Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter December 21, 2014

Gene expression patterns in bone following lipopolysaccharide stimulation

  • Jing Yang EMAIL logo , Nan Su , Xiaolan Du and Lin Chen

Abstract

Bone displays suppressed osteogenesis in inflammatory diseases such as sepsis and rheumatoid arthritis. However, the underlying mechanisms have not yet been clearly explained. To identify the gene expression patterns in the bone, we performed Affymetrix Mouse Genome 430 2.0 Array with RNA isolated from mouse femurs 4 h after lipopolysaccharide (LPS) administration. The gene expressions were confirmed with real-time PCR. The serum concentration of the N-terminal propeptide of type I collagen (PINP), a bone-formation marker, was determined using ELISA. A total of 1003 transcripts were upregulated and 159 transcripts were downregulated (more than twofold upregulation or downregulation). Increased expression levels of the inflammation-related genes interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α) were confirmed from in the period 4 h to 72 h after LPS administration using real-time PCR. Gene ontogene analysis found four bone-related categories involved in four biological processes: system development, osteoclast differentiation, ossification and bone development. These processes involved 25 upregulated genes. In the KEGG database, we further analyzed the transforming growth factor β (TGF-β) pathway, which is strongly related to osteogenesis. The upregulated bone morphogenetic protein 2 (BMP2) and downregulated inhibitor of DNA binding 4 (Id4) expressions were further confirmed by real-time PCR after LPS stimulation. The osteoblast function was determined through examination of the expression levels of core binding factor 1 (Cbfa1) and osteocalcin (OC) in bone tissues and serum PINP from 4 h to 72 h after LPS administration. The expressions of OC and Cbfa1 decreased 6 h after administration (p < 0.05). Significantly suppressed PINP levels were observed in the later stage (from 8 h to 72 h, p < 0.05) but not in the early stage (4 h or 6 h, p > 0.05) of LPS stimulation. The results of this study suggest that LPS induces elevated expressions of skeletal system development- and osteoclast differentiation-related genes and inflammation genes at an early stage in the bone. The perturbed functions of these two groups of genes may lead to a faint change in osteogenesis at an early stage of LPS stimulation. Suppressed bone formation was found at later stages in response to LPS stimulation.

[1] Calvi, L.M., Adams, G.B., Weibrecht, K.W., Weber, J.M., Olson, D.P., Knight, M.C., Martin, R.P., Schipani, E., Divieti, P., Bringhurst, F.R., Milner, L.A., Kronenberg, H.M. and Scadden, D.T. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425 (2003) 841–846. DOI: 10.1038/nature02040. http://dx.doi.org/10.1038/nature0204010.1038/nature02040Search in Google Scholar PubMed

[2] Riedemann, N.C., Guo, R.F. and Ward, P.A. Novel strategies for the treatment of sepsis. Nat. Med. 9 (2003) 517–524. DOI: 10.1038/nm0503-517. http://dx.doi.org/10.1038/nm0503-51710.1038/nm0503-517Search in Google Scholar PubMed

[3] Walsh, M.C., Kim, N., Kadono, Y., Rho, J., Lee, S.Y., Lorenzo, J. and Choi, Y. Osteoimmunology: interplay between the immune system and bone metabolism. Annu. Rev. Immunol. 24 (2006) 33–63. DOI: 10.1146/annurev.immunol.24.021605.090646. http://dx.doi.org/10.1146/annurev.immunol.24.021605.09064610.1146/annurev.immunol.24.021605.090646Search in Google Scholar PubMed

[4] Lee, N.K., Sowa, H., Hinoi, E., Ferron, M., Ahn, J.D., Confavreux, C., Dacquin, R., Mee, P.J., McKee, M.D., Jung, D.Y., Zhang, Z., Kim, J.K., Mauvais-Jarvis, F., Ducy, P., Karsenty, G. Endocrine regulation of energy metabolism by the skeleton. Cell 130 (2007) 456–469. DOI: 10.1016/j.cell.2007.05.047. http://dx.doi.org/10.1016/j.cell.2007.05.04710.1016/j.cell.2007.05.047Search in Google Scholar PubMed PubMed Central

[5] Nair, S.P., Meghji, S., Wilson, M., Reddi, K., White, P. and Henderson, B. Bacterially induced bone destruction: mechanisms and misconceptions. Infect. Immun. 64 (1996) 2371–2380. 10.1128/iai.64.7.2371-2380.1996Search in Google Scholar PubMed PubMed Central

[6] Zhuang, L., Jung, J.Y., Wang, E.W., Houlihan, P., Ramos, L., Pashia, M. and Chole, R.A. Pseudomonas aeruginosa lipopolysaccharide induces osteoclastogenesis through a toll-like receptor 4 mediated pathway in vitro and in vivo. Laryngoscope 117 (2007) 841–847. DOI: 10.1097/MLG.0b013e318033783a. http://dx.doi.org/10.1097/MLG.0b013e318033783a10.1097/MLG.0b013e318033783aSearch in Google Scholar PubMed

[7] Grimm, G., Vila, G., Bieglmayer, C., Riedl, M., Luger, A. and Clodi, M. Changes in osteopontin and in biomarkers of bone turnover during human endotoxemia. Bone 47 (2010) 388–391. DOI: 10.1016/j.bone.2010.04.602. http://dx.doi.org/10.1016/j.bone.2010.04.60210.1016/j.bone.2010.04.602Search in Google Scholar PubMed

[8] Abu-Amer, Y., Ross, F.P., Edwards, J. and Teitelbaum, S.L. Lipopolysaccharide-stimulated osteoclastogenesis is mediated by tumor necrosis factor via its P55 receptor. J. Clin. Invest. 100 (1997) 1557–1565. DOI: 10.1172/JCI119679. http://dx.doi.org/10.1172/JCI11967910.1172/JCI119679Search in Google Scholar PubMed PubMed Central

[9] Lowik, C.W., Nibbering, P.H., van de Ruit, M. and Papapoulos, S.E. Inducible production of nitric oxide in osteoblast-like cells and in fetal mouse bone explants is associated with suppression of osteoclastic bone resorption. J. Clin. Invest. 93 (1994) 1465–1472. DOI: 10.1172/JCI117124. http://dx.doi.org/10.1172/JCI11712410.1172/JCI117124Search in Google Scholar PubMed PubMed Central

[10] Nakamura, T., Kawagoe, Y., Matsuda, T. and Koide, H. Effect of polymyxin B-immobilized fiber on bone resorption in patients with sepsis. Intensive Care Med. 30 (2004) 1838–1841. DOI: 10.1007/s00134-004-2357-7. http://dx.doi.org/10.1007/s00134-004-2357-710.1007/s00134-004-2357-7Search in Google Scholar PubMed

[11] Zhang, Y., Xue, C., Zhu, T., Du, X., Su, N., Qi, H., Yang, J., Shi, Y. and Chen, L. Serum bone alkaline phosphatase in assessing illness severity of infected neonates in the neonatal intensive care unit. Int. J. Biol. Sci. 8 (2012) 30–38. http://dx.doi.org/10.7150/ijbs.8.3010.7150/ijbs.8.30Search in Google Scholar

[12] Kadono, H., Kido, J., Kataoka, M., Yamauchi, N. and Nagata, T. Inhibition of osteoblastic cell differentiation by lipopolysaccharide extract from Porphyromonas gingivalis. Infect. Immun. 67 (1999) 2841–2846. Search in Google Scholar

[13] Xing, Q., Ye, Q., Fan, M., Zhou, Y., Xu, Q. and Sandham, A. Porphyromonas gingivalis lipopolysaccharide inhibits the osteoblastic differentiation of preosteoblasts by activating Notch1 signaling. J. Cell. Physiol. 225 (2010) 106–114. DOI: 10.1002/jcp.22201. http://dx.doi.org/10.1002/jcp.2220110.1002/jcp.22201Search in Google Scholar

[14] Gilbert, L., He, X., Farmer, P., Boden, S., Kozlowski, M., Rubin, J. and Nanes, M.S. Inhibition of osteoblast differentiation by tumor necrosis factoralpha. Endocrinology 141 (2000) 3956–3964. DOI: 10.1210/endo.141.11.7739. 10.1210/endo.141.11.7739Search in Google Scholar

[15] Gilbert, L., He, X., Farmer, P., Rubin, J., Drissi, H., van Wijnen, A.J., Lian, J.B., Stein, G.S. and Nanes, M.S. Expression of the osteoblast differentiation factor RUNX2 (Cbfa1/AML3/Pebp2alpha A) is inhibited by tumor necrosis factor-alpha. J. Biol. Chem. 277 (2002) 2695–2701. DOI: 10.1074/jbc.M106339200. http://dx.doi.org/10.1074/jbc.M10633920010.1074/jbc.M106339200Search in Google Scholar

[16] Ding, J., Ghali, O., Lencel, P., Broux, O., Chauveau, C., Devedjian, J.C., Hardouin, P. and Magne, D. TNF-alpha and IL-1beta inhibit RUNX2 and collagen expression but increase alkaline phosphatase activity and mineralization in human mesenchymal stem cells. Life Sci. 84 (2009) 499–504. DOI: 10.1016/j.lfs.2009.01.013. http://dx.doi.org/10.1016/j.lfs.2009.01.01310.1016/j.lfs.2009.01.013Search in Google Scholar

[17] Smith, D.D., Gowen, M. and Mundy, G.R. Effects of interferon-gamma and other cytokines on collagen synthesis in fetal rat bone cultures. Endocrinology 120 (1987) 2494–2499. DOI: 10.1210/endo-120-6-2494. http://dx.doi.org/10.1210/endo-120-6-249410.1210/endo-120-6-2494Search in Google Scholar

[18] Canalis, E. Interleukin-1 has independent effects on deoxyribonucleic acid and collagen synthesis in cultures of rat calvariae. Endocrinology 118 (1986) 74–81. DOI:10.1210/endo-118-1-74. http://dx.doi.org/10.1210/endo-118-1-7410.1210/endo-118-1-74Search in Google Scholar

[19] Centrella, M., McCarthy, T.L. and Canalis, E. Tumor necrosis factor-alpha inhibits collagen synthesis and alkaline phosphatase activity independently of its effect on deoxyribonucleic acid synthesis in osteoblast-enriched bone cell cultures. Endocrinology 123 (1988) 1442–1448. DOI: 10.1210/endo-123-3-1442. http://dx.doi.org/10.1210/endo-123-3-144210.1210/endo-123-3-1442Search in Google Scholar

[20] Tsuboi, M., Kawakami, A., Nakashima, T., Matsuoka, N., Urayama, S., Kawabe, Y., Fujiyama, K., Kiriyama, T., Aoyagi, T., Maeda, K. and Eguchi, K. Tumor necrosis factor-alpha and interleukin-1beta increase the Fas-mediated apoptosis of human osteoblasts. J. Lab. Clin. Med. 134 (1999) 222–231. http://dx.doi.org/10.1016/S0022-2143(99)90201-910.1016/S0022-2143(99)90201-9Search in Google Scholar

[21] Christiansen, J.H., Coles, E.G. and Wilkinson, D.G. Molecular control of neural crest formation, migration and differentiation. Curr. Opin. Cell. Biol. 12 (2000) 719–724. http://dx.doi.org/10.1016/S0955-0674(00)00158-710.1016/S0955-0674(00)00158-7Search in Google Scholar

[22] Zhang, H. and Bradley, A. Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122 (1996) 2977–2986. Search in Google Scholar

[23] Wall, N.A. and Hogan, B.L. TGF-beta related genes in development. Curr. Opin. Genet. Dev. 4 (1994) 517–522. http://dx.doi.org/10.1016/0959-437X(94)90066-C10.1016/0959-437X(94)90066-CSearch in Google Scholar

[24] Rosen, V. BMP2 signaling in bone development and repair. Cytokine Growth Factor Rev. 20 (2009) 475–480. DOI:10.1016/j.cytogfr. 2009.10.018. http://dx.doi.org/10.1016/j.cytogfr.2009.10.01810.1016/j.cytogfr.2009.10.018Search in Google Scholar PubMed

[25] Liu, T., Gao, Y., Sakamoto, K., Minamizato, T., Furukawa, K., Tsukazaki, T., Shibata, Y., Bessho, K., Komori, T. and Yamaguchi, A. BMP-2 promotes differentiation of osteoblasts and chondroblasts in Runx2-deficient cell lines. J. Cell Physiol. 211 (2007) 728–735. DOI: 10.1002/jcp.20988. http://dx.doi.org/10.1002/jcp.2098810.1002/jcp.20988Search in Google Scholar PubMed

[26] Zamurovic, N., Cappellen, D., Rohner, D. and Susa, M. Coordinated activation of notch, Wnt, and transforming growth factor-beta signaling pathways in bone morphogenic protein 2-induced osteogenesis. Notch target gene Hey1 inhibits mineralization and Runx2 transcriptional activity. J. Biol. Chem. 279 (2004) 37704–33715. DOI: 10.1074/jbc.M403813200. http://dx.doi.org/10.1074/jbc.M40381320010.1074/jbc.M403813200Search in Google Scholar PubMed

[27] Bedford, L., Walker, R., Kondo, T., van Cruchten, I., King, E.R. and Sablitzky, F. Id4 is required for the correct timing of neural differentiation. Dev. Biol. 280 (2005) 386–395. DOI: 10.1016/j.ydbio.2005.02.001. http://dx.doi.org/10.1016/j.ydbio.2005.02.00110.1016/j.ydbio.2005.02.001Search in Google Scholar PubMed

[28] Rivera, R. and Murre, C. The regulation and function of the Id proteins in lymphocyte development. Oncogene 20 (2001) 8308–8316. DOI: 10.1038/sj.onc.1205091. http://dx.doi.org/10.1038/sj.onc.120509110.1038/sj.onc.1205091Search in Google Scholar PubMed

[29] Huang, R.L., Yuan, Y., Zou, G.M., Liu, G., Tu, J. and Li, Q. LPS-stimulated inflammatory environment inhibits BMP-2-induced osteoblastic differentiation through crosstalk between TLR4/MyD88/NF-kappaB and BMP/Smad signaling. Stem Cells Dev. 23 (2014) 277–289. DOI: 10.1089/scd.2013.0345. http://dx.doi.org/10.1089/scd.2013.034510.1089/scd.2013.0345Search in Google Scholar PubMed PubMed Central

Published Online: 2014-12-21
Published in Print: 2014-12-1

© 2014 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-014-0216-2/html
Scroll to top button