Skip to main content

Advertisement

Log in

Classification, imaging, biopsy and staging of osteosarcoma

  • Symposium - Osteosarcoma
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Osteosarcoma is the most common primary osseous malignancy excluding malignant neoplasms of marrow origin (myeloma, lymphoma and leukemia) and accounts for approximately 20% of bone cancers. It predominantly affects patients younger than 20 years and mainly occurs in the long bones of the extremities, the most common being the metaphyseal area around the knee. These are classified as primary (central or surface) and secondary osteosarcomas arising in preexisting conditions. The conventional plain radiograph is the best for probable diagnosis as it describes features like sun burst appearance, Codman’s triangle, new bone formation in soft tissues along with permeative pattern of destruction of the bone and other characteristics for specific subtypes of osteosarcomas. X-ray chest can detect metastasis in the lungs, but computerized tomography (CT) scan of the thorax is more helpful. Magnetic resonance imaging (MRI) of the lesion delineates its extent into the soft tissues, the medullary canal, the joint, skip lesions and the proximity of the tumor to the neurovascular structures. Tc99 bone scan detects the osseous metastases. Positron Emission Tomography (PET) is used for metastatic workup and/or local recurrence after resection. The role of biochemical markers like alkaline phosphatase and lactate dehydrogenase is pertinent for prognosis and treatment response. The biopsy confirms the diagnosis and reveals the grade of the tumor. Enneking system for staging malignant musculoskeletal tumors and American Joint Committee on Cancer (AJCC) staging systems are most commonly used for extremity sarcomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosenberg AE. Bone, joints and soft tissue tumors. In: Kumar V, Abbas AK, Fausto N, Aster JC, editors. Robins and cotran pathologic basis of disease. 8th ed. Philadelphia: WB Saunders; 2010. p. 1203–56.

    Google Scholar 

  2. Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F, editors. World Health Organization, classification of tumours: Pathology and genetics of tumors of soft tissue and bone. Lyon: IARC Press; 2013.

    Google Scholar 

  3. Wold LE, Adler CP, Sim FH, Unni KK. Atlas of orthopaedic pathology, 2nd ed. Saunders: Philadelphia-London; 2003. p. 179–85.

    Google Scholar 

  4. Jaffe HL. Tumors and tumors like conditions of the bones and joints. Philadelphia: Lea and Febiger; 1958.

    Google Scholar 

  5. Unni KK. Inwards CY Bone tumors: General aspects and data on 10,165 cases. 6th ed. Philadelphia: Lippincott Williams and Wilkins; 2010.

    Google Scholar 

  6. Lichtenstein L. Bone tumors. 4th ed. St. Louis: Mosby; 1972.

    Google Scholar 

  7. Heck RK Jr. Malignant bone tumors. In: Canale ST, Beaty JH, editors. Campbell’s Operative Orthopedics. Missouri: Mosby Year Book; 2008. p. 901–38.

    Chapter  Google Scholar 

  8. Dorfman HD, Czerniak B. Bone tumors. St. Louis: Mosby; 1998.

    Google Scholar 

  9. Campanacci M. Bone and soft tissue tumours: Clinical features, imaging, pathology and treatment. 2nd ed. Vienna: Springer-Verlag; 1999.

    Book  Google Scholar 

  10. Bacci G, Ferrari S, Lari S, Mercuri M, Donati D, Longhi A. Osteosarcoma of the limb: Amputation or limb salvage in patients treated by neoadjuvant chemotherapy. J Bone Joint Surg 2002;84:88–92.

    Article  CAS  Google Scholar 

  11. Bacci G, Ferrari S, Longhi A. Preoperative therapy versus immediate surgery in nonmetastatic osteosarcoma. J Clin Oncol 2003;21:4662–6.

    Article  CAS  PubMed  Google Scholar 

  12. Bacci G, Longhi A, Varsari M. Prognostic factors for osteosarcoma of the extremity treated with neoadjuvant chemotherapy: 15 years experience in 789 patients treated at a single institution. Cancer 2006;106:1154–64.

    Article  PubMed  Google Scholar 

  13. Huvos AG, Woodard HQ, Cahan WG, Higinbotham NL, Stewart FW, Butler A, et al. Postradiation osteogenic sarcoma of bone and soft tissues. A clinicopathologic study of 66 patients. Postradiation osteogenic sarcoma of bone and soft tissues 1985;55:1244–55.

    CAS  Google Scholar 

  14. Le Vu B, de Vathaire F, Shamsaldin A, Hawkins MM, Grimaud E, Hardiman C A et al. Radiation dose, chemotherapy and risk of osteosarcoma after solid tumor during childhood. Int J Cancer 1998;77:370–7.

    Article  Google Scholar 

  15. Tucker MA, D’Angio GJ, Boice JD Jr, Strong LC, Li FP, Stovall M, et al. Bone sarcomas linked to radiotherapy and chemotherapy in children. N Eng J Med 1987;317:588–93.

    Article  CAS  Google Scholar 

  16. Visuri T, Pulkkinen P, Paavolainen P. Malignant tumors at the site of total hip prosthesis. Analytic review of 46 cases. Malignant tumors at the site of total hip prosthesis 2006;21:311–23.

    Google Scholar 

  17. Resnick D, Kransdorf MJ. Tumors and tumor-like lesions of bone: Radiographic principles. In: Bone and joint imaging. Elsevier Saunders; Philadelphia Pennsylvania 3rd ed. 2005. p. 1109–98.

    Chapter  Google Scholar 

  18. Resnick D. Tumors and tumor-like lesions of bone: Radiographic principles. In: Resnick D editor. Diagnosis of bone and joint disorders. Saunders; Philadelphia Pennsylvania 4th ed. 2002. p. 3745–4128.

    Google Scholar 

  19. Vanel D, Henry AM, Lumbroso J, Lemalet E, Couanet D, Piekarski JD, et al. Pulmonary evaluation of patients with osteosarcoma: Role of standard radiography, tomography, CT, Scintigraphy and tomoscintigraphy. Am J Roentgenol 1984;143:519–23.

    Article  CAS  Google Scholar 

  20. Brown KT, Kattapuram SV, Rosenthal DI. Computed tomography analysis of bone tumors: Patterns of cortical destruction and soft tissue extension. Skeletal Radiol 1986;15:448–51.

    Article  CAS  PubMed  Google Scholar 

  21. Kenney PJ, Gilula LA, Murphy WA. The use of computed tomography to distinguish osteochondroma and chondrosarcoma. Radiology 1981;139:129–37.

    Article  CAS  PubMed  Google Scholar 

  22. Aisen AM, Martel W, Braunstein EM, McMillin KI, Philips WA, Kling TF. MRI and CT evaluation of primary bone and soft-tissue tumors. Am J Roentgenol 1986;146:749–56.

    Article  CAS  Google Scholar 

  23. Rubin DA. Magnetic resonance imaging: Practical considerations. In: Resnick D, Kransdorf MJ, editors. Bone and joint imaging. 3rd ed. Philadelphia Pennsylvania: Elsevier Saunders; 2005. p. 118–32.

    Chapter  Google Scholar 

  24. Bohndorf K, Reiser M, Lochner B, Feaux DL, Steinbrich W. Magnetic resonance imaging of primary tumors and tumor-like lesions of bone. Skeletal Radiol 1986;15:511–7.

    Article  CAS  PubMed  Google Scholar 

  25. Holscher HC, Bloem JL, Vanel D, Hermans J, Nooy MA, Taminiau AH, et al. Osteosarcoma: Chemotherapy induced changes at MR imaging. Radiology 1992;182:839–44.

    Article  CAS  PubMed  Google Scholar 

  26. Uhl M, Saueressig U, van Buiren M, Kontny U, Niemeyer C, Köhler G, et al. Osteosarcoma: Preliminary results of in vivo assessment of tumor necrosis after chemotherapy with diffusion- and perfusion-weighted magnetic resonance imaging. Invest Radiol 2006;41:618–23.

    Article  CAS  PubMed  Google Scholar 

  27. Schneider R. Radionuclide technique. In: Resnick D, Kransdorf MJ, editors. Bone and joint imaging. 3rd ed, Philadelphia Pennsylvania: Elsevier Saunders; 2005. p. 86–117.

    Chapter  Google Scholar 

  28. Huang TL, Liu RS, Chen TH, Chen WY, Hsu HC, Hsu YC. Comparison between F-18-FDG positron emission tomography and histology for the assessment of tumor necrosis rates in primary osteosarcoma. J Chin Med Assoc 2006;69:372–6.

    Article  PubMed  Google Scholar 

  29. Hongtao L, Hui Z, Bingshun W, Xiaojin W, Zhiyu W, Shuier Z, et al. 18F-FDG positron emission tomography for the assessment of histological response to neoadjuvant chemotherapy in osteosarcomas: A meta-analysis. Surg Oncol 2012;21:165–70.

    Article  Google Scholar 

  30. Bajpai J, Kumar R, Sreenivas V, Sharma MC, Khan SA, Rastogi S, et al. Prediction of chemotherapy response by PET-CT in osteosarcoma: Correlation with histologic necrosis. J Pediatr Hematol Oncol 2011;33:271–8.

    Google Scholar 

  31. Im HJ, Kim TS, Park SY, Min HS, Kim JH, Kang HG, et al. Prediction of tumour necrosis fractions using metabolic and volumetric 18F-FDG PET/CT indices, after one course and at the completion of neoadjuvant chemotherapy, in children and young adults with osteosarcoma. Eur J Nucl Med Mol Imaging 2012;39:39–49.

    Article  CAS  PubMed  Google Scholar 

  32. Cistaro A, Lopci E, Gastaldo L, Fania P, Brach DP, Fagioli F. The role of 18F-FDG PET/CT in the metabolic characterization of lung nodules in pediatric patients with bone sarcoma. Pediatr Blood Cancer 2012;59:1206–10.

    Article  PubMed  Google Scholar 

  33. Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, et al. Procedure Guideline for SPECT/CT Imaging 1. J Nucl Med 2006;47:1227–34.

    PubMed  Google Scholar 

  34. Cook GJ, Maisey MN, Fogelman I. Fluorine-18-FDG PET in Paget’s disease of bone. J Nucl Med 1997;38:1495–7.

    CAS  PubMed  Google Scholar 

  35. Bickels J, Jelinek JS, Shmookler BM, Neff RS, Malawer MM. Biopsy of musculoskeletal tumors. Clin Orthop Rel Res 1999;36:212–9.

    Google Scholar 

  36. Mitsuyoshi G, Naito N, Kawai A, Kunisada T, Oshida A, Yanai H, et al. Accurate diagnosis of musculoskeletal lesions by core needle biopsy. J Surg Oncol 2006;94:21–7.

    Article  PubMed  Google Scholar 

  37. Ottolenghi CE. Diagnosis of orthopaedic lesions by aspiration biopsy. J Bone Joint Surg Am 1955;37:443–64.

    Article  PubMed  Google Scholar 

  38. Murphy WA, Destouet JM, Gilula LA. Percutaneous skeletal biopsy. A procedure for radiologists - results, review and recommendations. Percutaneous skeletal biopsy 1981;139:545–9.

    CAS  Google Scholar 

  39. Moore TM, Meyers MH, Patzakis MJ, Terry R, Harvey JP Jr. Closed biopsy of musculoskeletal lesions. J Bone Joint Surg Am 1979;61:375–80.

    Article  CAS  PubMed  Google Scholar 

  40. Skrzynski MC, Biermann JS, Montag A, Simon MA. Diagnostic accuracy and charge savings of outpatient core needle biopsy compared with open biopsy of musculoskeletal tumors. J Bone Joint Surg Am 1996;78:644–9.

    Article  CAS  PubMed  Google Scholar 

  41. Lawrence Y, Nelson SD, Seeger LL, Eckardt JJ, Eilber FR. Primary musculoskeletal neoplasms: Effectiveness of core needle biopsy. Radiology 1999;212:682–6.

    Article  Google Scholar 

  42. Welker JA, Henshaw RM, Jelinek J, Shmookler BM, Malawer MM. The percutaneous needle biopsy is safe and recommended in the diagnosis of musculoskeletal masses. Cancer 2000;89:2677–86.

    Article  CAS  PubMed  Google Scholar 

  43. Jelinek JS, Murphey MD, Welker JA. Diagnosis of primary bone tumor with image-guided percutaneous biopsy: Experience with 110 Tumors. Radiology 2002;223:731–7.

    Article  PubMed  Google Scholar 

  44. Wu JS, Goldsmith JD, Horwich PJ, Shetty SK, Hochman MG. Bone and soft-tissue lesions: What factors affect diagnostic yield of image-guided core-needle biopsy? Radiology 2008;248:962–70.

    Article  PubMed  Google Scholar 

  45. Carrino JA, Khurana B, Ready JE, Silverman SG, Winalski CS. Magnetic resonance imaging-guided percutaneous biopsy of musculoskeletal lesions. J Bone Joint Surg Am 2007;89:2179–87.

    Article  PubMed  Google Scholar 

  46. Pollock RC, Stalley PD. Biopsy of musculoskeletal tumours:Beware. ANZ J Surg 2004;74:516–9.

    Article  PubMed  Google Scholar 

  47. Hogendoorn PC, Athanasoul N, Bielack S, De Alava E, Dei Tos AP, Ferrari S, et al. Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and followup. Ann Oncol 2010;21:204–13.

    Article  Google Scholar 

  48. Jalgaonkar A, Dawson-Bowling SJ, Mohan AT, Spielberg B, Saifudin A, Pollock R, et al. Identification of the biopsy track in musculoskeletal tumour surgery: A novel technique using India ink. Bone Joint J 2013;95:250–3.

    Article  PubMed  Google Scholar 

  49. Mankin HJ, Lange TA, Spanier SS. The hazards of biopsy in patients with malignant primary bone and soft-tissue tumors. J Bone Joint Surg Am 1982;64:1121–7.

    Article  CAS  PubMed  Google Scholar 

  50. Mankin HJ, Mankin CJ, Simon MA. The hazards of biopsy, revisited: Members of Musculoskeletal Society. J Bone Joint Surg 1996;64:656–63.

    Article  Google Scholar 

  51. Broders AC. Squamous cell epithelioma of the lip: A study of 537 cases. JAMA 1920;74:656–64.

    Article  Google Scholar 

  52. Inwards CY, Unni KK. Classification and grading of bone sarcomas. Hematol Oncol Clin North Am 1995;9:545–69.

    Article  CAS  PubMed  Google Scholar 

  53. Wolf RE, Enneking WF. The staging and surgery of musculoskeletal neoplasms. Orthop Clin North Am 1996;27:473–81.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zile Singh Kundu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, Z.S. Classification, imaging, biopsy and staging of osteosarcoma. IJOO 48, 238–246 (2014). https://doi.org/10.4103/0019-5413.132491

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.4103/0019-5413.132491

Keywords

Navigation