Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter September 5, 2006

Current concepts in apoptosis: The physiological suicide program revisited

  • Indrajit Chowdhury EMAIL logo , Binu Tharakan and Ganapathy Bhat

Abstract

Apoptosis, or programmed cell death (PCD), involves a complex network of biochemical pathways that normally ensure a homeostatic balance between cellular proliferation and turnover in nearly all tissues. Apoptosis is essential for the body, as its deregulation can lead to several diseases. It plays a major role in a variety of physiological events, including embryonic development, tissue renewal, hormone-induced tissue atrophy, removal of inflammatory cells, and the evolution of granulation tissue into scar tissue. It also has an essential role in wound repair. The various cellular and biochemical mechanisms involved in apoptosis are not fully understood. However, there are two major pathways, the extrinsic pathway (receptor-mediated apoptotic pathway) and the intrinsic pathway (mitochondria-mediated apoptotic pathway), which are both well established. The key component in both is the activation of the caspase cascade. Caspases belong to the family of proteases that ultimately, by cleaving a set of proteins, cause disassembly of the cell. Although the caspase-mediated proteolytic cascade represents a central point in the apoptotic response, its initiation is tightly regulated by a variety of other factors. Among them, Bcl-2 family proteins, TNF and p53 play pivotal roles in the regulation of caspase activation and in the regulation of apoptosis. This review summarizes the established concepts in apoptosis as a physiological cell suicide program, highlighting the recent and significant advances in its study.

[1] Vaux, D.L. and Korsmeyer, S.J. Cell death in development. Cell 96 (1999) 245–254. http://dx.doi.org/10.1016/S0092-8674(00)80564-410.1016/S0092-8674(00)80564-4Search in Google Scholar

[2] Kerr, J.F.R. An electron-microscope study of liver cell necrosis due to Albitocin. Pathology 2 (1970) 251–259. Search in Google Scholar

[3] Kerr, J.F.R. Shrinkage necrosis: A distinct mode of cellular death. J. Path. 105 (1971) 13–20. http://dx.doi.org/10.1002/path.171105010310.1002/path.1711050103Search in Google Scholar

[4] Kerr, J.F. Wyllie, A.H. and Currie, A.R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26 (1972) 239–257. Search in Google Scholar

[5] Thompson, C.B. Apoptosis in the pathogenesis and treatment of disease. Science 267 (1995) 1456–1462. http://dx.doi.org/10.1126/science.787846410.1126/science.7878464Search in Google Scholar

[6] Wang, X. The expanding role of mitochondria in apoptosis. Genes Dev. 15 (2001) 2922–2933. Search in Google Scholar

[7] Hortvitz, H.R. Worm, life and death (Nobel lecture). Chembiochem. 4 (2003) 697–711. http://dx.doi.org/10.1002/cbic.20030061410.1002/cbic.200300614Search in Google Scholar

[8] Danial, N.N. and Krosmeyer, S.J. Cell death: critical control points. Cell 116 (2004) 205–219. http://dx.doi.org/10.1016/S0092-8674(04)00046-710.1016/S0092-8674(04)00046-7Search in Google Scholar

[9] Schwartzman, R.A. and Cidlowski, J.A. Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocr. Rev. 14 (1993) 133–51. http://dx.doi.org/10.1210/er.14.2.13310.1210/er.14.2.133Search in Google Scholar

[10] Cohen, J.J. Apoptosis. Immunol. Today 14 (1993) 126–130. http://dx.doi.org/10.1016/0167-5699(93)90214-610.1016/0167-5699(93)90214-6Search in Google Scholar

[11] Vaux, D.L. and Strasser, A. The molecular biology of apoptosis. Proc. Natl. Acad. Sci. USA 93 (1996) 2239–2244. http://dx.doi.org/10.1073/pnas.93.6.223910.1073/pnas.93.6.2239Search in Google Scholar PubMed PubMed Central

[12] Levine, B. and Yuan, J. Autophagy in cell death: an innocent convict? J. Clin. Invest. 115 (2005) 2679–2688. http://dx.doi.org/10.1172/JCI2639010.1172/JCI26390Search in Google Scholar PubMed PubMed Central

[13] Clarke, P.G. Developmental cell death: morphological diversity and multiple mechanisms. Anat. Embryol. (Berl.) 181 (1990) 195–213. http://dx.doi.org/10.1007/BF0017461510.1007/BF00174615Search in Google Scholar PubMed

[14] Bursch, W. The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ. 8 (2001) 569–581. http://dx.doi.org/10.1038/sj.cdd.440085210.1038/sj.cdd.4400852Search in Google Scholar

[15] Majno, G. and Joris, I. Apoptosis, oncosis and necrosis. An overview of cell death. Am. J. Pathol. 146 (1995) 3–15. Search in Google Scholar

[16] Broker, L.E., Kruyt, F. and Giaccone, G. Cell death independent of caspases: a review. Clin. Cancer Res. 11 (2005) 3155–3162. http://dx.doi.org/10.1158/1078-0432.CCR-04-222310.1158/1078-0432.CCR-04-2223Search in Google Scholar

[17] Castedo, M., Perfettini, J.L., Roumier, T., Andreau, K., Medema, R. and Kroemer, G. Cell death by mitotic catastrophe: a molecular definition. Oncogene 23 (2004) 2825–2837. http://dx.doi.org/10.1038/sj.onc.120752810.1038/sj.onc.1207528Search in Google Scholar

[18] Earnshaw, W.C. Nuclear changes in apoptosis. Cur. Opin. Cell Biol. 7 (1995) 337–343. http://dx.doi.org/10.1016/0955-0674(95)80088-310.1016/0955-0674(95)80088-3Search in Google Scholar

[19] Au, J.L., Panchal, N., Li, D. and Gan, Y. Apoptosis: a new pharmacodynamic endpoint. Pharm. Res. 14 (1997) 1659–1671. http://dx.doi.org/10.1023/A:101215920855910.1023/A:1012159208559Search in Google Scholar

[20] Gong, J., Traganos, F. and Darsynkiewicz, Z. A selective procedure for DNA extraction from apoptotic cells applicable for gel electrophoresis and flow cytometry. Anal. Biochem. 218 (1994) 314–319. http://dx.doi.org/10.1006/abio.1994.118410.1006/abio.1994.1184Search in Google Scholar

[21] Bortner, C.D., Oldenburg, N.D. and Cidlowski, J.A. The role of DNA fragmentation in apoptosis. Trends Cell Biol. 5 (1995) 21–26. http://dx.doi.org/10.1016/S0962-8924(00)88932-110.1016/S0962-8924(00)88932-1Search in Google Scholar

[22] Dive, C., Gregory, C.D., Phopps, D.J., Evans, D.L., Milner, A.E. and Wyllie, A.H. Analysis and discrimination of necrosis and apoptosis (programmed cell death) by multiparameter flow cytometry. Biochem. Biophys. Acta 1133 (1992) 275–285. http://dx.doi.org/10.1016/0167-4889(92)90048-G10.1016/0167-4889(92)90048-GSearch in Google Scholar

[23] Hamel, W., Dazin, P. and Israel, M. Adaptation of a simple flow cytometric assay to identify different stages during apoptosis. Cytometry 25 (1996) 173–181. http://dx.doi.org/10.1002/(SICI)1097-0320(19961001)25:2<173::AID-CYTO6>3.0.CO;2-I10.1002/(SICI)1097-0320(19961001)25:2<173::AID-CYTO6>3.0.CO;2-ISearch in Google Scholar

[24] Gavrieli, Y., Sherman, Y. and Benassan, S.A. Identification of programmed cell death in situ via special labeling of nuclear DNA fragments. J. Cell Biol. 119 (1992) 493–501. http://dx.doi.org/10.1083/jcb.119.3.49310.1083/jcb.119.3.493Search in Google Scholar

[25] Charriaut-Malangue, C. and Ben-Ari, Y. A cautionary note on the use of the TUNEL stain to determine apoptosis. Neuroreport 7 (1995) 61–64. Search in Google Scholar

[26] Lecoeur, H., Prevost, M.C. and Gougeon, M.L. Oncosis is associated with exposure of phosphatidylserine residues on the outside layer of the plasma membrane: a reconsideration of the specificity of the annexin V/propidium iodide assay. Cytometry 44 (2001) 65–72. http://dx.doi.org/10.1002/1097-0320(20010501)44:1<65::AID-CYTO1083>3.0.CO;2-Q10.1002/1097-0320(20010501)44:1<65::AID-CYTO1083>3.0.CO;2-QSearch in Google Scholar

[27] Alnemri, E.S., Livingston, D.W., Nicholson, D.W., Salvesen, G., Thornberry, N.A., Wong, W.W. and Yuan, J. Human ICE/CED-3 protease nomenclature. Cell 87 (1996) 171. http://dx.doi.org/10.1016/S0092-8674(00)81334-310.1016/S0092-8674(00)81334-3Search in Google Scholar

[28] Salvesen, G.S. and Dixit, V.M. Caspases: intracellular signaling by proteolysis. Cell 91 (1997) 443–446. http://dx.doi.org/10.1016/S0092-8674(00)80430-410.1016/S0092-8674(00)80430-4Search in Google Scholar

[29] Lavarik, I.N., Golks, A. and Krammer, P.H. Caspases: pharmacological manipulation of cell death. J. Clin. Invest. 115 (2005) 2665–2672. http://dx.doi.org/10.1172/JCI2625210.1172/JCI26252Search in Google Scholar

[30] Yuan, J., Shahan, S., Ledoux, S., Ellis, H.M. and Horvitz, H.R. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta converting enzyme. Cell 75 (1993) 641–652. http://dx.doi.org/10.1016/0092-8674(93)90485-910.1016/0092-8674(93)90485-9Search in Google Scholar

[31] Shi, Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell 9 (2002) 459–470. http://dx.doi.org/10.1016/S1097-2765(02)00482-310.1016/S1097-2765(02)00482-3Search in Google Scholar

[32] Yan, N. and Shi, Y. Mechanisms of apoptosis through structural biology. Ann. Rev. Cell Dev. Biol. 21 (2005) 35–56. http://dx.doi.org/10.1146/annurev.cellbio.21.012704.13104010.1146/annurev.cellbio.21.012704.131040Search in Google Scholar

[33] Stennicke, H.R. and Salvesen, G.S. Properties of the caspases. Biochim. Biophys. Acta 1387 (1998) 17–31. Search in Google Scholar

[34] Grutter, M.G. Caspases: Key players in programmed cell death. Curr. Opin. Struct. Biol. 10 (2000) 649–655. http://dx.doi.org/10.1016/S0959-440X(00)00146-910.1016/S0959-440X(00)00146-9Search in Google Scholar

[35] Roth, K.A. Caspases, apoptosis, and Alzheimer’s disease: causation, correlation, and confusion. J. Neuropathol. Exp. Neurol. 60 (2001) 829–838. 10.1093/jnen/60.9.829Search in Google Scholar

[36] Cohen, G.M. Caspases: the executioners of apoptosis. Biochem. J. 326 (1997) 1–16. Search in Google Scholar

[37] Marshman, E., Ottewell, P.D., Potten, C.S. and Watson, A.J. Caspase activation during spontaneous and radiation-induced apoptosis in the murine intestine. J. Pathol. 195 (2001) 285–292. http://dx.doi.org/10.1002/path.96710.1002/path.967Search in Google Scholar

[38] Clerk, A., Cole, S.M., Cullingford, T.E., Harrison, J.C., Jormakka, M. and Valks, D.M. Regulation of cardiac myocyte cell death. Pharmacol. Ther. 97 (2003) 223–61. http://dx.doi.org/10.1016/S0163-7258(02)00339-X10.1016/S0163-7258(02)00339-XSearch in Google Scholar

[39] Nagata, S. Apoptotic DNA fragmentation. Exp. Cell Res. 256 (2000) 12–18. http://dx.doi.org/10.1006/excr.2000.483410.1006/excr.2000.4834Search in Google Scholar

[40] Earnshaw, W.C., Martins, L.M. and Kaufmann, S.H. Mammalian caspases: Structure, activation, substrates and functions during apoptosis. Ann. Rev. Biochem. 68 (1999) 383–424. http://dx.doi.org/10.1146/annurev.biochem.68.1.38310.1146/annurev.biochem.68.1.383Search in Google Scholar

[41] Liu, X., Kim, C.N., Yang, J., Jemmerson, R. and Wang, X. Induction of apoptosis program in cell-free extracts: Requirement for dATP and cytochrome c. Cell 86 (1996) 147–157. http://dx.doi.org/10.1016/S0092-8674(00)80085-910.1016/S0092-8674(00)80085-9Search in Google Scholar

[42] Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., and Nagata, S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391 (1998) 43–50. http://dx.doi.org/10.1038/3411210.1038/34112Search in Google Scholar

[43] Coleman, M.L., Sahai, E.A., Yeo, M., Bosch, M., Dewar, A. and Olson, M.F. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat. Cell Biol. 3 (2001) 339–345. http://dx.doi.org/10.1038/3507000910.1038/35070009Search in Google Scholar

[44] Martinon, F. and Tschopp, J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory disease. Cell 117 (2004) 561–574. http://dx.doi.org/10.1016/j.cell.2004.05.00410.1016/j.cell.2004.05.004Search in Google Scholar

[45] Roy, N., Mahadevan, M.S., McLean, M., Shutler, G., Yaraghi, Z., Farahani, R., Baird, S., Benser-Johnson, A., Lefebvre, C., Kang, X., Salih, M., Aubry, H., Tamai, K., Guan, X., Ioannou, P., Crawford, T.O., de Jong, P.J., Surh, L., Ikeda, J.E., Korneluk, R.G. and Mac Kenzie, A. The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 80 (1995) 167–178. http://dx.doi.org/10.1016/0092-8674(95)90461-110.1016/0092-8674(95)90461-1Search in Google Scholar

[46] Cheng, E.H., Levine, B., Boise, L.H., Thompson, C.B. and Hardwick, J.M. Bax-independent inhibition of apoptosis by Bcl-XL. Nature 379 (1996) 554–556. http://dx.doi.org/10.1038/379554a010.1038/379554a0Search in Google Scholar PubMed

[47] Salvesen, G.S. and Duckett, C.S. IAP proteins: blocking the road to death’s door. Nat. Rev. Mol. Cell Biol. 3 (2002) 401–410. http://dx.doi.org/10.1038/nrm83010.1038/nrm830Search in Google Scholar PubMed

[48] Deveraux, Q.L. and Reed, J.C. IAP family proteins: suppressors of apoptosis. Genes Dev. 13 (1999) 239–252. 10.1101/gad.13.3.239Search in Google Scholar

[49] Ekert, P.G., Silke, J. and Vaux, D.L. Caspase inhibitor. Cell Death Differ. 6 (1999) 1081–1086. http://dx.doi.org/10.1038/sj.cdd.440059410.1038/sj.cdd.4400594Search in Google Scholar

[50] Birnbaum, M.J., Clem, R.J. and Miller, L.K. An apoptosis inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs. J. Virol. 68 (1994) 2521–2528. Search in Google Scholar

[51] Deveraux, Q.L., Takahashi, R., Salvesen, G.S. and Reed, J.C. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388 (1997) 300–304. http://dx.doi.org/10.1038/4090110.1038/40901Search in Google Scholar

[52] Deveraux, Q.L., Roy, H.R., Stennicke, H.R., Van Arsdale, T., Zhou, Q., Srinivasula, M., Alnemri, E.S., Salvesen, G.S. and Reed, J.C. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J. 17 (1998) 2215–2223. http://dx.doi.org/10.1093/emboj/17.8.221510.1093/emboj/17.8.2215Search in Google Scholar

[53] Roy, N., Deveraux, Q.I., Takashashi, R., Salvesen, G.S. and Reed, J.C. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J. 16 (1997) 6914–6925. http://dx.doi.org/10.1093/emboj/16.23.691410.1093/emboj/16.23.6914Search in Google Scholar

[54] Miller, L.K. An exegesis of IAPs: salvation and surprises from BIR motifs. Trends Cell Biol. 9 (1999) 323–328. http://dx.doi.org/10.1016/S0962-8924(99)01609-810.1016/S0962-8924(99)01609-8Search in Google Scholar

[55] Xu, G., Cirilli, M., Huang, Y., Rich, R.L., Myszka, D.G. and Wu, H. Covalent inhibition revealed by the crystal structure of the caspase-8/p35 complex. Nature 410 (2001) 494–497. http://dx.doi.org/10.1038/3506860410.1038/35068604Search in Google Scholar

[56] Renatus, M., Zhou, Q., Stennicke, H.R., Snipas, S.J., Turk, D., Bankston, L.A., Liddington, R.C. and Salvesen, G.S. Crystal structure of the apoptotic suppressor CrmA in its cleaved form. Structure Fold. Des. 8 (2000) 789–797. http://dx.doi.org/10.1016/S0969-2126(00)00165-910.1016/S0969-2126(00)00165-9Search in Google Scholar

[57] Sato, T., Irie, S., Krajewski, S. and Reed, J.C. Cloning and sequencing of a cDNA encoding the rat Bcl2 protein. Gene 140 (1994) 291–292. http://dx.doi.org/10.1016/0378-1119(94)90561-410.1016/0378-1119(94)90561-4Search in Google Scholar

[58] Adams, J.M. and Cory, S. The Bcl-2 protein family: Arbiters of cell survival. Science 281 (1998) 1322–26. http://dx.doi.org/10.1126/science.281.5381.132210.1126/science.281.5381.1322Search in Google Scholar PubMed

[59] Burlacu, A. Regulation of apoptosis by Bcl-2 family proteins. J. Cell. Mol. Med. 7 (2003) 249–257. Search in Google Scholar

[60] Tsujimoto, Y., Cossman, J., Jaffe, E. and Croce, C.M. Involvement of the Bcl-2 gene in human follicular lymphoma. Science 228 (1985) 1440–1443. http://dx.doi.org/10.1126/science.387443010.1126/science.3874430Search in Google Scholar

[61] Cory, S. and Adams, J.M. The Bcl2 family: regulators of the cellular life or death switch. Nat. Rev. Cancer 2 (2002) 647–656. http://dx.doi.org/10.1038/nrc88310.1038/nrc883Search in Google Scholar

[62] Puthalakath, H. and Strasser, A. Keeping killers on a tight leash: transcriptional and post-transcriptional control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ. 9 (2002) 505–512. http://dx.doi.org/10.1038/sj.cdd.440099810.1038/sj.cdd.4400998Search in Google Scholar

[63] Zhu, W., Cowie, A., Wasfy, G.W., Penn, L.Z., Leber, B. and Andrew, D.W. Bcl2 mutants with restricted sub cellular location reveal spatially distinct pathways for apoptosis in different cell types. EMBO J. 15 (1996) 4130–4141. Search in Google Scholar

[64] Griffiths, G.J., Dubrez, L., Morgan, C.P., Jones, N.A., Whitehouse, J., Corfe, B.M., Dive, C. and Hickman, J.A. Cell damage-induced conformational changes of the pro-apoptotic protein Bak in-vivo precede the onset of apoptosis. J. Cell Biol. 144 (1999) 903–914. http://dx.doi.org/10.1083/jcb.144.5.90310.1083/jcb.144.5.903Search in Google Scholar

[65] Krajewski, S., Tanaka, S., Takayama, S., Schibler, M.J., Fenton, W. and Reed, J.C. Investigation of the Bcl-2 oncoprotein: Residence in the nuclear envelop, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res. 53 (1993) 4701–4714. Search in Google Scholar

[66] Nguyen, M., Millar, D.G., Yong, V.W., Korsmeyer, S.J. and Shore, G.C. Targeting of Bcl-2 to the mitochondrial outer membrane by a COOH-terminal signal anchor sequence. J. Biol. Chem. 268 (1993) 25265–25268. Search in Google Scholar

[67] Hussein, M.R., Haemel, A.K. and Wood, G.S. Apoptosis and melanoma: molecular mechanism. J. Pathol. 199 (2003) 275–288. http://dx.doi.org/10.1002/path.130010.1002/path.1300Search in Google Scholar

[68] Gross, A., Mcdonnell, J.M. and Krosmeyer, S.J. Bcl-2 family members and the mitochondria in apoptosis. Genes Develop. 13 (1999) 1899–1911. Search in Google Scholar

[69] Erster, S. and Moll, U.M. Stress induced p53 runs a transcription-independent death program. Biochem. Biophys. Res. Commun. 331 (2005) 843–850. http://dx.doi.org/10.1016/j.bbrc.2005.03.18710.1016/j.bbrc.2005.03.187Search in Google Scholar

[70] Owen-Schaub, L.B., Angelo, L.S., Radinsky, R., Ware, C.F., Gesner, T.G. and Bartos, D.P. Soluble FAS/APO-1 in tumor cells: a potential regulator of apoptosis? Cancer Lett. 94 (1995) 1–8. http://dx.doi.org/10.1016/0304-3835(95)03834-J10.1016/0304-3835(95)03834-JSearch in Google Scholar

[71] Park, D.S., Stefanis, L. and Greene, L.A. Ordering the multiple pathways of apoptosis. Trends Cardiovasc. Med. 7 (1997) 294–299. http://dx.doi.org/10.1016/S1050-1738(97)00090-X10.1016/S1050-1738(97)00090-XSearch in Google Scholar

[72] Duensing, A. and Duensing, S. Guilt by association? p53 and development of aneuploidy in cancer. Biochem. Biophys. Res. Commun. 331 (2005) 694–700. http://dx.doi.org/10.1016/j.bbrc.2005.03.15710.1016/j.bbrc.2005.03.157Search in Google Scholar PubMed

[73] Aggarwal, B.B. Tumor necrosis factor receptor associated signalling molecules and their role in activation of apoptosis, JNK and NF-kB. Ann. Rheum. Dis. 59 (2000) 6–16. http://dx.doi.org/10.1136/ard.59.suppl_1.i610.1136/ard.59.suppl_1.i6Search in Google Scholar PubMed PubMed Central

[74] Idriss, H.T. and Naismith, J.H. TNF alpha and the TNF receptor super family: structure-function relationship(s). Micro. Res. Tech. 50 (2000) 184–195. http://dx.doi.org/10.1002/1097-0029(20000801)50:3<184::AID-JEMT2>3.0.CO;2-H10.1002/1097-0029(20000801)50:3<184::AID-JEMT2>3.0.CO;2-HSearch in Google Scholar

[75] MacEwan, D.J. TNF ligands and receptors — a matter of life and death. Br. J. Pharm. 135 (2002) 855–875. http://dx.doi.org/10.1038/sj.bjp.070454910.1038/sj.bjp.0704549Search in Google Scholar

[76] Wajant, H., Pfizenmaier, K. and Scheurich, P. Tumor necrosis factor signaling. Cell Death Diff. 10 (2003) 45–65. http://dx.doi.org/10.1038/sj.cdd.440118910.1038/sj.cdd.4401189Search in Google Scholar

[77] Hussein, M.R., Haemel, A.K. and Wood, G.S. p53 related pathways and the molecular pathogenesis of melanoma. Eur. J. Cancer Prev. 12 (2003) 93–100. http://dx.doi.org/10.1097/00008469-200304000-0000210.1097/00008469-200304000-00002Search in Google Scholar

[78] Green, D. and Reed, J. Mitochondria and apoptosis. Science 281 (1998) 1309–1312. http://dx.doi.org/10.1126/science.281.5381.130910.1126/science.281.5381.1309Search in Google Scholar

[79] Tsujimoto, Y. and Shimizu, S. The voltage-dependent anion channel: an essential player in apoptosis. Biochimie 84 (2002) 187–193. http://dx.doi.org/10.1016/S0300-9084(02)01370-610.1016/S0300-9084(02)01370-6Search in Google Scholar

[80] Reed, J.C. Bcl-2 family proteins. Oncogene 17 (1998) 3225–3236. http://dx.doi.org/10.1038/sj.onc.120259110.1038/sj.onc.1202591Search in Google Scholar

[81] Shimizu, S., Narita, M. and Tsujimoto, Y. Bcl-2 family protein regulates the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399 (1999) 483–487. http://dx.doi.org/10.1038/2095910.1038/20959Search in Google Scholar

[82] Ashkenazi, A. and Dixit, V.M. Death receptors: signaling and modulation. Science 281 (1998) 1305–1308. http://dx.doi.org/10.1126/science.281.5381.130510.1126/science.281.5381.1305Search in Google Scholar

[83] Schulze-Osthoff, K., Ferrari, D., Los, M., Wesselborg, S. and Peter, M.E. Apoptosis signaling by death receptors. Eur. J. Biochem. 254 (1998) 439–459. http://dx.doi.org/10.1046/j.1432-1327.1998.2540439.x10.1046/j.1432-1327.1998.2540439.xSearch in Google Scholar

[84] Peter, M.E. and Krammer, P.H. Mechanisms of CD95 (APO-1/ Fas)-mediated apoptosis. Curr. Opin. Immunol. 10 (1998) 545–551. http://dx.doi.org/10.1016/S0952-7915(98)80222-710.1016/S0952-7915(98)80222-7Search in Google Scholar

[85] Peter, M.E. and Krammer, P.H. The CD95 (APO-1/ Fas) DISC and beyond. Cell Death Differ. 10 (2003) 26–35. http://dx.doi.org/10.1038/sj.cdd.440118610.1038/sj.cdd.4401186Search in Google Scholar

[86] Li, H., Zhu, H., Xu, C.J. and Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94 (1998) 491–501. http://dx.doi.org/10.1016/S0092-8674(00)81590-110.1016/S0092-8674(00)81590-1Search in Google Scholar

[87] Luo, X., Budihardjo, I., Zou, H., Slaughter, C. and Wang, X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94 (1998) 481–490. http://dx.doi.org/10.1016/S0092-8674(00)81589-510.1016/S0092-8674(00)81589-5Search in Google Scholar

[88] Chaudhary, P.M., Eby, M., Jasmin, A., Bookwalter, A., Murray, J. and Hood, L. Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-kappa B pathway. Immunity 7 (1997) 821–830. http://dx.doi.org/10.1016/S1074-7613(00)80400-810.1016/S1074-7613(00)80400-8Search in Google Scholar

[89] Stennicke, H.R., Jurgensmeier, J.M., Shin, H., Deveraux, Q., Wolf, B.B., Yang, X., Zhou, Q., Ellerby, H.M., Ellerby, L.M., Bredesen, D., Green, D.R., Reed, J.C., Froelich, C.J. and Salvesen, G. S. Procaspase-3 is a major physiologic target of caspase-8. J. Biol. Chem. 273 (1998) 27084–27090. http://dx.doi.org/10.1074/jbc.273.42.2708410.1074/jbc.273.42.27084Search in Google Scholar PubMed

[90] Scaffidi, C., Schmitz, I., Krammer, P.H. and Peter, M.E. The role of c-FLIP in modulation of CD95 induced apoptosis. J. Biol. Chem. 274 (1999) 1541–1548. http://dx.doi.org/10.1074/jbc.274.3.154110.1074/jbc.274.3.1541Search in Google Scholar PubMed

[91] Golks, A., Brenner, D., Fritsch, C., Krammer, P.H. and Lavrik, L.N. cFLIPR: a new regulator of death receptor-induced apoptosis. J. Biol. Chem. 280 (2005) 14507–14513. http://dx.doi.org/10.1074/jbc.M41442520010.1074/jbc.M414425200Search in Google Scholar PubMed

[92] Harris, S.L. and Levine, A.J. The p53 pathway: positive and negative feed back loops. Oncogene 24 (2005) 2899–2908. http://dx.doi.org/10.1038/sj.onc.120861510.1038/sj.onc.1208615Search in Google Scholar PubMed

[93] Li, F., Srinivasam, A., Wang, Y., Armstrong, R.C., Tomaselli, K.J. and Fritz, L.C. Cell-specific induction of apoptosis by microinjection of cytochrome c. J. Biol. Chem. 272 (1997) 30299–30305. http://dx.doi.org/10.1074/jbc.272.48.3029910.1074/jbc.272.48.30299Search in Google Scholar PubMed

[94] Hengartner, M.O. The biochemistry of apoptosis. Nature 407 (2000) 770–776. http://dx.doi.org/10.1038/3503771010.1038/35037710Search in Google Scholar PubMed

[95] Xu, C., Bailly-Maitre, B. and Reed, J.C. Endoplasmic reticulam stress: cell life and death decisions. J. Clin. Invest. 115 (2005) 2656–2664. http://dx.doi.org/10.1172/JCI2637310.1172/JCI26373Search in Google Scholar PubMed PubMed Central

[96] Hick, S.W. and Machamer, C.E. Golgi structure in stress sensing and apoiptosis. Biochem. Biophys. Acta 1744 (2005) 406–414. http://dx.doi.org/10.1016/j.bbamcr.2005.03.00210.1016/j.bbamcr.2005.03.002Search in Google Scholar PubMed

[97] Wu, Y., Tibrewal, N. and Brige, R.B. Phospohatidylserine recognition by phagocytes: a view to a kill. Trends Cell Biol. 16 (2006) 189–197. http://dx.doi.org/10.1016/j.tcb.2006.02.00310.1016/j.tcb.2006.02.003Search in Google Scholar PubMed

[98] Savill, J. Recognition and phagocytosis of cells undergoing apoptosis. Br. Med. Bull. 53 (1997) 491–508. Search in Google Scholar

Published Online: 2006-9-5
Published in Print: 2006-12-1

© 2006 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 15.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-006-0041-3/html
Scroll to top button