Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter July 27, 2013

The protective effect of crocin on the amyloid fibril formation of aβ42 peptide in vitro

  • Arezou Ghahghaei EMAIL logo , S. Bathaie , Hoda Kheirkhah and Elmira Bahraminejad

Abstract

Aβ is the main constituent of the amyloid plaque found in the brains of patients with Alzheimer’s disease. There are two common isoforms of Aβ: the more common form, Aβ40, and the less common but more amyloidogenic form, Aβ42. Crocin is a carotenoid from the stigma of the saffron flower and it has many medicinal properties, including antioxidant effects. In this study, we examined the potential of crocin as a drug candidate against Aβ42 amyloid formation. The thioflavin T-binding assay and electron microscopy were used to examine the effects of crocin on the extension and disruption of Aβ42 amyloids. To further investigate the relationship between crocin and Aβ42 structure, we analyzed peptide conformation using the ANS-binding assay and circular dichroism (CD) spectroscopy. An increase in the thioflavin T fluorescence intensity upon incubation revealed amyloid formation in Aβ42. It was found that crocin has the ability to prevent amyloid formation by decreasing the fluorescence intensity. Electron microscopy data also indicated that crocin decreased the amyloid fibril content of Aβ. The ANS-binding assay showed that crocin decreased the hydrophobic area in incubated Aβ42. CD spectroscopy results also showed that the peptide undergoes a structural change to α-helical and β-turn. Our study shows that the anti-amyloidogenic effect of crocin may be exerted not only by the inhibition of Aβ amyloid formation but also by the disruption of amyloid aggregates. Therefore, crocin could be essential in the search for therapies inhibiting aggregation or disrupting aggregation.

[1] Burns, A., Byrne, E.J. and Maurer, K. Alzheimer’s disease. Lancet 360 (1998) 163–165. http://dx.doi.org/10.1016/S0140-6736(02)09420-510.1016/S0140-6736(02)09420-5Search in Google Scholar

[2] Brookmeyer, R., Gray, S. and Kawas, C. Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am. J. Public Health 88 (1998) 1337–1342. http://dx.doi.org/10.2105/AJPH.88.9.133710.2105/AJPH.88.9.1337Search in Google Scholar

[3] Khalil, Z., Poliviou, H., Maynard, C.J., Beyreuther, K., Masters, C.L. and Li, Q.X. Mechanisms of peripheral microvascular dysfunction in transgenic mice overexpressing the Alzheimer’s disease amyloid Abeta protein. J. Alzheimer’s Dis. 4 (2002) 467–478. Search in Google Scholar

[4] Waldemar, G., Dubois, B., Emre, M., Georges, J., McKeith, I.G., Rossor, M., Scheltens, P., Tariska, P. and Winblad, B. Recommendations for the diagnosis and management of Alzheimer’s disease and other disorders associated with dementia: EFNS guideline. Eur. J. Neurol. 14 (2007) e1–e26. http://dx.doi.org/10.1111/j.1468-1331.2006.01605.x10.1111/j.1468-1331.2006.01605.xSearch in Google Scholar

[5] Veeranna, Kaji, T., Boland, B., Odrljin, T., Mohan, P., Basavarajappa, B.S., Peterhoff, C., Cataldo, A., Rudnicki, A., Amin, N., Li, B.S., Pant, H.C., Hungund, B.L., Arancio, O. and Nixon, R.A. Calpain mediates calcium-induced activation of the Erk1,2 MAPK pathway and cytoskeletal phosphorylation in neurons: relevance to Alzheimer’s disease. Am. J. Pathol. 165 (2004) 795–805. http://dx.doi.org/10.1016/S0002-9440(10)63342-110.1016/S0002-9440(10)63342-1Search in Google Scholar

[6] Thomas, P. and Fenech, M. A review of genome mutation and Alzheimer’s disease. Mutagenesis 22 (2007) 15–33. http://dx.doi.org/10.1093/mutage/gel05510.1093/mutage/gel055Search in Google Scholar

[7] Bajić, P.V., Su, B., Lee, H., Kudo, W., Siedlak, L.S., Živković, L., Spremo-Potparević, B., Djelic, N., Milicevic, Z., Singh, K.A., Fahmy, M.L., Wang, X., Smith, A.M. and Zhu, X. Mislocalization of CDK11/PITSLRE, a regulator of the G2/M phase of the cell cycle, in Alzheimer’s disease. Cell. Mol. Biol. Lett. 16 (2011) 350–372. Search in Google Scholar

[8] Koo, E.H. The beta-amyloid precursor protein (APP) and Alzheimer’s disease: does the tail wag the dog? Traffic 3 (2002) 763–770. http://dx.doi.org/10.1034/j.1600-0854.2002.31101.x10.1034/j.1600-0854.2002.31101.xSearch in Google Scholar

[9] Wirths, O., Multhaup, G. and Bayer, T.A. A modified beta-amyloid hypothesis: intraneuronal accumulation of the beta-amyloid peptide-the first step of a fatal cascade. J. Neurochem. 91 (2004) 513–520. http://dx.doi.org/10.1111/j.1471-4159.2004.02737.x10.1111/j.1471-4159.2004.02737.xSearch in Google Scholar

[10] Howlett, D.R., Simmons, D.L., Dingwall, C. and Christie, G. In search of an enzyme: the beta-secretase of Alzheimer’s disease is an aspartic proteinase. Trends Neurosci. 23 (2000) 565–570. http://dx.doi.org/10.1016/S0166-2236(00)01647-710.1016/S0166-2236(00)01647-7Search in Google Scholar

[11] Yatin, S.M., Varadarajan, S., Link, C.D. and Butterfield, D.A. In vitro and in vivo oxidative stress associated with Alzheimer’s amyloid beta-peptide (1–42). Neurobiol. Aging 20 (1999) 325–330. http://dx.doi.org/10.1016/S0197-4580(99)00056-110.1016/S0197-4580(99)00056-1Search in Google Scholar

[12] Butterfield, D.A. Amyloid beta-peptide (1–42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. Free Radic. Res. 36 (2002) 1307–1313. http://dx.doi.org/10.1080/107157602100004989010.1080/1071576021000049890Search in Google Scholar PubMed

[13] Gandy, S., Simon, A.J., Steele, J.W., Lublin, A.L., Lah, J.J., Walker, L.C., Levey, A.I., Krafft, G.A., Levy, E.F., Checler, F., Glabe, C., Bilker, W., Abel, T., Schmeidler, J. and Ehrlich, M.E. Days to criterion as an indicator of toxicity associated with human Alzheimer amyloid-beta oligomers. Ann. Neurol. 68 (2012) 220–230. Search in Google Scholar

[14] Roher, A.E., Chaney, M.O., Kuo, Y.M., Webster, S.D., Stine, W.B., Haverkamp, L.J., Woods, A.S.C., Tuohy, J.M., Krafft, G.A., Bonnell, B.S. and Emmerling, M.R. Morphology and toxicity of Abeta-(1–42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer’s disease. J. Biol. Chem. 271 (1996) 20631–20635. http://dx.doi.org/10.1074/jbc.271.34.2063110.1074/jbc.271.34.20631Search in Google Scholar

[15] Kirkitadze, M.D. and Kowalska, A. Molecular mechanisms initiating amyloid beta-fibril formation in Alzheimer’s disease. Acta Biochim. Pol. 52 (2005) 417–423. Search in Google Scholar

[16] Sallowaya, S., Mintzerb, J., Weinerc, M.F. and Cummings, J.L. Diseasemodifying therapies in Alzheimer’s disease. Alzheimer’s Dement. 4 (2008) 65–79. http://dx.doi.org/10.1016/j.jalz.2007.10.00110.1016/j.jalz.2007.10.001Search in Google Scholar

[17] Bathaie, S.Z. and Mousavi, S.Z. New applications and mechanisms of action of saffron and its important ingredients. Crit. Rev. Food. Sci. Nutr. 50 (2010) 761–786. http://dx.doi.org/10.1080/1040839090277300310.1080/10408390902773003Search in Google Scholar

[18] Soeda, S., Ochiai T., Shimeno, H., Saito, H., Abe, K., Tanaka, H. and Shoyama, Y. Pharmacological activities of crocin in saffron. J. Nat. Med. 61 (2007) 102–111. http://dx.doi.org/10.1007/s11418-006-0120-910.1007/s11418-006-0120-9Search in Google Scholar

[19] Yin, Y.I., Bassit, B., Zhu, L., Yang, X., Wang, C. and Li Y.M. γ-secretase substrate concentration modulates the Aβ42/Aβ40 ratio: Implications for Alzheimer’s disease. J. Biol. Chem. 282 (2007) 23639–23644. http://dx.doi.org/10.1074/jbc.M70460120010.1074/jbc.M704601200Search in Google Scholar

[20] Bolhasani Sanjabi, A., Bathaie, S.Z., Moosavi-Movahedi, A.A. and Ghaffari, M. Separation and purification of some components of Iranian saffron. Asia J. Chem. 17 (2005) 725–729. Search in Google Scholar

[21] Pandreou, M.A., Kanakis, C.D., Polissiou, M.G., Efthimiopoulos, S., Cordopatis, P., Margarity, M. and Lamari, F.N. Inhibitory activity on amyloid-beta aggregation and antioxidant properties of crocus sativus stigmas extract and its crocin constituents. J. Agric. Food Chem. 54 (2006) 8762–8768. http://dx.doi.org/10.1021/jf061932a10.1021/jf061932aSearch in Google Scholar

[22] Khurana, R., Coleman, C., Ionescu-Zanetti, C., Carter, S.A., Krishna, V., Grover, R.K., Roy, R. and Singh, S. Mechanism of thioflavin T binding to amyloid fibrils. J. Struct. Biol. 151 (2005) 229–238. http://dx.doi.org/10.1016/j.jsb.2005.06.00610.1016/j.jsb.2005.06.006Search in Google Scholar

[23] Kirk, W.R., Kurian, E. and Prendergast, F.G. Characterization of the sources of protein-ligand affinity: 1-sulfonato-8-(1’)anilinonaphthalene binding to intestinal fatty acid binding protein. Biophys. J. 70 (1996) 69–83. http://dx.doi.org/10.1016/S0006-3495(96)79592-910.1016/S0006-3495(96)79592-9Search in Google Scholar

[24] Matulis, D., Baumann, C.G., Bloomfield, V.A. and Lovrien, R.E. 1-anilino-8-naphthalene sulfonate as a protein conformational tightening agent. Biopolymers 49 (1999) 451–458. http://dx.doi.org/10.1002/(SICI)1097-0282(199905)49:6<451::AID-BIP3>3.0.CO;2-610.1002/(SICI)1097-0282(199905)49:6<451::AID-BIP3>3.0.CO;2-6Search in Google Scholar

[25] Matulis, D. and Lovrien, R. 1-Anilino-8-naphthalene sulfonate anion-protein binding depends primarily on ion pair formation. Biophys. J. 74 (1998) 422–429. http://dx.doi.org/10.1016/S0006-3495(98)77799-910.1016/S0006-3495(98)77799-9Search in Google Scholar

[26] Kelly, S.M., Jess, T.J. and Price, N.C. How to study proteins by circular dichroism. Biochim. Biophys. Acta 1751 (2005) 119–139. http://dx.doi.org/10.1016/j.bbapap.2005.06.00510.1016/j.bbapap.2005.06.005Search in Google Scholar

[27] Sureshbabu, N., Kirubagaran, R. and Jayakumar, R. Surfactant-induced conformational transition of amyloid β-peptide. Eur. Biophys. J. 38 (2009) 355–367. http://dx.doi.org/10.1007/s00249-008-0379-810.1007/s00249-008-0379-8Search in Google Scholar

[28] Hasegawa, K., Ono, K., Yamada, M. and Naiki, H. Kinetic modeling and determination of reaction constants of Alzheimer’s beta-amyloid fibril extension and dissociation using surface plasmon resonance. Biochemistry 41 (2002) 13489–13498. http://dx.doi.org/10.1021/bi020369w10.1021/bi020369wSearch in Google Scholar

[29] Naiki, H. and Gejyo, F. Kinetic analysis of amyloid fibril formation. Methods Enzymol. 309 (1999) 305–318. http://dx.doi.org/10.1016/S0076-6879(99)09022-910.1016/S0076-6879(99)09022-9Search in Google Scholar

[30] Sunde, M., Serpell, L.C., Bartlam, M., Fraser, P.E., Pepys, M.B. and Blake, C.C. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273 (1997) 729–739. http://dx.doi.org/10.1006/jmbi.1997.134810.1006/jmbi.1997.1348Search in Google Scholar

[31] Wetzel, R. Ideas of order for amyloid fibril structure. Structure 10 (2002) 1031–1036. http://dx.doi.org/10.1016/S0969-2126(02)00809-210.1016/S0969-2126(02)00809-2Search in Google Scholar

[32] Dobson, C.M. Protein misfolding, evolution and disease. Trends Biochem. Sci. 24 (1999) 329–332. http://dx.doi.org/10.1016/S0968-0004(99)01445-010.1016/S0968-0004(99)01445-0Search in Google Scholar

[33] Dobson, C.M. The structural basis of protein folding and its links with human disease. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356 (2001) 133–145. http://dx.doi.org/10.1098/rstb.2000.075810.1098/rstb.2000.0758Search in Google Scholar PubMed PubMed Central

[34] Younkin, S.G. Evidence that Aβ42 is the real culprit in Alzheimer’s disease. Ann. Neurol. 37 (1995) 287–288. http://dx.doi.org/10.1002/ana.41037030310.1002/ana.410370303Search in Google Scholar PubMed

[35] Kayed, R., Head, E., Thompson, J.L., McIntire, T.M., Milton, S.C., Cotman, C.W. and Glabe, C.G. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300 (2003) 486–489. http://dx.doi.org/10.1126/science.107946910.1126/science.1079469Search in Google Scholar PubMed

[36] Ban, T., Hamada, D., Hasegawa, K., Naiki, H. and Goto, Y. Direct observation of amyloid fibril growth monitored by thioflavin T fluorescence. J. Biol. Chem. 278 (2003) 16462–16465. http://dx.doi.org/10.1074/jbc.C30004920010.1074/jbc.C300049200Search in Google Scholar

[37] Bourhim, M., Kruzel, M., Srikrishnan, T. and Nicotera, T. Linear quantitation of Aβ aggregation using Thioflavin T: Reduction in fibril formation by colostrinin. J. Neurosci. Methods 160 (2007) 264–268. http://dx.doi.org/10.1016/j.jneumeth.2006.09.01310.1016/j.jneumeth.2006.09.013Search in Google Scholar

[38] Nybo, M., Svehag, S.E. and Holm Nielsen, E. An ultrastructural study of amyloid intermediates in A beta1-42 fibrillogenesis. Scand. J. Immunol. 49 (1999) 219–223. http://dx.doi.org/10.1046/j.1365-3083.1999.00526.x10.1046/j.1365-3083.1999.00526.xSearch in Google Scholar

[39] Caesar, I., Jonson, M., Nilsson, K.P., Thor, S. and Hammarström, P. Curcumin promotes A-beta fibrillation and reduces neurotoxicity in transgenic drosophila. PLoS One 7 (2012) e31424. http://dx.doi.org/10.1371/journal.pone.003142410.1371/journal.pone.0031424Search in Google Scholar

[40] Kanski, J., Aksenova, M. and Butterfield, D.A. The hydrophobic environment of Met35 of Alzheimer’s Abeta(1–42) is important for the neurotoxic and oxidative properties of the peptide. Neurotox. Res. 4 (2002) 219–223. http://dx.doi.org/10.1080/1029842029002394510.1080/10298420290023945Search in Google Scholar

[41] Cardamone, M. and Puri, N.K. Spectrofluorimetric assessment of the surface hydrophobicity of proteins. Biochem. J. 282 (1993) 589–593. Search in Google Scholar

[42] Schein, C.H. Solubility as a function of protein structure and solvent components. Nat. Biotech. 8 (1990) 308–317. http://dx.doi.org/10.1038/nbt0490-30810.1038/nbt0490-308Search in Google Scholar

[43] Serpell, L.C. Alzheimer’s amyloid fibrils: structure and assembly. Biochim. Biophys. Acta vn]1502 (2000) 16–30. 10.1016/S0925-4439(00)00029-6Search in Google Scholar

[44] Crescenzi, O., Tomaselli, S., Guerrini, R., Salvadori, S., D’Ursi, A.M., Temussi, P.A. and Picone, D. Solution structure of the Alzheimer amyloid beta-peptide (1–42) in an apolar microenvironment. Similarity with a virus fusion domain. Eur. J. Biochem. 269 (2002) 5642–5648. http://dx.doi.org/10.1046/j.1432-1033.2002.03271.x10.1046/j.1432-1033.2002.03271.xSearch in Google Scholar

[45] López De La Paz, M., Goldie, K., Zurdo, J., Lacroix, E., Dobson, C.M., Hoenger, A. and Serrano, L. De novo designed peptide-based amyloid fibrils. Proc. Natl. Acad. Sci. USA 99 (2002) 16052–15057. http://dx.doi.org/10.1073/pnas.25234019910.1073/pnas.252340199Search in Google Scholar

[46] Mishima, K., Tanaka, T., Pu, F., Egashira, N., Iwasaki, K., Hidaka, R., Matsunaga, K., Takata, J., Karube, Y. and Fujiwara, M. Vitamin E isoforms alpha-tocotrienol and gamma-tocopherol prevent cerebral infarction in mice. Neurosci. Lett. 337 (2003) 56–60. http://dx.doi.org/10.1016/S0304-3940(02)01293-410.1016/S0304-3940(02)01293-4Search in Google Scholar

Published Online: 2013-7-27
Published in Print: 2013-9-1

© 2013 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-013-0092-1/html
Scroll to top button