Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter March 26, 2014

Novel estradiol analogue induces apoptosis and autophagy in esophageal carcinoma cells

  • Elize Wolmarans EMAIL logo , Thandi Mqoco , Andre Stander , Sandra Nkandeu , Katherine Sippel , Robert McKenna and Annie Joubert

Abstract

Cancer is the second leading cause of death in South Africa. The critical role that microtubules play in cell division makes them an ideal target for the development of chemotherapeutic drugs that prevent the hyperproliferation of cancer cells. The new in silico-designed estradiol analogue 2-ethyl-3-O-sulfamoylestra-1,3,5(10)16-tetraene (ESE-16) was investigated in terms of its in vitro antiproliferative effects on the esophageal carcinoma SNO cell line at a concentration of 0.18 μM and an exposure time of 24 h. Polarization-optical differential interference contrast and triple fluorescent staining (propidium iodide, Hoechst 33342 and acridine orange) revealed a decrease in cell density, metaphase arrest, and the occurrence of apoptotic bodies in the ESE-16-treated cells when compared to relevant controls. Treated cells also showed an increase in the presence of acidic vacuoles and lysosomes, suggesting the occurrence of autophagic processes. Cell death via autophagy was confirmed using the Cyto-ID autophagy detection kit and the aggresome detection assay. Results showed an increase in autophagic vacuole and aggresome formation in ESE-16 treated cells, confirming the induction of cell death via autophagy. Cell cycle progression demonstrated an increase in the sub-G1 fraction (indicative of the presence of apoptosis). In addition, a reduction in mitochondrial membrane potential was also observed, which suggests the involvement of apoptotic cell death induced by ESE-16 via the intrinsic apoptotic pathway. In this study, it was demonstrated that ESE-16 induces cell death via both autophagy and apoptosis in esophageal carcinoma cells. This study paves the way for future investigation into the role of ESE-16 in ex vivo and in vivo studies as a possible anticancer agent.

[1] Kamangar, F., Dores, G.M. and Anderson, W.F. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J. Clin. Oncol. 24 (2006) 2137–2150. http://dx.doi.org/10.1200/JCO.2005.05.230810.1200/JCO.2005.05.2308Search in Google Scholar

[2] Kamangar, F., Chow, W.H., Abnet, C.C. and Dawsey, S.M. Environmental causes of esophageal cancer. Gastroenterol. Clin. North Am. 38 (2009) 27–57. http://dx.doi.org/10.1016/j.gtc.2009.01.00410.1016/j.gtc.2009.01.004Search in Google Scholar

[3] Du, B., Zhao, Z., Sun, H., Ma, S., Jin, J. and Zhang, Z. Effects of 2-methoxyestradiol on proliferation, apoptosis and gene expression of cyclin B1 and c-Myc in esophageal carcinoma EC9706 cells. Cell. Biochem. Funct. 30 (2012) 158–165. http://dx.doi.org/10.1002/cbf.183010.1002/cbf.1830Search in Google Scholar

[4] Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E. and Forman, D. Global Cancer Statistics. CA Cancer J. Clin. 61 (2011) 69–90. http://dx.doi.org/10.3322/caac.2010710.3322/caac.20107Search in Google Scholar

[5] Chu, F.S. and Li, G.Y. Simultaneous occurrence of fumonisin B1 and other mycotoxins in moldy corn collected from the People’s Republic of China in regions with high incidences of esophageal cancer. Appl. Environ. Microbiol. 60 (1994) 847–852. Search in Google Scholar

[6] Myburg, R.B., Dutton, M.F. and Chuturgoon, A.A. Cytotoxicity of fumonisin B1, diethylnitrosamine, and catechol on the SNO esophageal cancer cell line. Environ. Health Perspect. 110 (2002) 813–815. http://dx.doi.org/10.1289/ehp.0211081310.1289/ehp.02110813Search in Google Scholar

[7] Zhou, J. and Giannakakou, P. Targeting microtubules for cancer chemotherapy. Curr. Med. Chem. Anticancer Agents 5 (2005) 65–71. http://dx.doi.org/10.2174/156801105335256910.2174/1568011053352569Search in Google Scholar

[8] Purohit, A., Hejaz, H.A., Walden, L., MacCarthy-Morrogh, L., Packham, G., Potter, B.V. and Reed, M.J. The effect of 2-methoxyoestrone-3-O-sulfamate on the growth of breast cancer cells and induced mammary tumors. Int. J. Cancer 85 (2000) 584–589. http://dx.doi.org/10.1002/(SICI)1097-0215(20000215)85:4<584::AID-IJC22>3.0.CO;2-Q10.1002/(SICI)1097-0215(20000215)85:4<584::AID-IJC22>3.0.CO;2-QSearch in Google Scholar

[9] Chua, Y.S., Chua, Y.L. and Hagen, T. Structure activity analysis of 2-methoxyestradiol analogues reveals targeting of microtubules as the major mechanism of antiproliferative and proapoptotic activity. Mol. Cancer Ther. 9 (2010) 224–235. http://dx.doi.org/10.1158/1535-7163.MCT-09-100310.1158/1535-7163.MCT-09-1003Search in Google Scholar

[10] Stander, A., Joubert, F. and Joubert, A. Docking, synthesis, and in vitro evaluation of antimitotic estrone analogs. Chem. Biol. Drug Des. 77 (2011) 173–181. http://dx.doi.org/10.1111/j.1747-0285.2010.01064.x10.1111/j.1747-0285.2010.01064.xSearch in Google Scholar

[11] Choi, H.J. and Zhu, B.T. Critical role of cyclin B1/Cdc2 up-regulation in the induction of mitotic prometaphase arrest in human breast cancer cells treated with 2-methoxyestradiol. Biochim. Biophys. Acta 1823 (2012) 1306–1315. http://dx.doi.org/10.1016/j.bbamcr.2012.05.00310.1016/j.bbamcr.2012.05.003Search in Google Scholar

[12] Visagie, M., Mqoco, T. and Joubert, A. Sulphamoylated estradiol analogue induces antiproliferative activity and apoptosis in breast cell lines. Cell. Mol. Biol. Lett. 17 (2012) 549–558. http://dx.doi.org/10.2478/s11658-012-0030-710.2478/s11658-012-0030-7Search in Google Scholar

[13] Mooberry, S.L. Mechanism of action of 2-methoxyestradiol: new developments. Drug Resist. Updat. 6 (2003) 355–361. http://dx.doi.org/10.1016/j.drup.2003.10.00110.1016/j.drup.2003.10.001Search in Google Scholar

[14] Zhu, B.T. and Conney, A.H. Is 2-methoxyestradiol an endogenous estrogen metabolite that inhibits mammary carcinogenesis? Cancer Res. 58 (1998) 2269–2277. Search in Google Scholar

[15] Mabjeesh, N.J., Escuin, D., LaVallee, T.M., Pribluda, V.S., Swartz, G.M., Johnson, M.S., Willard, M.T., Zhong, H., Simons, J.W. and Giannakakou, P. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell 3 (2003) 363–375. http://dx.doi.org/10.1016/S1535-6108(03)00077-110.1016/S1535-6108(03)00077-1Search in Google Scholar

[16] Thaver, V., Lottering, M., van Papendorp, D. and Joubert, A. In vitro effects of 2-methoxyestradiol on cell numbers, morphology, cell cycle progression, and apoptosis induction in oesophagealcarcinoma cells. Cell Biochem. Funct. 27 (2009) 205–210. http://dx.doi.org/10.1002/cbf.155710.1002/cbf.1557Search in Google Scholar PubMed

[17] Van Zijl, C., Lottering, M.L., Steffens, F. and Joubert, A. In vitro effects of 2-methoxyestradiol on MCF-12A and MCF-7 cell growth, morphology and mitotic spindle formation. Cell Biochem. Funct. 26 (2008) 632–642. http://dx.doi.org/10.1002/cbf.148910.1002/cbf.1489Search in Google Scholar PubMed

[18] Voster, C.J.J. and Joubert, A.M. In vitro effects of 2-methoxyestradiol-bissulfamate on the non-tumorigenic MCF-12A cell line. Cell Biochem. Funct. 28 (2010) 412–419. http://dx.doi.org/10.1002/cbf.167110.1002/cbf.1671Search in Google Scholar PubMed

[19] Bruce, J.Y., Eickhoff, J., Pili, R., Logan, T., Carducci, M., Arnott, J., Treston, A., Wilding, G. and Liu, G. A phase II study of 2-methoxyestradiol nanocrystal colloidal dispersion alone and in combination with sunitinib malate in patients with metastatic renal cell carcinoma progressing on sunitinib malate. Invest. New Drugs 30 (2012) 794–802. http://dx.doi.org/10.1007/s10637-010-9618-910.1007/s10637-010-9618-9Search in Google Scholar PubMed PubMed Central

[20] Harrison, M.R., Hahn, N.M., Pili, R., Oh, W.K., Hammers, H., Sweeney, C., Kim, K., Perlman, S., Arnott, J., Sidor, C., Wilding, G. and Liu, G. A phase II study of 2-methoxyestradiol (2ME2) NanoCrystal dispersion (NCD) in patients with taxane-refractory, metastatic castrate-resistant prostate cancer (CRPC). Invest. New Drugs 29 (2011) 1465–1474. http://dx.doi.org/10.1007/s10637-010-9455-x10.1007/s10637-010-9455-xSearch in Google Scholar PubMed PubMed Central

[21] Tevaarwerk, A.J., Holen, K.D., Alberti, D.B., Sidor, C., Arnott, J., Quon, C., Wilding, G. and Liu, G. Phase I trial of 2-methoxyestradiol NanoCrystal dispersion in advanced solid malignancies. Clin Cancer Res. 15 (2009) 1460–1465. http://dx.doi.org/10.1158/1078-0432.CCR-08-159910.1158/1078-0432.CCR-08-1599Search in Google Scholar PubMed PubMed Central

[22] Newman, S.P., Ireson, C.R., Tutill, H.J., Day, J.M., Parsons, M.F., Leese, M.P., Potter, B.V.L., Reed, M.J. and Purohit, A. The role of 17beta-hydroxysteroid dehydrogenases in modulating the activity of 2-methoxyestradiol in breast cancer cells. Cancer Res. 66 (2006) 324–330. http://dx.doi.org/10.1158/0008-5472.CAN-05-239110.1158/0008-5472.CAN-05-2391Search in Google Scholar PubMed

[23] Liu, Q., Jin, W., Zhu, Y., Zhou, J., Lu, M. and Zhang, Q. Synthesis of 3′-methoxy-E-diethylstilbestrol and its analogs as tumor angiogenesis inhibitors. Steroids 77 (2012) 419–423. http://dx.doi.org/10.1016/j.steroids.2011.12.02410.1016/j.steroids.2011.12.024Search in Google Scholar PubMed

[24] Chiche, J., Ilc, K., Laferriere, J., Trottier, E., Dayan, F., Mazure, N.M., Brahimi-Horn, M.C. and Pouysségur, J. Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res. 69 (2009) 358–368. http://dx.doi.org/10.1158/0008-5472.CAN-08-247010.1158/0008-5472.CAN-08-2470Search in Google Scholar PubMed

[25] Visagie, M.H. and Joubert, A.M. In vitro effects of 2-methoxyestradiol-bissulfamate on reactive oxygen species and possible apoptosis induction in a breast adenocarcinoma cell line. Cancer Cell Int. 11 (2011) 43–49. http://dx.doi.org/10.1186/1475-2867-11-4310.1186/1475-2867-11-43Search in Google Scholar PubMed PubMed Central

[26] Supuran, C.T. and Scozzafava, A. Carbonic anhydrases as targets for medicinal chemistry. Bioorg. Med. Chem. 15 (2007) 4336–4350. http://dx.doi.org/10.1016/j.bmc.2007.04.02010.1016/j.bmc.2007.04.020Search in Google Scholar PubMed

[27] Genis, C., Sippel, K.H., Case, N., Cao, W., Avvaru, B.S., Tartaglia, L.J., Govindasamy, L., Tu, C., Agbandje-McKenna, M., Silverman, D.N., Rosser, C.J. and McKenna, R. Design of a carbonic anhydrase IX active-site mimic to screen inhibitors for possible anticancer properties. Biochemistry 48 (2009) 1322–1331. http://dx.doi.org/10.1021/bi802035f10.1021/bi802035fSearch in Google Scholar PubMed PubMed Central

[28] Stander, B.A., Joubert, F., Tu, C., Sippel, K.H., McKenna, R. and Joubert, A.M. In vitro evaluation of ESE-15-ol, an estradiol analogue with nanomolar antimitotic and carbonic anhydrase inhibitory activity. PLoS One 7 (2012) e52205–e52215. http://dx.doi.org/10.1371/journal.pone.005220510.1371/journal.pone.0052205Search in Google Scholar PubMed PubMed Central

[29] Leese, M.P., Leblond, B., Newman, S.P., Purohit, A., Reed, M.J. and Potter, B.V. Anti-cancer activities of novel D-ring modified 2-substituted estrogen-3-Osulfamates. J. Steroid Biochem. Mol. Biol. 94 (2005) 239–251. http://dx.doi.org/10.1016/j.jsbmb.2005.01.00510.1016/j.jsbmb.2005.01.005Search in Google Scholar PubMed

[30] Chander, S.K., Foster, P.A., Leese, M.P., Newman, S.P., Potter, B.V., Purohit, A. and Reed, M.J. In vivo inhibition of angiogenesis by sulfamoylated derivatives of 2-methoxyoestradiol. Br. J. Cancer 96 (2007) 1368–1376. Search in Google Scholar

[31] Visagie, M.H. and Joubert, A.M. The in vitro effects of 2-methoxyestradiolbis-sulfamate on cell numbers, membrane integrity and cell morphology, and the possible induction of apoptosis and autophagy in a non-tumorigenic breast epithelial cell line. Cell. Mol. Biol. Lett. 15 (2010) 564–581. http://dx.doi.org/10.2478/s11658-010-0030-410.2478/s11658-010-0030-4Search in Google Scholar PubMed PubMed Central

[32] Stander, B.A., Joubert, F., Tu, C., Sippel, K.H., McKenna, R. and Joubert, A.M. Signaling pathways of ESE-16, an antimitotic and anticarbonic anhydrase estradiol analog, in breast cancer cells. PLoS One 8 (2013) e53853–e53871. http://dx.doi.org/10.1371/journal.pone.005385310.1371/journal.pone.0053853Search in Google Scholar PubMed PubMed Central

[33] Mqoco, T., Marais, S. and Joubert, A. Influence of estradiol analogue on cell growth, morphology and death in esophageal carcinoma cells. Biocell 34 (2010) 113–120. Search in Google Scholar

[34] Stander, X.X., Stander, B.A. and Joubert, A.M. In vitro effects of an in silicomodelled 17-beta-estradiol derivative in combination with dichloroacetic acid on MCF-7 and MCF-12A cells. Cell. Prolif. 44 (2011) 567–581. http://dx.doi.org/10.1111/j.1365-2184.2011.00789.x10.1111/j.1365-2184.2011.00789.xSearch in Google Scholar PubMed PubMed Central

[35] Stander, B.A., Marais, S., Vorster, C.J. and Joubert, A.M. In vitro effects of 2-methoxyestradiol on morphology, cell cycle progression, cell death and gene expression changes in the tumorigenic MCF-7 breast epithelial cell line. J. Steroid Biochem. Mol. Biol. 119 (2010) 149–160. http://dx.doi.org/10.1016/j.jsbmb.2010.02.01910.1016/j.jsbmb.2010.02.019Search in Google Scholar PubMed

[36] Kanzawa, T., Kondo, Y., Ito, H., Kondo, S. and Germano, I. Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer Res. 63 (2003) 2103–2108. Search in Google Scholar

[37] Knizhnik, A.V., Roos, W.P., Nikolova, T., Quiros, S., Tomaszowski, K.H., Christmann, M. and Kaina, B. Survival and death strategies in glioma cells: autophagy, senescence and apoptosis triggered by a single type of temozolomide-induced DNA damage. PLoS One 8 (2013) e55665–e55676. http://dx.doi.org/10.1371/journal.pone.005566510.1371/journal.pone.0055665Search in Google Scholar PubMed PubMed Central

[38] Moriya, S., Che, X.F., Komatsu, S., Abe, A., Kawaguchi, T., Gotoh, A., Inazu, M., Tomoda, A. and Miyazawa, K. Macrolide antibiotics block autophagy flux and sensitize to bortezomib via endoplasmic reticulum stress-mediated CHOP induction in myeloma cells. Int. J. Oncol. 42 (2013) 1541–1550. Search in Google Scholar

[39] Taylor, J.P., Tanaka, F., Robitschek, J., Sandoval, C.M., Taye, A., Markovic-Plese, S. and Fischbeck, H. Aggresomes protect cells by enhancing the degradation of toxic polyglutamine-containing protein. Hum. Mol. Genet. 12 (2003) 749–757. http://dx.doi.org/10.1093/hmg/ddg07410.1093/hmg/ddg074Search in Google Scholar PubMed

[40] Garcia-Mata, R., Gao, Y.S. and Sztul, E. Hassles with taking out the garbage: aggravating aggresomes. Traffic 3 (2002) 388–396. http://dx.doi.org/10.1034/j.1600-0854.2002.30602.x10.1034/j.1600-0854.2002.30602.xSearch in Google Scholar PubMed

[41] Simms-Waldrip, T., Rodriguez-Gonzalez, A., Lin, T., Ikeda, A.K., Fu, C. and Sakamoto, K.M. The aggresome pathway as a target for therapy in hematologic malignancies. Mol. Genet. Metab. 94 (2008) 283–286. http://dx.doi.org/10.1016/j.ymgme.2008.03.01210.1016/j.ymgme.2008.03.012Search in Google Scholar PubMed PubMed Central

[42] Nkandeu, D.S., Mqoco, T.V., Visagie, M.H., Stander, B.A., Wolmarans, E., Cronje, M.J. and Joubert, A.M. In vitro changes in mitochondrial potential, aggresome formation and caspase activity by a novel 17-beta-estradiol analogue in breast adenocarcinoma cells. Cell. Biochem. Funct. 31 (2013) 566–574. Search in Google Scholar

[43] Bialik, S., Zalckvar, E., Ber, Y., Rubinstein, A.D. and Kimchi, A. Systems biology analysis of programmed cell death. Trends Biochem. Sci. 35 (2010) 556–564. http://dx.doi.org/10.1016/j.tibs.2010.04.00810.1016/j.tibs.2010.04.008Search in Google Scholar PubMed

[44] Pradelli, L.A., Beneteau, M. and Ricci, J.E. Mitochondrial control of caspase-dependent and -independent cell death. Cell. Mol. Life. Sci. 67 (2010) 1589–1597. http://dx.doi.org/10.1007/s00018-010-0285-y10.1007/s00018-010-0285-ySearch in Google Scholar PubMed

[45] Wang, C. and Klionsky, D.J. The Molecular Mechanism of Autophagy. Mol. Med. 9 (2003) 65–76. Search in Google Scholar

[46] Tanida, I., Ueno, T. and Kominami, E. LC3 and Autophagy. Methods Mol. Biol. 445 (2008) 77–88. http://dx.doi.org/10.1007/978-1-59745-157-4_410.1007/978-1-59745-157-4_4Search in Google Scholar PubMed

[47] Zaarur, N., Meriin, A.B., Gabai, V.L. and Sherman, M.Y. Triggering aggresome formation. Dissecting aggresome-targeting and aggregation signals in synphilin 1. J. Biol. Chem. 283 (2008) 27575–27584. http://dx.doi.org/10.1074/jbc.M80221620010.1074/jbc.M802216200Search in Google Scholar PubMed

[48] Hsieh, Y.C., Athar, M. and Chaudry, I.H. When apoptosis meets autophagy: deciding cell fate after trauma and sepsis. Trends Mol. Med. 15 (2009) 129–138. http://dx.doi.org/10.1016/j.molmed.2009.01.00210.1016/j.molmed.2009.01.002Search in Google Scholar PubMed PubMed Central

[49] Thorburn, A. Apoptosis and autophagy: regulatory connections between two supposedly different processes. Apoptosis 13 (2008) 1–9. http://dx.doi.org/10.1007/s10495-007-0154-910.1007/s10495-007-0154-9Search in Google Scholar PubMed PubMed Central

[50] Maiuri, M.C., Zalckvar, E., Kimchi, A. and Kroemer, G. Self-eating and Self-killing: crosstalk between autophagy and apoptosis. Mol. Cell Biol. 8 (2007) 741–752. Search in Google Scholar

Published Online: 2014-3-26
Published in Print: 2014-3-1

© 2013 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-014-0183-7/html
Scroll to top button