007/BF0034651210.1007/BF00346512Search in Google Scholar

[2] T.E. Starzl, T.L. Marchioro, J.H. Holmes, G. Hermann, R.S. Brittain, O.H. Stonington, D.W. Talmage and W.R. Waddell: “Renal homografts in patients with major donor-recipient blood group incompatibilities”, Surgery, Vol. 55, (1964), pp. 195–200. Search in Google Scholar

[3] V. Lenhard, B. Hansen, D. Roelcke, K. Dreikorn, P. Wernet, H. Bockhorn, W. Fassbinder, R.F. Fetta, H. Wilms, B. Gumbel, F.W. Albert, R.W. Ewald, I. Sprenger-Klasen and S.F. Goldmann: “Influence of Lewis and other blood group systems in kidney transplantation”, Proc. Eur. Dial. Transplant. Assoc., Vol. 19, (1983), pp. 432–437. Search in Google Scholar

[4] J.C. Gluckman, C. Foucault, H. Beaufils, J. Luciani, J. Cartron and P.F. Frantz: “Rh antibodies after kidney transplantation”, Transplantation, Vol. 32, (1981), pp. 260–262. http://dx.doi.org/10.1097/00007890-198109000-0001610.1097/00007890-198109000-00016Search in Google Scholar

[5] E. Spierings, B. Wieles and E. Goulmy: “Minor histocompatibility antigens—big in tumour therapy”, Trends Immunol. Vol. 25, (2004), pp. 56–60. http://dx.doi.org/10.1016/j.it.2003.12.00210.1016/j.it.2003.12.002Search in Google Scholar

[6] A.J. Barrett, K. Rezvani, S. Solomon, A.M. Dickinson, X.N. Wang, G. Stark, H. Cullup, M. Jarvis, P.G. Middleton and N. Chao: “New developments in allotransplant immunology”, Hematology (Am. Soc. Hematol. Educ. Program), (2003), pp. 350-371. Search in Google Scholar

[7] S.M. Katz, M. Liebert, T. J. Gill III, H.W. Kunz, D.V. Cramer and R.D. Guttmann: “The relative roles of MHC and non-MHC genes in heart and skin allograft survival”, Transplantation, Vol. 36, (1983), pp. 96–101. Search in Google Scholar

[8] A.R. Youssef, C. Otley, P.W. Mathieson and R.M. Smith: “Role of CD4+ and CD8+ T cells in murine skin and heart allograft rejection across different antigenic desparities”, Transpl. Immunol., Vol. 13, (2004), pp. 297–304. http://dx.doi.org/10.1016/j.trim.2004.10.00510.1016/j.trim.2004.10.005Search in Google Scholar

[9] Z. Haskova, T.J. Sproule, D.C. Roopenian and A.B. Ksander: “An immunodominant minor histocompatibility alloantigen that initiates corneal allograft rejection”, Transplantation, Vol. 75, (2003), pp. 1368–1374. http://dx.doi.org/10.1097/01.TP.0000063708.26443.3B10.1097/01.TP.0000063708.26443.3BSearch in Google Scholar

[10] K. Rao, R.D. Lund, H.W. Kunz and T.J. Gill III: “The role of MHC and non-MHC antigens in the rejection of intracerebral allogeneic neural grafts”, Transplantation, Vol. 48, (1989), pp. 1018–1021. Search in Google Scholar

[11] B. Korngold and J. Sprent: “Lethal graft-versus-host disease after bone marrow transplantation across minor histocompatibility barriers in mice. Prevention by removing mature T cells from marrow”, J. Exp. Med., Vol. 148, (1978), pp. 1687–1698. http://dx.doi.org/10.1084/jem.148.6.168710.1084/jem.148.6.1687Search in Google Scholar

[12] C.S. Via and G.M. Shearer: “T-cell interactions in autoimmunity: insights from a murine model of graft-versus-host disease”, Immunol. Today, Vol. 9, (1988), pp. 207–213. http://dx.doi.org/10.1016/0167-5699(88)91215-710.1016/0167-5699(88)91215-7Search in Google Scholar

[13] I. Miconnet, T. Roger, M. Seman and M. Bruley-Rosset: “Critical role of endogenous Mtv in acute lethal graft-versus-host disease”, Eur. J. Immunol., Vol. 25, (1995), pp. 364–368. Search in Google Scholar

[14] S.C. Muluk, F.T. Hakim and G.M. Shearer: “Regulation of graft-versus-host reaction by Mlsa-reactive donor T cells”, Eur. J. Immunol., Vol. 22, (1992), pp. 1967–1973. Search in Google Scholar

[15] R.A. Mann, A.B. Singh, M. Singh and A.E. Jetzt: “The host response in graft-versus-host disease. II. The emergence of host protective cells is in part determined by background genomic compatibility”, Cell. Immunol., Vol. 151, (1993), pp. 39–51. http://dx.doi.org/10.1006/cimm.1993.122010.1006/cimm.1993.1220Search in Google Scholar PubMed

[16] H. Havelková, J. Badalová, P. Demant and M. Lipoldová: “A new type of genetic regulation of allogeneic response. A novel locus on mouse chromosome 4, Alan2 controls MLC reactivity to three different alloantigens: C57BL/10, BALB/c and CBA”, Genes Immun., Vol. 1, (2000), pp. 483–487. http://dx.doi.org/10.1038/sj.gene.636371110.1038/sj.gene.6363711Search in Google Scholar PubMed

[17] V. Holáň, H. Havelková, M. Krulová, P. Demant and M. Lipoldová: “A novel alloreactivity controlling locus, Alan1 mapped to mouse chromosome 17”, Immunogenetics, Vol. 51, (2000), pp. 755–757. http://dx.doi.org/10.1007/s00251000019710.1007/s002510000197Search in Google Scholar PubMed

[18] R.D. Allen, J.A. Dobkins, J.M. Harper and D.L. Slayback: “Genetics of graft-versus-host disease, I. A locus on chromosome 1 influences development of acute graft-versus-host disease in a major histocompatibility complex mismatched murine model”, Immunology, Vol. 96, (1999), pp. 254–261. http://dx.doi.org/10.1046/j.1365-2567.1999.00626.x10.1046/j.1365-2567.1999.00626.xSearch in Google Scholar PubMed PubMed Central

[19] L.D. Fast: “Identification of a single non-H2 gene regulating graft-versus-host disease response”, J. Immunol., Vol. 144 (1990), pp. 4177–4182. Search in Google Scholar

[20] J.M. Harper, D.L. Slayback, J.A. Dobkins and R.D. Allen: “A locus on chromosome 2 influences the development of acute graft-versus-host disease in a murine model”, Bone Marrow Transplant., Vol. 23, (1999), pp. 1183–1190. http://dx.doi.org/10.1038/sj.bmt.170177010.1038/sj.bmt.1701770Search in Google Scholar PubMed

[21] D.L. Slayback, J.A. Dobkins, J.M. Harper and R.D. Allen: “Genetic factors influencing the development of chronic graft-versus-host disease in a murine model”, Bone Marrow Transplant., Vol. 26, (2000), pp. 931–938. http://dx.doi.org/10.1038/sj.bmt.170266110.1038/sj.bmt.1702661Search in Google Scholar PubMed

[22] M. Rychlíková, P. Demant and P. Ivanyi: “The mixed lymphocyte reaction in H2K, H2D, and non-H2 incompatibility”, Biomedicine, Vol. 18, (1973), pp. 401–407. Search in Google Scholar

[23] M. Berger, P.J. Wettstein and R. Korngold: “T cell subsets involved in lethal graft-versus-host disease directed to immunodominant minor histocompatibility antigens”, Transplantation, Vol. 57, (1994), pp. 1095–1102. Search in Google Scholar

[24] M.A. Williams, J. Trambley, J. Ha, A.B. Adams, M.M. Durham, P. Rees, S.R. Cowan, T.C. Pearson and C.P. Larsen: “Genetic characterization of strain differences in the ability to mediate CD40/CD28-independent rejection of skin allografts”, J. Immunol., Vol. 165, (2000), pp. 6849–6857. Search in Google Scholar

[25] P. Demant and A.A.M. Hart: “Recombinant congenic strains: a new tool for analyzing genetic traits determined by more than one gene”, Immunogenetics, Vol. 24, (1986), pp. 416–422. http://dx.doi.org/10.1007/BF0037796110.1007/BF00377961Search in Google Scholar PubMed

[26] M. Lipoldová, M. Kosařová, A. Zajícová, V. Holáň, A.A.M. Hart, M. Krulová and P. Demant: “Separation of multiple genes controlling the T cell proliferative response to IL-2 and anti-CD3 using Recombinant Congenic Strains”, Immunogenetics, Vol. 41, (1995), pp. 301–311. http://dx.doi.org/10.1007/BF0017215510.1007/BF00172155Search in Google Scholar PubMed

[27] M. Kosařová, H. Havelková, M. Krulová, P. Demant and M. Lipoldová: “The production of two Th2 cytokines, interleukin-4 and interleukin-10, is controlled independently by locus Cypr1 and by loci Cypr2 and Cypr3 respectively”, Immunogenetics, Vol. 49, (1999), pp. 134–141. http://dx.doi.org/10.1007/s00251005047210.1007/s002510050472Search in Google Scholar PubMed

[28] H. Havelková, M. Kosařová, M. Krulová, P. Demant and M. Lipoldová: “T-cell proliferative response is controlled by loci Tria4 and Tria5 on mouse chromosomes 7 and 9”, Mamm. Genome, Vol. 10, (1999), pp. 670–674. http://dx.doi.org/10.1007/s00335990106910.1007/s003359901069Search in Google Scholar PubMed

[29] M. Lipoldová, H. Havelková, J. Badalová and P. Demant: “Novel loci controlling lymphocyte proliferative response to cytokines and their clustering with loci controlling autoimmune reactions, macrophage function, and lung tumor susceptibility”, Int. J. Cancer, Vol. 114, (2005), pp. 394–399. http://dx.doi.org/10.1002/ijc.2073110.1002/ijc.20731Search in Google Scholar PubMed

[30] R.J. Fijneman, M. Vos, J. Berkhof, P. Demant and G. Kraal: “Genetic analysis of macrophage characteristics as a tool to identify tumor susceptibility genes: mapping of three macrophage-associated risk inflammatory factors, marif1, marif2, and marif3”, Cancer Res., Vol. 64, (2004), pp. 3458–3464. http://dx.doi.org/10.1158/0008-5472.CAN-03-376710.1158/0008-5472.CAN-03-3767Search in Google Scholar PubMed

[31] G.E. Franco, S.J. Litscher, T.K. O’Neil, M. Piette, P. Demant and R.D. Blank: “Dual energy X ray absorptiometry of ex vivo HcB/Dem mouse long bones: left are denser than right”, Calcif. Tissue Int., Vol. 76, (2005) pp. 26–31. http://dx.doi.org/10.1007/s00223-004-0073-510.1007/s00223-004-0073-5Search in Google Scholar PubMed

[32] V.V. Colinayo, J.H. Qiao, P. Demant, K. Krass, A.J. Lusis and T.A. Drake: “Genetic characterization of the Dyscalc locus”, Mamm. Genome, Vol. 13, (2002), pp. 283–288. http://dx.doi.org/10.1007/s00335-001-2148-110.1007/s00335-001-2148-1Search in Google Scholar PubMed

[33] P. Demant, M. Lipoldová and M. Svobodová: “Resistance to Leishmania major in mice”, Science, Vol. 274, (1996), pp. 1392–1393. http://dx.doi.org/10.1126/science.274.5291.139210.1126/science.274.5291.1392Search in Google Scholar

[34] M. Lipoldová, M. Svobodová, M. Krulová, H. Havelková, J. Badalová, E. Nohýnková, V. Holáň, A.A.M. Hart, P. Volf and P. Demant: “Susceptibility to Leishmania major infection in mice: multiple loci and heterogeneity of immunopathological phenotypes”, Genes Immun., Vol. 1, (2000), pp. 200–206. http://dx.doi.org/10.1038/sj.gene.636366010.1038/sj.gene.6363660Search in Google Scholar PubMed

[35] M. Lipoldová, M. Svobodová, H. Havelková, M. Krulová, J. Badalová, E. Nohýnková, A.A.M. Hart, D. Schlegel, P. Volf and P. Demant: “Mouse genetic model for clinical and immunological heterogeneity of leishmaniasis”, Immunogenetics, Vol. 54, (2002), pp. 174–183. http://dx.doi.org/10.1007/s00251-002-0439-710.1007/s00251-002-0439-7Search in Google Scholar PubMed

[36] V. Vladimirov, J. Badalová, M. Svobodová, H. Havelková, A.A.M. Hart, H. Blažková, P. Demant and M. Lipoldová: “Different genetic control of cutaneous and visceral disease after Leishmania major infection in mouse”, Infect. Immun., Vol. 71, (2003), pp. 2041–2046. http://dx.doi.org/10.1128/IAI.71.4.2041-2046.200310.1128/IAI.71.4.2041-2046.2003Search in Google Scholar PubMed PubMed Central

[37] R.J.A. Fijneman, S.S. de Vries, R.C. Jansen and P. Demant: “Complex interactions of new quantitative trait loci, Sluc1, Sluc2, Sluc3 and Sluc4 that influence susceptibility to lung cancer in the mouse”, Nature Genet., Vol. 14, (1996), pp. 465–467. http://dx.doi.org/10.1038/ng1296-46510.1038/ng1296-465Search in Google Scholar PubMed

[38] T. van Wezel, A.P. Stassen, C.J. Moen, A.A.M. Hart, M.A. van der Valk and P. Demant: “Gene interaction and single gene effects in colon tumour susceptibility in mice”, Nat. Genet., Vol. 14, (1996), pp. 468–470. http://dx.doi.org/10.1038/ng1296-46810.1038/ng1296-468Search in Google Scholar PubMed

[39] P. Demant: “Cancer susceptibility in the mouse: genetics, biology and implications for human cancer”, Nat. Rev. Genet., Vol. 4, (2003), pp. 721–734. http://dx.doi.org/10.1038/nrg115710.1038/nrg1157Search in Google Scholar PubMed

[40] J.S. Bodnar, A. Chatterjee, L.W. Castellani, D.A. Ross, J. Ohmen, J. Cavalcoli, C. Wu, K.M. Dains, J. Catanese, M. Chu, S.S. Sheth, K. Charugundla, P. Demant, D.B. West, P. de Jong and A.J. Lusis: “Positional cloning of the combined hyperlipidemia gene Hyplip1”, Nat. Genet., Vol. 30, (2002), pp. 110–116. http://dx.doi.org/10.1038/ng81110.1038/ng811Search in Google Scholar PubMed PubMed Central

[41] A.J. Van Oosterhout, P.V. Jeurink, P.C. Groot, G.A. Hofman, F.P. Nijkamp and P. Demant: “Genetic analysis of antigen-induced airway manifestations of asthma using recombinant congenic mouse strains”, Chest, Vol. 121, (2002) p. 13S. http://dx.doi.org/10.1378/chest.121.3_suppl.13S10.1378/chest.121.3_suppl.13SSearch in Google Scholar PubMed

[42] V. Holáň, M. Lipoldová and P. Demant: “Identical genetic control of MLC reactivity to different MHC incompatibilities, independent of production and response to IL-2”, Immunogenetics, Vol. 44, (1996), pp. 27–35. http://dx.doi.org/10.1007/s00251005008610.1007/BF02602654Search in Google Scholar PubMed

[43] A. Czarnomska and P. Demant: “H-2 antigenic specificities controlled by the translocation chromosome T190”, Transplantation, Vol. 30, (1980), pp. 69–72. Search in Google Scholar

[44] J. Klein: “Immunologically important loci”, In: M. Lyon and A.G. Searle (eds.): Genetic variants and strains of the laboratory mouse, 2nd ed., Oxford University Press, Oxford, 1989, pp. 797–825. Search in Google Scholar

[45] A.P.M. Stassen, P.C. Groot, J.T. Eppig and P. Demant: “Genetic composition of the recombinant congenic strains” Mamm. Genome, Vol. 7, (1996), pp. 55–58. http://dx.doi.org/10.1007/s00335990001310.1007/s003359900013Search in Google Scholar PubMed

[46] J.H. Ward: “Hierarchical Grouping to Optimize an Objective Function”, J. Am. Stat. Assoc., Vol. 58, (1963), pp. 236–244. http://dx.doi.org/10.2307/228296710.1080/01621459.1963.10500845Search in Google Scholar

[47] J.A. Hartigan: Clustering algorithms, J. Wiley, New York, 1975. Search in Google Scholar

[48] R.J. Fijneman, M.A. van der Valk and P. Demant: “Genetics of quantitative and qualitative aspects of lung tumorigenesis in the mouse: multiple interacting Susceptibility to lung cancer (Sluc) genes with large effects”, Exp. Lung Res., Vol. 24, (1998), pp. 419–436. http://dx.doi.org/10.3109/0190214980908737810.3109/01902149809087378Search in Google Scholar PubMed

Published Online: 2006-3-1
Published in Print: 2006-3-1

© 2006 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 22.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-006-0002-x/html
Scroll to top button