Skip to main content

Advertisement

Log in

Effectiveness of Strontium Ranelate in the Treatment of Rat Model of Legg–Calve–Perthes Disease

  • Original Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Background

Legg–Calve–Perthes disease (LCPD) causes osteonecrosis of the femoral head (ONFH) by temporarily interrupting the blood supply in children. Even with potential toward bone regeneration and revascularization in LCPD, the prognosis depends on the deformity of femoral heads, and successful rate with the current treatments varies. Antiresorptive therapy such as bisphosphonate, which maintains mechanical stability of the femoral head by inhibiting necrotic bone resorption, has proven effective in animal models. However, concerns on simultaneous decline in bone turnover rate still leave room for improvement. Strontium ranelate with dual effect on inhibiting bone resorption and accelerating bone formation is presumed to be an ideal therapy for reserving sphericity of femoral heads in LCPD

Materials and Methods

In this study of a rat model of ONFH, randomized groups of rats treated with strontium ranelate or normal saline are compared at different time points in analysis of radiological, histological, and bone morphometric changes. Gait analysis was also compared between the two groups

Results

The group treated with strontium ranelate recovered their normal gait earlier than the control group did. Bone density, trabecular thickness, sphericity of the femoral head, and bone regeneration potential were also preserved in the strontium ranelate group

Conclusion

Strontium ranelate effectively prevented collapse of the ischemic femoral head and enhanced trabecular thickness in the rat model of LCPD. Hopefully, this preclinical experiment can improve the effectiveness of strontium ranelate treatment for pediatric ONFH

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim HK. Legg-Calvé-Perthes disease. J Am Acad Orthop Surg 2010;18:676–86.

    Article  Google Scholar 

  2. Kim HK. Pathophysiology and new strategies for the treatment of Legg-calvé-Perthes Disease. J Bone Joint Surg Am 2012;94:659–69.

    Article  Google Scholar 

  3. Herring JA, Kim HT, Browne R. Legg-Calve-Perthes disease. Part II: Prospective multicenter study of the effect of treatment on outcome. J Bone Joint Surg Am 2004;86-A:2121–34.

    Article  Google Scholar 

  4. Joseph B. Prognostic factors and outcome measures in Perthes disease. Orthop Clin North Am 2011;42:303–15, v–vi.

    Article  Google Scholar 

  5. Wiig O, Terjesen T, Svenningsen S. Prognostic factors and outcome of treatment in Perthes’ disease: A prospective study of 368 patients with five-year followup. J Bone Joint Surg Br 2008;90:1364–71.

    Article  CAS  Google Scholar 

  6. Peled E, Bejar J, Barak M, Orion E, Norman D. Core decompression and alendronate treatment of the osteonecrotic rat femoral head: Computer-assisted analysis. Int J Exp Pathol 2013;94:212–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim HK, Sanders M, Athavale S, Bian H, Bauss F. Local bioavailability and distribution of systemically (parenterally) administered ibandronate in the infarcted femoral head. Bone 2006;39:205–12.

    Article  CAS  Google Scholar 

  8. Kim HK, Morgan-Bagley S, Kostenuik P. RANKL inhibition: A novel strategy to decrease femoral head deformity after ischemic osteonecrosis. J Bone Miner Res 2006;21:1946–54.

    Article  CAS  Google Scholar 

  9. Little DG, McDonald M, Sharpe IT, Peat R, Williams P, McEvoy T. Zoledronic acid improves femoral head sphericity in a rat model of perthes disease. J Orthop Res 2005;23:862–8.

    Article  CAS  Google Scholar 

  10. Little DG, Peat RA, Mcevoy A, Williams PR, Smith EJ, Baldock PA. Zoledronic acid treatment results in retention of femoral head structure after traumatic osteonecrosis in young Wistar rats. J Bone Miner Res 2003;18:2016–22.

    Article  CAS  Google Scholar 

  11. Kim HK, Su PH. Development of flattening and apparent fragmentation following ischemic necrosis of the capital femoral epiphysis in a piglet model. J Bone Joint Surg Am 2002;84-A: 1329–34.

    Article  Google Scholar 

  12. Przedlacki J. Strontium ranelate in post-menopausal osteoporosis. Endokrynol Pol 2011;62:65–72.

    CAS  PubMed  Google Scholar 

  13. Bonnelye E, Chabadel A, Saltel F, Jurdic P. Dual effect of strontium ranelate: Stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone 2008;42:129–38.

    Article  CAS  Google Scholar 

  14. Canalis E, Hott M, Deloffre P, Tsouderos Y, Marie PJ. The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro. Bone 1996;18:517–23.

    Article  CAS  Google Scholar 

  15. Marie PJ. Optimizing bone metabolism in osteoporosis: Insight into the pharmacologic profile of strontium ranelate. Osteoporos Int 2003;14 Suppl 3:S9–12.

    Article  CAS  Google Scholar 

  16. Norman D, Reis D, Zinman C, Misselevich I, Boss JH. Vascular deprivation-induced necrosis of the femoral head of the rat. An experimental model of avascular osteonecrosis in the skeletally immature individual or Legg-Perthes disease. Int J Exp Pathol 1998;79:173–81.

    Article  CAS  Google Scholar 

  17. The classic. The first stages of coxa plana by Henning Waldenström 1938. Clin Orthop Relat Res 1984;191:4–7.

    Google Scholar 

  18. Meek MF, Van Der Werff JF, Nicolai JP, Gramsbergen A. Biodegradable p(DLLA-epsilon-CL) nerve guides versus autologous nerve grafts: Electromyographic and video analysis. Muscle Nerve 2001;24:753–9.

    Article  CAS  Google Scholar 

  19. Koob TJ, Pringle D, Gedbaw E, Meredith J, Berrios R, Kim HK. Biomechanical properties of bone and cartilage in growing femoral head following ischemic osteonecrosis. J Orthop Res 2007;25:750–7.

    Article  Google Scholar 

  20. Miao D, Scutt A. Histochemical localization of alkaline phosphatase activity in decalcified bone and cartilage. J Histochem Cytochem 2002;50:333–40.

    Article  CAS  Google Scholar 

  21. Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, et al. Standardized nomenclature, symbols, and units for bone histomorphometry: A 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2013;28:2–17.

    Article  Google Scholar 

  22. Hamdy NA. Strontium ranelate improves bone microarchitecture in osteoporosis. Rheumatology (Oxford) 2009;48 Suppl 4:iv9–13.

    Article  CAS  Google Scholar 

  23. Kim HK, Aruwajoye O, Stetler J, Stall A. Effects of non-weightbearing on the immature femoral head following ischemic osteonecrosis: An experimental investigation in immature pigs. J Bone Joint Surg Am 2012;94:2228–37.

    Article  Google Scholar 

  24. Kim HK, Aruwajoye O, Du J, Kamiya N. Local administration of bone morphogenetic protein-2 and bisphosphonate during non-weight-bearing treatment of ischemic osteonecrosis of the femoral head: An experimental investigation in immature pigs. J Bone Joint Surg Am 2014;96:1515–24.

    Article  Google Scholar 

  25. Vandermeer JS, Kamiya N, Aya-ay J, Garces A, Browne R, Kim HK. Local administration of ibandronate and bone morphogenetic protein-2 after ischemic osteonecrosis of the immature femoral head: A combined therapy that stimulates bone formation and decreases femoral head deformity. J Bone Joint Surg Am 2011;93:905–13.

    Article  Google Scholar 

  26. Fan L, Zhang C, Yu Z, Shi Z, Dang X, Wang K. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and osteogenesis in rabbit femoral head osteonecrosis. Bone 2015;81:544–53.

    Article  CAS  Google Scholar 

  27. Chen YP, Chen WC, Wang KC, Chen CH. Effectiveness of synovial fluid mesenchymal stem cells embedded in alginate beads for treatment of steroid-induced avascular necrosis of the femoral head. J Orthop Sci 2014;19:657–66.

    Article  CAS  Google Scholar 

  28. Abrahamsen B, Grove EL, Vestergaard P. Nationwide registry-based analysis of cardiovascular risk factors and adverse outcomes in patients treated with strontium ranelate. Osteoporos Int 2014;25:757–62.

    Article  CAS  Google Scholar 

  29. Nardone V, Zonefrati R, Mavilia C, Romagnoli C, Ciuffi S, Fabbri S, et al. In vitro effects of strontium on proliferation and osteoinduction of human preadipocytes. Stem Cells Int 2015;2015:871863.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Hwa Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YP., Tan, A., Ho, WP. et al. Effectiveness of Strontium Ranelate in the Treatment of Rat Model of Legg–Calve–Perthes Disease. IJOO 52, 380–386 (2018). https://doi.org/10.4103/ortho.IJOrtho_437_16

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.4103/ortho.IJOrtho_437_16

Keywords

MeSH terms

Navigation