Skip to main content
Log in

Performance Evaluation and Quantitative Accuracy of Multipinhole NanoSPECT/CT Scanner for Theranostic Lu-177 Imaging

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

SPECT plays important role in peptide receptor targeted radionuclide therapy using theranostic radionuclides such as Lu-177 for the treatment of various cancers. However, SPECT studies must be quantitatively accurate because the reliable assessment of tumor uptake and tumor-to-normal tissue ratios can only be performed using quantitatively accurate images. Hence, it is important to evaluate performance parameters and quantitative accuracy of preclinical SPECT systems for therapeutic radioisotopes before conducting pre- and post-therapy SPECT imaging or dosimetry studies. In this study, we evaluated system performance and quantitative accuracy of NanoSPECT/CT scanner for Lu-177 imaging using point source and uniform phantom studies. We measured recovery coefficient, uniformity, spatial resolution, system sensitivity and calibration factor for mouse whole body standard aperture. We also performed the experiments using Tc-99m to compare the results with that of Lu-177. We found that the recovery coefficient of more than 70% for Lu-177 at the optimum noise level when nine iterations were used. The spatial resolutions of Lu-177 with and without adding uniform background was comparable to that of Tc-99m in axial, radial and tangential directions. System sensitivity measured for Lu-177 was almost three times less than that of Tc-99m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. L. Franc, P. D. Acton, C. Mari and B. H. Hasegawa, J. Nucl. Med. 49, 1651 (2008).

    Article  Google Scholar 

  2. S. Park, U. Jung, S. Lee, D. Lee and C. Kim, Biomed. Eng. Lett. 7, 121 (2017).

    Article  Google Scholar 

  3. J. S. Lee, G. Kovalski, T. Sharir and D. S. Lee, J. Nucl. Cardiol. DOI: https://doi.org/10.1007/s12350-017-0979-8(2017).

  4. M. G. Pomper and J. S. Lee, Curr. Pharm. Des. 11, 3247 (2005).

    Article  Google Scholar 

  5. F. J. Beekman and B. Vastenhouw, Phys. Med. Biol. 49, 4579 (2004).

    Article  Google Scholar 

  6. Y. J. Lee, D. H. Kim, Y. C. Rhee and H. J. Kim, J. Korean Phys. Soc. 64, 1737 (2014).

    Article  ADS  Google Scholar 

  7. N. U. Schramm et al., IEEE Trans. Nucl. Sci. 50, 315 (2003).

    Article  ADS  Google Scholar 

  8. N. Schramm et al., J. Nucl. Med. 47, 233 (2006).

    Google Scholar 

  9. F. P. Difilippo, Phys. Med. Biol. 53, 4185 (2008).

    Article  Google Scholar 

  10. A. A. Harteveld et al., J. Nucl. Med. 52, 1646 (2011).

    Article  Google Scholar 

  11. F. Forrer et al., Eur. J. Nucl. Med. Mol. Imaging. 33, 1214 (2006).

    Article  Google Scholar 

  12. N. Schramm et al., J. Nucl. Med. 48, 436 (2007).

    Google Scholar 

  13. D. Cheng et al., Bioconjug. Chem. 21, 1565 (2010).

    Article  Google Scholar 

  14. C. M. Finucane, I. Murray, J. K. Sosabowski, J. M. Foster and S. J. Mather, Int. J. Mol. Imaging. 2011, 1 (2011).

    Article  Google Scholar 

  15. S. Deleye et al., Eur. J. Nucl. Med. Mol. Imaging. 40, 744 (2013).

    Article  Google Scholar 

  16. K. Zukotynski, H. Jadvar, J. Capala and F. Fahey, Biomark. Cancer. 8, 35 (2016).

    Google Scholar 

  17. D. S. Lee, H. J. Im and Y. S. Lee, Nanomedicine. 11, 795 (2015).

    Article  Google Scholar 

  18. G. Paganelli et al., Eur. J. Nucl. Med. Mol. Imaging. 41, 1845 (2014).

    Article  Google Scholar 

  19. A. Romer et al., Eur. J. Nucl. Med. Mol. Imaging. 41, 214 (2014).

    Article  Google Scholar 

  20. S. Ezziddin et al., Eur. J. Nucl. Med. Mol. Imaging. 41, 925 (2014).

    Article  Google Scholar 

  21. W. A. van der Zwan et al., Eur. J. Endocrinol. 172, R1 (2015).

    Article  Google Scholar 

  22. E. Ilan et al., J. Nucl. Med. 56, 177 (2015).

    Article  Google Scholar 

  23. A. Dash, S. Chakraborty, M. R. Pillai and F. F. Knapp, Cancer Biother. Radiopharm. 30, 47 (2015).

    Article  Google Scholar 

  24. K. Kim and S. J. Kim, Nucl. Med. Mol. Imaging. DOI: https://doi.org/10.1007/s13139-017-0505-6(2017).

  25. S. Shcherbinin, H. Piwowarska-Bilska, A. Celler and B. Birkenfeld, Phys, Med. Biol. 57, 5733 (2012).

    Article  Google Scholar 

  26. E. Mezzenga et al., PLoS One. 12, 1 (2017).

    Article  Google Scholar 

  27. Y. Yang et al., Phys. Med. Biol. 49, 2527 (2004).

    Article  Google Scholar 

  28. K. Gong, S. R. Cherry and J. Qi, Phys. Med. Biol. 61, N193 (2016).

    Article  Google Scholar 

  29. P. P. Bruyant, J. Nucl. Med. 43, 1343 (2002).

    Google Scholar 

  30. V. Israel-Jost et al., IEEE Trans. Med. Imaging. 25, 158 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Sung Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Kim, K.Y., Hwang, D. et al. Performance Evaluation and Quantitative Accuracy of Multipinhole NanoSPECT/CT Scanner for Theranostic Lu-177 Imaging. J. Korean Phys. Soc. 72, 1379–1386 (2018). https://doi.org/10.3938/jkps.72.1379

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.72.1379

Keywords

Navigation