Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter June 22, 2014

Molecularly targeting the PI3K-Akt-mTOR pathway can sensitize cancer cells to radiotherapy and chemotherapy

  • Ziwen Wang EMAIL logo , Yujung Huang and Jiqiang Zhang

Abstract

Radiotherapy and chemotherapeutic agents that damage DNA are the current major non-surgical means of treating cancer. However, many patients develop resistances to chemotherapy drugs in their later lives. The PI3K and Ras signaling pathways are deregulated in most cancers, so molecularly targeting PI3K-Akt or Ras-MAPK signaling sensitizes many cancer types to radiotherapy and chemotherapy, but the underlying molecular mechanisms have yet to be determined. During the multi-step processes of tumorigenesis, cancer cells gain the capability to disrupt the cell cycle checkpoint and increase the activity of CDK4/6 by disrupting the PI3K, Ras, p53, and Rb signaling circuits. Recent advances have demonstrated that PI3K-Akt-mTOR signaling controls FANCD2 and ribonucleotide reductase (RNR). FANCD2 plays an important role in the resistance of cells to DNA damage agents and the activation of DNA damage checkpoints, while RNR is critical for the completion of DNA replication and repair in response to DNA damage and replication stress. Regulation of FANCD2 and RNR suggests that cancer cells depend on PI3K-Akt-mTOR signaling for survival in response to DNA damage, indicating that the PI3K-AktmTOR pathway promotes resistance to chemotherapy and radiotherapy by enhancing DNA damage repair.

[1] Wullschleger, S., Loewith, R. and Hall, M.N. TOR signaling in growth and metabolism. Cell 124 (2006) 471–484. http://dx.doi.org/10.1016/j.cell.2006.01.01610.1016/j.cell.2006.01.016Search in Google Scholar PubMed

[2] Zoncu, R., Efeyan, A. and Sabatini, D.M. mTOR: From growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12 (2011) 21–35. http://dx.doi.org/10.1038/nrm302510.1038/nrm3025Search in Google Scholar PubMed PubMed Central

[3] Laplante, M. and Sabatini, D.M. mTOR signaling in growth control and disease. Cell 149 (2012) 274–293. http://dx.doi.org/10.1016/j.cell.2012.03.01710.1016/j.cell.2012.03.017Search in Google Scholar PubMed PubMed Central

[4] Cornu, M., Albert, V. and Hall, M.N. mTOR in aging, metabolism, and cancer. Curr. Opin. Genet. Dev. 23 (2013) 53–62. http://dx.doi.org/10.1016/j.gde.2012.12.00510.1016/j.gde.2012.12.005Search in Google Scholar PubMed

[5] Hennessy, B.T., Smith, D.L., Ram, P.T., Lu, Y. and Mills, G.B. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov. 4 (2005) 988–1004. http://dx.doi.org/10.1038/nrd190210.1038/nrd1902Search in Google Scholar PubMed

[6] Sarbassov, D.D., Guertin, D.A., Ali, S.M. and Sabatini, D.M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307 (2005) 1098–1101. http://dx.doi.org/10.1126/science.110614810.1126/science.1106148Search in Google Scholar PubMed

[7] Hung, C.M., Garcia-Haro, L., Sparks, C.A. and Guertin, D.A. mTORdependent cell survival mechanisms. Cold Spring Harb, Perspect. Biol. 4 (2012) DOI: 10.1101/cshperspect.a008771. 10.1101/cshperspect.a008771Search in Google Scholar PubMed PubMed Central

[8] Shaw, R.J. and Cantley, L.C. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441 (2006) 424–430. http://dx.doi.org/10.1038/nature0486910.1038/nature04869Search in Google Scholar PubMed

[9] Liu, W., Zhou, Y., Reske, S.N. and Shen, C. PTEN mutation: many birds with one stone in tumorigenesis. Anticancer Res. 28 (2008) 3613–3620. Search in Google Scholar

[10] McCubrey, J.A., Steelman, L.S., Chappell, W.H., Abrams, S.L., Franklin, R.A., Montalto, G., Cervello, M., Libra, M., Candido, S., Malaponte, G., Mazzarino, M.C., Fagone, P., Nicoletti, F., Bäsecke, J., Mijatovic, S., Maksimovic-Ivanic, D., Milella, M., Tafuri, A., Chiarini, F., Evangelisti, C., Cocco, L. and Martelli, A.M. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. Oncotarget 3 (2012) 1068–1111. Search in Google Scholar

[11] Rodon, J., Dienstmann, R., Serra, V. and Tabernero, J. Development of PI3K inhibitors: lessons learned from early clinical trials. Nat. Rev. Clin. Oncol. 10 (2013) 143–153. http://dx.doi.org/10.1038/nrclinonc.2013.1010.1038/nrclinonc.2013.10Search in Google Scholar PubMed

[12] Bjornsti, M.A. and Houghton, P.J. The TOR pathway: a target for cancer therapy. Nat. Rev. Cancer 4 (2004) 335–348. http://dx.doi.org/10.1038/nrc136210.1038/nrc1362Search in Google Scholar PubMed

[13] Hanahan, D. and Weinberg, R.A. The hallmarks of cancer. Cell 100 (2000) 57–70. http://dx.doi.org/10.1016/S0092-8674(00)81683-910.1016/S0092-8674(00)81683-9Search in Google Scholar

[14] Luo, J., Solimini, N.L. and Elledge, S.J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136 (2009) 823–837. http://dx.doi.org/10.1016/j.cell.2009.02.02410.1016/j.cell.2009.02.024Search in Google Scholar

[15] Dick, F.A. and Rubin, S.M. Molecular mechanisms underlying RB protein function. Nat. Rev. Mol. Cell Biol. 14 (2013) 297–306. http://dx.doi.org/10.1038/nrm356710.1038/nrm3567Search in Google Scholar

[16] Chen, H.Z., Tsai, S.Y. and Leone, G. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat. Rev. Cancer 9 (2009) 785–797. http://dx.doi.org/10.1038/nrc269610.1038/nrc2696Search in Google Scholar

[17] Manning, B.D. and Cantley, L.C. AKT/PKB signaling: navigating downstream. Cell 129 (2007) 1261–1274. http://dx.doi.org/10.1016/j.cell.2007.06.00910.1016/j.cell.2007.06.009Search in Google Scholar

[18] Heitman, J., Movva, N.R. and Hall, M.N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253 (1991) 905–909. http://dx.doi.org/10.1126/science.171509410.1126/science.1715094Search in Google Scholar

[19] Loewith, R., Jacinto, E., Wullschleger, S., Lorberg, A., Crespo, J.L., Bonenfant, D., Oppliger, W., Jenoe, P. and Hall, M.N. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10 (2002) 457–468. http://dx.doi.org/10.1016/S1097-2765(02)00636-610.1016/S1097-2765(02)00636-6Search in Google Scholar

[20] Sarbassov, D.D., Ali, S.M. and Sabatini, D.M. Growing roles for the mTOR pathway. Curr. Opin. Cell Biol. 17 (2005) 596–603. http://dx.doi.org/10.1016/j.ceb.2005.09.00910.1016/j.ceb.2005.09.009Search in Google Scholar PubMed

[21] Soulard, A. and Hall, M.N. SnapShot: mTOR signaling. Cell 129 (2007) 434. http://dx.doi.org/10.1016/j.cell.2007.04.01010.1016/j.cell.2007.04.010Search in Google Scholar PubMed

[22] Polak, P. and Hall, M.N. mTOR and the control of whole body metabolism. Curr. Opin. Cell Biol. 21 (2009) 209–218. http://dx.doi.org/10.1016/j.ceb.2009.01.02410.1016/j.ceb.2009.01.024Search in Google Scholar PubMed

[23] Inoki, K., Ouyang, H., Zhu, T., Lindvall, C., Wang, Y., Zhang, X., Yang, Q., Bennett, C., Harada, Y., Stankunas, K., Wang, C.Y., He, X., MacDougald, O.A., You, M., Williams, B.O. and Guan, K.L. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126 (2006) 955–968. http://dx.doi.org/10.1016/j.cell.2006.06.05510.1016/j.cell.2006.06.055Search in Google Scholar PubMed

[24] Li, Y., Inoki, K., Vacratsis, P. and Guan, K.L. The p38 and MK2 kinase cascade phosphorylates tuberin, the tuberous sclerosis 2 gene product, and enhances its interaction with 14-3-3. J. Biol. Chem. 278 (2003) 13663–13671. http://dx.doi.org/10.1074/jbc.M30086220010.1074/jbc.M300862200Search in Google Scholar PubMed

[25] Lee, D.F., Kuo, H.P., Chen, C.T., Hsu, J.M., Chou, C.K., Wei, Y., Sun, H.L., Li, L.Y., Ping, B., Huang, W.C., He, X., Hung, J.Y., Lai, C.C., Ding, Q., Su, J.L., Yang, J.Y., Sahin, A.A., Hortobagyi, G.N., Tsai, F.J., Tsai, C.H. and Hung, M.C. IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 130 (2007) 440–455. http://dx.doi.org/10.1016/j.cell.2007.05.05810.1016/j.cell.2007.05.058Search in Google Scholar PubMed

[26] Astrinidis, A., Senapedis, W., Coleman, T.R. and Henske, E.P. Cell cycleregulated phosphorylation of hamartin, the product of the tuberous sclerosis complex 1 gene, by cyclin-dependent kinase 1/cyclin B. J. Biol. Chem. 278 (2003) 51372–51379. http://dx.doi.org/10.1074/jbc.M30395620010.1074/jbc.M303956200Search in Google Scholar PubMed

[27] Kim, E., Goraksha-Hicks, P., Li, L., Neufeld, T.P. and Guan, K.L. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 10 (2008) 935–945. http://dx.doi.org/10.1038/ncb175310.1038/ncb1753Search in Google Scholar PubMed PubMed Central

[28] Meric-Bernstam, F. and Gonzalez-Angulo, A.M. Targeting the mTOR signaling network for cancer therapy. J. Clin. Oncol. 27 (2009) 2278–2287. http://dx.doi.org/10.1200/JCO.2008.20.076610.1200/JCO.2008.20.0766Search in Google Scholar PubMed PubMed Central

[29] Yap, T.A., Garrett, M.D., Walton, M.I., Raynaud, F., de Bono, J.S. and Workman, P. Targeting the PI3K-AKT-mTOR pathway: progress, pitfalls, and promises. Curr. Opin. Pharmacol. 8 (2008) 393–412. http://dx.doi.org/10.1016/j.coph.2008.08.00410.1016/j.coph.2008.08.004Search in Google Scholar PubMed

[30] Moldovan, G.L. and D’Andrea, A.D. How the fanconi anemia pathway guards the genome. Annu. Rev. Genet. 43 (2009) 223–249. http://dx.doi.org/10.1146/annurev-genet-102108-13422210.1146/annurev-genet-102108-134222Search in Google Scholar PubMed PubMed Central

[31] Kitao, H. and Takata, M. Fanconi anemia: a disorder defective in the DNA damage response. Int. J. Hematol. 93 (2011) 417–424. http://dx.doi.org/10.1007/s12185-011-0777-z10.1007/s12185-011-0777-zSearch in Google Scholar PubMed

[32] Kim, H. and D’Andrea, A.D. Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev. 26 (2012) 1393–1408. http://dx.doi.org/10.1101/gad.195248.11210.1101/gad.195248.112Search in Google Scholar PubMed PubMed Central

[33] Kee, Y. and D’Andrea, A.D. Expanded roles of the Fanconi anemia pathway in preserving genomic stability. Genes Dev. 24 (2010) 1680–1694. http://dx.doi.org/10.1101/gad.195531010.1101/gad.1955310Search in Google Scholar

[34] Knipscheer, P., Raschle, M., Smogorzewska. A., Enoiu, M., Ho, T.V., Scharer, O.D., Elledge, S.J. and Walter, J.C. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science 326 (2009) 1698–1701. http://dx.doi.org/10.1126/science.118237210.1126/science.1182372Search in Google Scholar

[35] Joo, W., Xu, G., Persky, N.S., Smogorzewska, A., Rudge, D.G., Buzovetsky, O., Elledge, S.J. and Pavletich, N.P. Structure of the FANCIFANCD2 complex: insights into the Fanconi anemia DNA repair pathway. Science 333 (2011) 312–316. http://dx.doi.org/10.1126/science.120580510.1126/science.1205805Search in Google Scholar

[36] Shen, C., Oswald, D., Phelps, D., Cam, H., Pelloski, C.E., Pang, Q. and Houghton, P.J. Regulation of FANCD2 by the mTOR pathway contributes to the resistance of cancer cells to DNA double strand breaks. Cancer Res. 73 (2013) 3393–3401. http://dx.doi.org/10.1158/0008-5472.CAN-12-428210.1158/0008-5472.CAN-12-4282Search in Google Scholar

[37] Kastan, M.B. and Bartek, J. Cell-cycle checkpoints and cancer. Nature 432 (2004) 316–323. http://dx.doi.org/10.1038/nature0309710.1038/nature03097Search in Google Scholar

[38] Guo, F., Li, J., Du, W., Zhang, S., O’Connor, M., Thomas, G., Kozma, S., Zingarelli, B., Pang, Q. and Zheng, Y. mTOR regulates DNA damage response through NF-κB-mediated FANCD2 pathway in hematopoietic cells. Leukemia 27 (2013) 2040–2046. http://dx.doi.org/10.1038/leu.2013.9310.1038/leu.2013.93Search in Google Scholar

[39] Guo, F., Li, J., Zhang, S., Du, W., Amarachintha, S., Sipple, J., Phelan, J., Grimes, H.L., Zheng, Y. and Pang, Q. mTOR kinase inhibitor sensitizes T-cell lymphoblastic leukemia for chemotherapy-induced DNA damage via suppressing FANCD2 expression. Leukemia 28 (2014) 203–206. http://dx.doi.org/10.1038/leu.2013.21510.1038/leu.2013.215Search in Google Scholar

[40] Huang, M., Zhou, Z. and Elledge, S.J. The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor. Cell 94 (1998) 595–605. http://dx.doi.org/10.1016/S0092-8674(00)81601-310.1016/S0092-8674(00)81601-3Search in Google Scholar

[41] Zhao, X. and Rothstein, R. The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1. Proc. Natl. Acad. Sci. USA 99 (2002) 3746–3751. http://dx.doi.org/10.1073/pnas.06250229910.1073/pnas.062502299Search in Google Scholar PubMed PubMed Central

[42] Kolberg, M., Strand, K.R., Graff, P. and Andersson, K.K. Structure, function, and mechanism of ribonucleotide reductases. Biochim. Biophys. Acta 1699 (2004) 1–34. http://dx.doi.org/10.1016/j.bbapap.2004.02.00710.1016/j.bbapap.2004.02.007Search in Google Scholar PubMed

[43] Shen, C., Lancaster, C.S., Shi, B., Guo, H., Thimmaiah, P. and Bjornsti, M.A. TOR signaling is a determinant of cell survival in response to DNA damage. Mol. Cell. Biol. 27 (2007) 7007–7017. http://dx.doi.org/10.1128/MCB.00290-0710.1128/MCB.00290-07Search in Google Scholar PubMed PubMed Central

[44] Tanaka, H., Arakawa, H., Yamaguchi, T., Shiraishi, K., Fukuda, S., Matsui, K., Takei, Y. and Nakamura, Y. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature 404 (2000) 42–49. http://dx.doi.org/10.1038/3500350610.1038/35003506Search in Google Scholar PubMed

[45] D’Angiolella, V., Donato, V., Forrester, F.M., Jeong. Y.T., Pellacani, C., Kudo, Y., Saraf, A., Florens, L., Washburn, M.P. and Pagano, M. Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair. Cell 149 (2012) 1023–1034. http://dx.doi.org/10.1016/j.cell.2012.03.04310.1016/j.cell.2012.03.043Search in Google Scholar PubMed PubMed Central

[46] Imataka, H., Gradi, A. and Sonenberg, N. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J. 17 (1998) 7480–7489. http://dx.doi.org/10.1093/emboj/17.24.748010.1093/emboj/17.24.7480Search in Google Scholar PubMed PubMed Central

[47] Chow, L.M. and Baker, S.J. PTEN function in normal and neoplastic growth. Cancer Lett. 241 (2006) 184–196. http://dx.doi.org/10.1016/j.canlet.2005.11.04210.1016/j.canlet.2005.11.042Search in Google Scholar PubMed

[48] Graat, H.C., Carette, J.E., Schagen, F.H., Vassilev, L.T., Gerritsen, W.R., Kaspers, G.J., Wuisman, P.I. and van Beusechem, V.W. Enhanced tumor cell kill by combined treatment with a small-molecule antagonist of mouse double minute 2 and adenoviruses encoding p53. Mol. Cancer Ther. 6 (2007) 1552–1561. http://dx.doi.org/10.1158/1535-7163.MCT-06-063110.1158/1535-7163.MCT-06-0631Search in Google Scholar PubMed

[49] Wang, W. and El-Deiry, W.S. Restoration of p53 to limit tumor growth. Curr. Opin. Oncol. 20 (2008) 90–96. http://dx.doi.org/10.1097/CCO.0b013e3282f31d6f10.1097/CCO.0b013e3282f31d6fSearch in Google Scholar PubMed

[50] Shepard, H.M., Jin, P., Slamon, D.J., Pirot, Z. and Maneval, D.C. Herceptin. Handb. Exp. Pharmacol. 181 (2008) 183–219. http://dx.doi.org/10.1007/978-3-540-73259-4_910.1007/978-3-540-73259-4_9Search in Google Scholar PubMed

[51] Rivera, F., Vega-Villegas, M.E., Lopez-Brea, M.F. and Marquez, R. Current situation of Panitumumab, Matuzumab, Nimotuzumab and Zalutumumab. Acta Oncol. 47 (2008) 9–19. http://dx.doi.org/10.1080/0284186070170472410.1080/02841860701704724Search in Google Scholar PubMed

[52] Chresta, C.M., Davies, B.R., Hickson, I., Harding, T., Cosulich, S., Critchlow, S.E., Vincent, J.P., Ellston, R., Jones, D., Sini, P., James, D., Howard, Z., Dudley, P., Hughes, G., Smith, L., Maguire, S., Hummersone, M., Malagu, K., Menear, K., Jenkins, R., Jacobsen, M., Smith, G.C., Guichard, S. and Pass, M. AZD8055 is a potent, selective, and orally bioavailable ATPcompetitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res. 70 (2010) 288–298. http://dx.doi.org/10.1158/0008-5472.CAN-09-175110.1158/0008-5472.CAN-09-1751Search in Google Scholar PubMed

[53] Sangai, T., Akcakanat, A., Chen, H., Tarco, E., Wu, Y., Do, K.A., Miller, T.W., Arteaga, C.L., Mills, G.B., Gonzalez-Angulo, A.M. and Meric-Bernstam, F. Biomarkers of response to Akt inhibitor MK-2206 in breast cancer. Clin. Cancer Res. 18 (2012) 5816–5828. http://dx.doi.org/10.1158/1078-0432.CCR-12-114110.1158/1078-0432.CCR-12-1141Search in Google Scholar PubMed PubMed Central

[54] Vousden, K.H. and Lane, D.P. p53 in health and disease. Nat. Rev. Mol. Cell Biol. 8 (2007) 275–283. http://dx.doi.org/10.1038/nrm214710.1038/nrm2147Search in Google Scholar PubMed

Published Online: 2014-6-22
Published in Print: 2014-6-1

© 2013 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 7.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-014-0191-7/html
Scroll to top button