Skip to main content
Log in

Management of Anterior Cruciate Ligament Injury

What’s In and What’s Out?

  • Symposium - Sports Injury
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Sports medicine physicians have a keen clinical and research interest in the anterior cruciate ligament (ACL). The biomechanical, biologic, and clinical data researchers generate, help drive injury management and prevention practices globally. The current concepts in ACL injury and surgery are being shaped by technological advances, expansion in basic science research, resurging interest in ACL preservation, and expanding efforts regarding injury prevention. As new methods are being developed in this field, the primary goal of safely improving patient outcomes will be a unifying principle. With this review, we provide an overview of topics currently in controversy or debate, and we identify paradigm shifts in the understanding, management, and prevention of ACL tears.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kiapour AM, Murray MM. Basic science of anterior cruciate ligament injury and repair. Bone Joint Res 2014;3:20–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Butler DL, Noyes FR, Grood ES. Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study. J Bone Joint Surg Am 1980;62:259–70.

    CAS  PubMed  Google Scholar 

  3. Kiapour AM, Wordeman SC, Paterno MV, Quatman CE, Levine JW, Goel VK, et al. Diagnostic value of knee arthrometry in the prediction of anterior cruciate ligament strain during landing. Am J Sports Med 2014;42:312–9.

    PubMed  Google Scholar 

  4. Stannard JP, Sherman SL, Cook JL. Soft tissues about the knee. In: Grauer JN, editor. AAOS Orthopaedic Knowledge Update 12. Ch. 36. 1–13. 2017.

  5. Ellman MB, Sherman SL, Forsythe B, LaPrade RF, Cole BJ, Bach BR Jr., et al. Return to play following anterior cruciate ligament reconstruction. J Am Acad Orthop Surg 2015;23:283–96.

    PubMed  Google Scholar 

  6. Duchman KR, Lynch TS, Spindler KP. Graft selection in anterior cruciate ligament surgery: Who gets what and why? Clin Sports Med 2017;36:25–33.

    PubMed  Google Scholar 

  7. Kim S, Bosque J, Meehan JP, Jamali A, Marder R. Increase in outpatient knee arthroscopy in the United States: A comparison of national surveys of ambulatory surgery, 1996 and 2006. J Bone Joint Surg Am 2011;93:994–1000.

    PubMed  Google Scholar 

  8. Levine JW, Kiapour AM, Quatman CE, Wordeman SC, Goel VK, Hewett TE, et al. Clinically relevant injury patterns after an anterior cruciate ligament injury provide insight into injury mechanisms. Am J Sports Med 2013;41:385–95.

    PubMed  Google Scholar 

  9. Chu CR, Beynnon BD, Buckwalter JA, Garrett WE Jr., Katz JN, Rodeo SA, et al. Closing the gap between bench and bedside research for early arthritis therapies (EARTH): Report from the AOSSM/NIH U-13 Post-Joint Injury Osteoarthritis Conference II. Am J Sports Med 2011;39:1569–78.

    PubMed  PubMed Central  Google Scholar 

  10. Lohmander LS, Ostenberg A, Englund M, Roos H. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum 2004;50:3145–52.

    CAS  PubMed  Google Scholar 

  11. Nebelung W, Wuschech H. Thirty-five years of followup of anterior cruciate ligament-deficient knees in high-level athletes. Arthroscopy 2005;21:696–702.

    PubMed  Google Scholar 

  12. von Porat A, Roos EM, Roos H. High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: A study of radiographic and patient relevant outcomes. Ann Rheum Dis 2004;63:269–73.

    Google Scholar 

  13. Quatman CE, Kiapour A, Myer GD, Ford KR, Demetropoulos CK, Goel VK, et al. Cartilage pressure distributions provide a footprint to define female anterior cruciate ligament injury mechanisms. Am J Sports Med 2011;39:1706–13.

    PubMed  PubMed Central  Google Scholar 

  14. Rahnemai-Azar AA, Sabzevari S, Irarrázaval S, Chao T, Fu FH. Anatomical individualized ACL reconstruction. Arch Bone Joint Surg 2016;4:291–7.

    PubMed  PubMed Central  Google Scholar 

  15. Ajuied A, Wong F, Smith C, Norris M, Earnshaw P, Back D, et al. Anterior cruciate ligament injury and radiologic progression of knee osteoarthritis: A systematic review and meta-analysis. Am J Sports Med 2014;42:2242–52.

    PubMed  Google Scholar 

  16. Atarod M, Frank CB, Shrive NG. Increased meniscal loading after anterior cruciate ligament transection in vivo: A longitudinal study in sheep. Knee 2015;22:11–7.

    PubMed  Google Scholar 

  17. Fu FH, Jordan SS. The lateral intercondylar ridge – A key to anatomic anterior cruciate ligament reconstruction. J Bone Joint Surg Am 2007;89:2103–4.

    PubMed  Google Scholar 

  18. Sonnery-Cottet B, Chambat P. Arthroscopic identification of the anterior cruciate ligament posterolateral bundle: The figure-of-four position. Arthroscopy 2007;23:1128.e1-3.

    PubMed  Google Scholar 

  19. Paschos NK, Howell SM. Anterior cruciate ligament reconstruction: Principles of treatment. EFORT Open Rev 2016;1:398–408.

    PubMed  PubMed Central  Google Scholar 

  20. Iriuchishima T, Yorifuji H, Aizawa S, Tajika Y, Murakami T, Fu FH, et al. Evaluation of ACL mid-substance cross-sectional area for reconstructed autograft selection. Knee Surg Sports Traumatol Arthrosc 2014;22:207–13.

    PubMed  Google Scholar 

  21. Guenther D, Irarrázaval S, Nishizawa Y, Vernacchia C, Thorhauer E, Musahl V, et al. Variation in the shape of the tibial insertion site of the anterior cruciate ligament: Classification is required. Knee Surg Sports Traumatol Arthrosc 2015;25:2428–2432.

    PubMed  Google Scholar 

  22. Sasaki N, Ishibashi Y, Tsuda E, Yamamoto Y, Maeda S, Mizukami H, et al. The femoral insertion of the anterior cruciate ligament: Discrepancy between macroscopic and histological observations. Arthroscopy 2012;28:1135–46.

    PubMed  Google Scholar 

  23. Triantafyllidi E, Paschos NK, Goussia A, Barkoula NM, Exarchos DA, Matikas TE, et al. The shape and the thickness of the anterior cruciate ligament along its length in relation to the posterior cruciate ligament: A cadaveric study. Arthroscopy 2013;29:1963–73.

    PubMed  Google Scholar 

  24. Lang PJ, Sugimoto D, Micheli LJ. Prevention, treatment, and rehabilitation of anterior cruciate ligament injuries in children. Open Access J Sports Med 2017;8:133–41.

    PubMed  PubMed Central  Google Scholar 

  25. Boden BP, Dean GS, Feagin JA Jr., Garrett WE Jr. Mechanisms of anterior cruciate ligament injury. Orthopedics 2000;23:573–8.

    CAS  PubMed  Google Scholar 

  26. Hewett TE. An introduction to understanding and preventing ACL injury. In: Hewett TE, Schultz SJ, Griffin L, editors. Understanding and Preventing Non-Contact ACL Injury. Champaign, IL: Human Kinetics; 2007. p. xxi–xxviii.

  27. Arendt E, Dick R. Knee injury patterns among men and women in collegiate basketball and soccer. NCAA data and review of literature. Am J Sports Med 1995;23:694–701.

    CAS  PubMed  Google Scholar 

  28. Agel J, Arendt EA, Bershadsky B. Anterior cruciate ligament injury in national collegiate athletic association basketball and soccer: A 13-year review. Am J Sports Med 2005;33:524–30.

    PubMed  Google Scholar 

  29. Myklebust G, Maehlum S, Engebretsen L, Strand T, Solheim E. Registration of cruciate ligament injuries in Norwegian top level team handball. A prospective study covering two seasons. Scand J Med Sci Sports 1997;7:289–92.

    CAS  PubMed  Google Scholar 

  30. Waldén M, Hägglund M, Magnusson H, Ekstrand J. Anterior cruciate ligament injury in elite football: A prospective three-cohort study. Knee Surg Sports Traumatol Arthrosc 2011;19:11–9.

    PubMed  Google Scholar 

  31. Monk AP, Davies LJ, Hopewell S, Harris K, Beard DJ, Price AJ, et al. Surgical versus conservative interventions for treating anterior cruciate ligament injuries. Cochrane Database Syst Rev 2016;4:CD011166.

    PubMed  Google Scholar 

  32. Robson AW. VI. Ruptured crucial ligaments and their repair by operation. Ann Surg 1903;37:716–8.

    CAS  PubMed  Google Scholar 

  33. Chen JL, Allen CR, Stephens TE, Haas AK, Huston LJ, Wright RW, et al. Differences in mechanisms of failure, intraoperative findings, and surgical characteristics between single- and multiple-revision ACL reconstructions: A MARS cohort study. Am J Sports Med 2013;41:1571–8.

    PubMed  Google Scholar 

  34. Araujo PH, Asai S, Pinto M, Protta T, Middleton K, Linde-Rosen M, et al. ACL graft position affects in situ graft force following ACL reconstruction. J Bone Joint Surg Am 2015;97:1767–73.

    PubMed  Google Scholar 

  35. van Eck CF, Lesniak BP, Schreiber VM, Fu FH. Anatomic single- and double-bundle anterior cruciate ligament reconstruction flowchart. Arthroscopy 2010;26:258–68.

    PubMed  Google Scholar 

  36. Shen W, Forsythe B, Ingham SM, Honkamp NJ, Fu FH. Application of the anatomic double-bundle reconstruction concept to revision and augmentation anterior cruciate ligament surgeries. J Bone Joint Surg Am 2008;90 Suppl 4:20–34.

    PubMed  Google Scholar 

  37. Kopf S, Pombo MW, Szczodry M, Irrgang JJ, Fu FH. Size variability of the human anterior cruciate ligament insertion sites. Am J Sports Med 2011;39:108–13.

    PubMed  Google Scholar 

  38. Colombet P, Robinson J, Christel P, Franceschi JP, Djian P, Bellier G, et al. Morphology of anterior cruciate ligament attachments for anatomic reconstruction: A cadaveric dissection and radiographic study. Arthroscopy 2006;22:984–92.

    PubMed  Google Scholar 

  39. Zelle BA, Vidal AF, Brucker PU, Fu FH. Double-bundle reconstruction of the anterior cruciate ligament: Anatomic and biomechanical rationale. J Am Acad Orthop Surg 2007;15:87–96.

    PubMed  Google Scholar 

  40. Morimoto Y, Ferretti M, Ekdahl M, Smolinski P, Fu FH. Tibiofemoral joint contact area and pressure after single-and double-bundle anterior cruciate ligament reconstruction. Arthroscopy 2009;25:62–9.

    PubMed  Google Scholar 

  41. Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SL, et al. Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med 2002;30:660–6.

    PubMed  Google Scholar 

  42. Tiamklang T, Sumanont S, Foocharoen T, Laopaiboon M. Double-bundle versus single-bundle reconstruction for anterior cruciate ligament rupture in adults. Cochrane Database Syst Rev 2012;11:CD008413.

    PubMed  Google Scholar 

  43. Hussein M, van Eck CF, Cretnik A, Dinevski D, Fu FH. Individualized anterior cruciate ligament surgery: A prospective study comparing anatomic single- and double-bundle reconstruction. Am J Sports Med 2012;40:1781–8.

    PubMed  Google Scholar 

  44. Markolf KL, Park S, Jackson SR, McAllister DR. Anterior-posterior and rotatory stability of single and double-bundle anterior cruciate ligament reconstructions. J Bone Joint Surg Am 2009;91:107–18.

    PubMed  Google Scholar 

  45. Pearle AD, McAllister D, Howell SM. Rationale for strategic graft placement in anterior cruciate ligament reconstruction: I.D.E.A.L. femoral tunnel position. Am J Orthop (Belle Mead NJ) 2015;44:253–8.

    Google Scholar 

  46. Järvelä T. Double-bundle versus single-bundle anterior cruciate ligament reconstruction: A prospective, randomize clinical study. Knee Surg Sports Traumatol Arthrosc 2007;15:500–7.

    PubMed  Google Scholar 

  47. Meredick RB, Vance KJ, Appleby D, Lubowitz JH. Outcome of single-bundle versus double-bundle reconstruction of the anterior cruciate ligament: A meta-analysis. Am J Sports Med 2008;36:1414–21.

    PubMed  Google Scholar 

  48. Muneta T, Koga H, Mochizuki T, Ju YJ, Hara K, Nimura A, et al. A prospective randomized study of 4-strand semitendinosus tendon anterior cruciate ligament reconstruction comparing single-bundle and double-bundle techniques. Arthroscopy 2007;23:618–28.

    PubMed  Google Scholar 

  49. Tibor L, Chan PH, Funahashi TT, Wyatt R, Maletis GB, Inacio MC, et al. Surgical technique trends in primary ACL reconstruction from 2007 to 2014. J Bone Joint Surg Am 2016;98:1079–89.

    PubMed  Google Scholar 

  50. Liu A, Sun M, Ma C, Chen Y, Xue X, Guo P, et al. Clinical outcomes of transtibial versus anteromedial drilling techniques to prepare the femoral tunnel during anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2015;DOI: 10.1007/s00167-015-3672-y. [Epub ahead of print].

  51. Wasserstein D, Sheth U, Cabrera A, Spindler KP. A systematic review of failed anterior cruciate ligament reconstruction with autograft compared with allograft in young patients. Sports Health 2015;7:207–16.

    PubMed  PubMed Central  Google Scholar 

  52. Mariscalco MW, Magnussen RA, Mehta D, Hewett TE, Flanigan DC, Kaeding CC, et al. Autograft versus nonirradiated allograft tissue for anterior cruciate ligament reconstruction: A systematic review. Am J Sports Med 2014;42:492–9.

    PubMed  Google Scholar 

  53. Xie X, Liu X, Chen Z, Yu Y, Peng S, Li Q, et al. A meta-analysis of bone-patellar tendon-bone autograft versus four-strand hamstring tendon autograft for anterior cruciate ligament reconstruction. Knee 2015;22:100–10.

    PubMed  Google Scholar 

  54. Gifstad T, Foss OA, Engebretsen L, Lind M, Forssblad M, Albrektsen G, et al. Lower risk of revision with patellar tendon autografts compared with hamstring autografts: A registry study based on 45,998 primary ACL reconstructions in Scandinavia. Am J Sports Med 2014;42:2319–28.

    PubMed  Google Scholar 

  55. Jacobs CA, Burnham JM, Makhni E, Malempati CS, Swart E, Johnson DL, et al. Allograft augmentation of hamstring autograft for younger patients undergoing anterior cruciate ligament reconstruction. Am J Sports Med 2017;45:892–99.

    PubMed  Google Scholar 

  56. Mulford JS, Hutchinson SE, Hang JR. Outcomes for primary anterior cruciate reconstruction with the quadriceps autograft: A systematic review. Knee Surg Sports Traumatol Arthrosc 2013;21:1882–8.

    PubMed  Google Scholar 

  57. Kim SJ, Kumar P, Oh KS. Anterior cruciate ligament reconstruction: Autogenous quadriceps tendon-bone compared with bone-patellar tendon-bone grafts at 2-year followup. Arthroscopy 2009;25:137–44.

    PubMed  Google Scholar 

  58. Cavaignac E, Coulin B, Tscholl P, Nik Mohd Fatmy N, Duthon V, Menetrey J, et al. Is quadriceps tendon autograft a better choice than hamstring autograft for anterior cruciate ligament reconstruction? A comparative study with a mean followup of 3.6 years. Am J Sports Med 2017;45:1326–32.

    PubMed  Google Scholar 

  59. Akoto R, Hoeher J. Anterior cruciate ligament (ACL) reconstruction with quadriceps tendon autograft and press-fit fixation using an anteromedial portal technique. BMC Musculoskelet Disord 2012;13:161.

    PubMed  PubMed Central  Google Scholar 

  60. Fink C, Herbort M, Abermann E, Hoser C. Minimally invasive harvest of a quadriceps tendon graft with or without a bone block. Arthrosc Tech 2014;3:e509–13.

    PubMed  PubMed Central  Google Scholar 

  61. Fischer F, Fink C, Herbst E, Hoser C, Hepperger C, Blank C, et al. Higher hamstring-to-quadriceps isokinetic strength ratio during the first postoperative months in patients with quadriceps tendon compared to hamstring tendon graft following ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 2017; Knee Surg Sports Traumatol Arthrosc. 2017. doi: 10.1007/s00167-017-4522-x. [Epub ahead of print].

  62. Feagin JA Jr., Curl WW. Isolated tear of the anterior cruciate ligament: 5-year followup study. Clin Orthop Relat Res 1996;325:4–9.

    Google Scholar 

  63. Cabaud HE, Feagin JA, Rodkey WG. Acute anterior cruciate ligament injury and augmented repair. Experimental studies. Am J Sports Med 1980;8:395–401.

    CAS  PubMed  Google Scholar 

  64. Cabaud HE, Rodkey WG, Feagin JA. Experimental studies of acute anterior cruciate ligament injury and repair. Am J Sports Med 1979;7:18–22.

    CAS  PubMed  Google Scholar 

  65. DiFelice GS, Villegas C, Taylor S. Anterior cruciate ligament preservation: Early results of a novel arthroscopic technique for suture anchor primary anterior cruciate ligament repair. Arthroscopy 2015;31:2162–71.

    Google Scholar 

  66. Sherman MF, Lieber L, Bonamo JR, Podesta L, Reiter I. The long term followup of primary anterior cruciate ligament repair. Defining a rationale for augmentation. Am J Sports Med 1991;19:243–55.

    CAS  PubMed  Google Scholar 

  67. DiFelice GS, van der List JP. Arthroscopic primary repair of proximal anterior cruciate ligament tears. Arthrosc Tech 2016;5:e1057–61.

    Google Scholar 

  68. van der List JP, DiFelice GS. Primary repair of the anterior cruciate ligament: A paradigm shift. Surgeon 2017;15:161–8.

    PubMed  Google Scholar 

  69. Nyland J, Mattocks A, Kibbe S, Kalloub A, Greene JW, Caborn DN, et al. Anterior cruciate ligament reconstruction, rehabilitation, and return to play: 2015 update. Open Access J Sports Med 2016;7:21–32.

    PubMed  PubMed Central  Google Scholar 

  70. Achtnich A, Herbst E, Forkel P, Metzlaff S, Sprenker F, Imhoff AB, et al. Acute proximal anterior cruciate ligament tears: Outcomes after arthroscopic suture anchor repair versus anatomic single-bundle reconstruction. Arthroscopy 2016;32:2562–9.

    PubMed  Google Scholar 

  71. Ahn JH, Lee SH, Choi SH, Lim TK. Magnetic resonance imaging evaluation of anterior cruciate ligament reconstruction using quadrupled hamstring tendon autografts: Comparison of remnant bundle preservation and standard technique. Am J Sports Med 2010;38:1768–77.

    PubMed  Google Scholar 

  72. Ahn JH, Lee SH. Risk factors for knee instability after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2016;24:2936–42.

    PubMed  Google Scholar 

  73. Ahn JH, Lee YS, Lee SH. Creation of an anatomic femoral tunnel with minimal damage to the remnant bundle in remnant-preserving anterior cruciate ligament reconstruction using an outside-in technique. Arthrosc Tech 2014;3:e175-9.

    PubMed  Google Scholar 

  74. Bieri KS, Scholz SM, Kohl S, Aghayev E, Staub LP. Dynamic intraligamentary stabilization versus conventional ACL reconstruction: A matched study on return to work. Injury 2017;48:1243–8.

    PubMed  Google Scholar 

  75. Nguyen DT, Ramwadhdoebe TH, van der Hart CP, Blankevoort L, Tak PP, van Dijk CN, et al. Intrinsic healing response of the human anterior cruciate ligament: An histological study of reattached ACL remnants. J Orthop Res 2014;32:296–301.

    PubMed  Google Scholar 

  76. van der List JP, DiFelice GS. Preservation of the anterior cruciate ligament: A treatment algorithm based on tear location and tissue quality. Am J Orthop 2016;45:E393-405.

    Google Scholar 

  77. Taylor SA, Khair MM, Roberts TR, DiFelice GS. Primary repair of the anterior cruciate ligament: A systematic review. Arthroscopy 2015;31:2233–47.

    PubMed  Google Scholar 

  78. Smith PA, Bley JA. Allograft anterior cruciate ligament reconstruction utilizing internal brace augmentation. Arthrosc Tech 2016;5:e1143–7.

    PubMed  PubMed Central  Google Scholar 

  79. Cook JL, Smith P, Stannard JP, Pfeiffer F, Kuroki K, Bozynski CC, et al. A canine arthroscopic anterior cruciate ligament reconstruction model for study of synthetic augmentation of tendon allografts. J Knee Surg. 2016. doi: 10.1055/s-0036-1597618. [Epub ahead of print].

  80. Henle P, Röder C, Perler G, Heitkemper S, Eggli S. Dynamic intraligamentary stabilization (DIS) for treatment of acute anterior cruciate ligament ruptures: Case series experience of the first three years. BMC Musculoskelet Disord 2015;16:27.

    PubMed  PubMed Central  Google Scholar 

  81. Claes S, Vereecke E, Maes M, Victor J, Verdonk P, Bellemans J, et al. Anatomy of the anterolateral ligament of the knee. J Anat 2013;223:321–8.

    PubMed  PubMed Central  Google Scholar 

  82. Imbert P, Lutz C, Daggett M, Niglis L, Freychet B, Dalmay F, et al. Isometric characteristics of the anterolateral ligament of the knee: A cadaveric navigation study. Arthroscopy 2016;32:2017–24.

    PubMed  Google Scholar 

  83. Ibrahim SA, Shohdy EM, Marwan Y, Ramadan SA, Almisfer AK, Mohammad MW, et al. Anatomic reconstruction of the anterior cruciate ligament of the knee with or without reconstruction of the anterolateral ligament: A randomized clinical trial. Am J Sports Med 2017;45:1558–66.

    PubMed  Google Scholar 

  84. Patel RM, Brophy RH. Anterolateral ligament of the knee: Anatomy, function, imaging, and treatment. Am J Sports Med. 2017:363546517695802. doi: 10.1177/0363546517695802. [Epub ahead of print].

  85. Musahl V, Getgood A, Neyret P, Claes S, Burnham JM, Batailler C, et al. Contributions of the anterolateral complex and the anterolateral ligament to rotatory knee stability in the setting of ACL injury: A roundtable discussion. Knee Surg Sports Traumatol Arthrosc 2017;25:997–1008.

    PubMed  Google Scholar 

  86. Stentz-Olesen K, Nielsen ET, de Raedt S, Jørgensen PB, Sørensen OG, Kaptein B, et al. Reconstructing the anterolateral ligament does not decrease rotational knee laxity in ACL-reconstructed knees. Knee Surg Sports Traumatol Arthrosc 2017;25:1125–31.

    PubMed  Google Scholar 

  87. Di Matteo B, Loibl M, Andriolo L, Filardo G, Zellner J, Koch M, et al. Biologic agents for anterior cruciate ligament healing: A systematic review. World J Orthop 2016;7:592–603.

    PubMed  PubMed Central  Google Scholar 

  88. Di Matteo B, Filardo G, Kon E, Marcacci M. Platelet-rich plasma: Evidence for the treatment of patellar and Achilles tendinopathy – A systematic review. Musculoskelet Surg 2015;99:1–9.

    PubMed  Google Scholar 

  89. Filardo G, Kon E, Roffi A, Di Matteo B, Merli ML, Marcacci M, et al. Platelet-rich plasma: Why intraarticular? A systematic review of preclinical studies and clinical evidence on PRP for joint degeneration. Knee Surg Sports Traumatol Arthrosc 2015;23:2459–74.

    CAS  PubMed  Google Scholar 

  90. Komzák M, Hart R, Šmíd P, Puskeiler M, Jajtner P. The effect of platelet-rich plasma on graft healing in reconstruction of the anterior cruciate ligament of the knee joint: Prospective study. Acta Chir Orthop Traumatol Cech 2015;82:135–9.

    PubMed  Google Scholar 

  91. Andriolo L, Di Matteo B, Kon E, Filardo G, Venieri G, Marcacci M. PRP augmentation for ACL reconstruction. Biomed Res Int 2015;2015:371746.

    PubMed  PubMed Central  Google Scholar 

  92. Lubowitz JH. Editorial commentary: Platelet-rich plasma in ACL surgery. Arthroscopy 2015;31:989.

    PubMed  Google Scholar 

  93. Cook JL, Smith PA, Bozynski CC, Kuroki K, Cook CR, Stoker AM, et al. Multiple injections of leukoreduced platelet rich plasma reduce pain and functional impairment in a canine model of ACL and meniscal deficiency. J Orthop Res 2016;34:607–15.

    CAS  PubMed  Google Scholar 

  94. Kopka M, Bradley JP. The use of biologic agents in athletes with knee injuries. J Knee Surg 2016;29:379–86.

    PubMed  Google Scholar 

  95. Mazzocca AD, McCarthy MB, Chowaniec DM, Cote MP, Romeo AA, Bradley JP, et al. Platelet-rich plasma differs according to preparation method and human variability. J Bone Joint Surg Am 2012;94:308–16.

    PubMed  Google Scholar 

  96. Silva A, Sampaio R, Fernandes R, Pinto E. Is there a role for adult non-cultivated bone marrow stem cells in ACL reconstruction? Knee Surg Sports Traumatol Arthrosc 2014;22:66–71.

    PubMed  Google Scholar 

  97. Centeno CJ, Pitts J, Al-Sayegh H, Freeman MD. Anterior cruciate ligament tears treated with percutaneous injection of autologous bone marrow nucleated cells: A case series. J Pain Res 2015;8:437–47.

    PubMed  PubMed Central  Google Scholar 

  98. Ćuti T, Antunović M, Marijanović I, Ivković A, Vukasović A, Matić I, et al. Capacity of muscle derived stem cells and pericytes to promote tendon graft integration and ligamentization following anterior cruciate ligament reconstruction. Int Orthop 2017;41:1189–98.

    PubMed  Google Scholar 

  99. Ghebes CA, Kelder C, Schot T, Renard AJ, Pakvis DF, Fernandes H, et al. Anterior cruciate ligament- and hamstring tendon-derived cells: In vitro differential properties of cells involved in ACL reconstruction. J Tissue Eng Regen Med 2017;11:1077–88.

    CAS  PubMed  Google Scholar 

  100. Shelbourne KD, Wilckens JH, Mollabashy A, DeCarlo M. Arthrofibrosis in acute anterior cruciate ligament reconstruction. The effect of timing of reconstruction and rehabilitation. Am J Sports Med 1991;19:332–6.

    CAS  PubMed  Google Scholar 

  101. Shelbourne KD, Foulk DA. Timing of surgery in acute anterior cruciate ligament tears on the return of quadriceps muscle strength after reconstruction using an autogenous patellar tendon graft. Am J Sports Med 1995;23:686–9.

    CAS  PubMed  Google Scholar 

  102. Eitzen I, Holm I, Risberg MA. Preoperative quadriceps strength is a significant predictor of knee function two years after anterior cruciate ligament reconstruction. Br J Sports Med 2009;43:371–6.

    CAS  PubMed  Google Scholar 

  103. Eitzen I, Moksnes H, Snyder-Mackler L, Risberg MA. A progressive 5-week exercise therapy program leads to significant improvement in knee function early after anterior cruciate ligament injury. J Orthop Sports Phys Ther 2010;40:705–21.

    PubMed  PubMed Central  Google Scholar 

  104. Grindem H, Granan LP, Risberg MA, Engebretsen L, Snyder-Mackler L, Eitzen I, et al. How does a combined preoperative and postoperative rehabilitation programme influence the outcome of ACL reconstruction 2 years after surgery? A comparison between patients in the delaware-oslo ACL Cohort and the Norwegian National Knee Ligament Registry. Br J Sports Med 2015;49:385–9.

    CAS  PubMed  Google Scholar 

  105. Micheo W, Hernández L, Seda C. Evaluation, management, rehabilitation, and prevention of anterior cruciate ligament injury: Current concepts. PM R 2010;2:935–44.

    PubMed  Google Scholar 

  106. Kvist J. Rehabilitation following anterior cruciate ligament injury: Current recommendations for sports participation. Sports Med 2004;34:269–80.

    PubMed  Google Scholar 

  107. Negus J, Fransen M, Chen JS, Parker DA, March L. Exercise-based interventions for conservatively or surgically treated anterior cruciate ligament injuries in adults. Cochrane Database Syst Rev 2012;10. [doi: 10.1002/14651858.CD010128].

  108. Webster KE, Feller JA. Exploring the high reinjury rate in younger patients undergoing anterior cruciate ligament reconstruction. Am J Sports Med 2016;44:2827–32.

    PubMed  Google Scholar 

  109. Liechti DJ, Chahla J, Dean CS, Mitchell JJ, Slette E, Menge TJ, et al. Outcomes and risk factors of rerevision anterior cruciate ligament reconstruction: A systematic review. Arthroscopy 2016;32:2151–9.

    PubMed  Google Scholar 

  110. Schilaty ND, Bates NA, Sanders TL, Krych AJ, Stuart MJ, Hewett TE, et al. Incidence of second anterior cruciate ligament tears (1990-2000) and associated factors in a specific geographic locale. Am J Sports Med 2017;45:1567–73.

    PubMed  PubMed Central  Google Scholar 

  111. Yabroudi MA, Björnsson H, Lynch AD, Muller B, Samuelsson K, Tarabichi M, et al. Predictors of revision surgery after primary anterior cruciate ligament reconstruction. Orthop J Sports Med 2016;4:2325967116666039.

    PubMed  PubMed Central  Google Scholar 

  112. Ho B, Edmonds EW, Chambers HG, Bastrom TP, Pennock AT. Risk factors for early ACL reconstruction failure in pediatric and adolescent patients: A review of 561 cases. J Pediatr Orthop 2016; doi: 10.1097/BPO.0000000000000831. [Epub ahead of print].

  113. Nelson IR, Chen J, Love R, Davis BR, Maletis GB, Funahashi TT, et al. A comparison of revision and rerupture rates of ACL reconstruction between autografts and allografts in the skeletally immature. Knee Surg Sports Traumatol Arthrosc 2016;24:773–9.

    PubMed  Google Scholar 

  114. Ponce BA, Cain EL Jr., Pflugner R, Fleisig GS, Young BL, Boohaker HA, et al. Risk factors for revision anterior cruciate ligament reconstruction. J Knee Surg 2016;29:329–36.

    PubMed  Google Scholar 

  115. Pullen WM, Bryant B, Gaskill T, Sicignano N, Evans AM, DeMaio M, et al. Predictors of revision surgery after anterior cruciate ligament reconstruction. Am J Sports Med 2016;44:3140–5.

    PubMed  Google Scholar 

  116. Shelbourne KD, Gray T, Haro M. Incidence of subsequent injury to either knee within 5 years after anterior cruciate ligament reconstruction with patellar tendon autograft. Am J Sports Med 2009;37:246–51.

    PubMed  Google Scholar 

  117. Wright RW, Magnussen RA, Dunn WR, Spindler KP. Ipsilateral graft and contralateral ACL rupture at five years or more following ACL reconstruction: A systematic review. J Bone Joint Surg Am 2011;93:1159–65.

    PubMed  PubMed Central  Google Scholar 

  118. Tejwani SG, Chen J, Funahashi TT, Love R, Maletis GB. Revision risk after allograft anterior cruciate ligament reconstruction: Association with graft processing techniques, patient characteristics, and graft type. Am J Sports Med 2015;43:2696–705.

    PubMed  Google Scholar 

  119. Inderhaug E, Raknes S, Østvold T, Solheim E, Strand T. Increased revision rate with posterior tibial tunnel placement after using the 70-degree tibial guide in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 2017;25:152–8.

    PubMed  Google Scholar 

  120. Parkinson B, Robb C, Thomas M, Thompson P, Spalding T. Factors that predict failure in anatomic single-bundle anterior cruciate ligament reconstruction. Am J Sports Med 2017;45:1529–36.

    PubMed  Google Scholar 

  121. McDonald LS, van der List JP, Jones KJ, Zuiderbaan HA, Nguyen JT, Potter HG, et al. Passive anterior tibial subluxation in the setting of anterior cruciate ligament injuries: A comparative analysis of ligament-deficient states. Am J Sports Med 2017;45:1537–46.

    PubMed  Google Scholar 

  122. Syam K, Chouhan DK, Dhillon MS. Outcome of ACL reconstruction for chronic ACL injury in knees without the posterior horn of the medial meniscus: Comparison with ACL reconstructed knees with an intact medial meniscus. Knee Surg Relat Res 2017;29:39–44.

    PubMed  PubMed Central  Google Scholar 

  123. Levy IM, Torzilli PA, Warren RF. The effect of medial meniscectomy on anterior-posterior motion of the knee. J Bone Joint Surg Am 1982;64:883–8.

    CAS  PubMed  Google Scholar 

  124. Papageorgiou CD, Gil JE, Kanamori A, Fenwick JA, Woo SL, Fu FH, et al. The biomechanical interdependence between the anterior cruciate ligament replacement graft and the medial meniscus. Am J Sports Med 2001;29:226–31.

    CAS  PubMed  Google Scholar 

  125. Seon JK, Gadikota HR, Kozanek M, Oh LS, Gill TJ, Li G, et al. The effect of anterior cruciate ligament reconstruction on kinematics of the knee with combined anterior cruciate ligament injury and subtotal medial meniscectomy: An in vitro robotic investigation. Arthroscopy 2009;25:123–30.

    PubMed  Google Scholar 

  126. Shoemaker SC, Markolf KL. The role of the meniscus in the anterior-posterior stability of the loaded anterior cruciate-deficient knee. Effects of partial versus total excision. J Bone Joint Surg Am 1986;68:71–9.

    CAS  PubMed  Google Scholar 

  127. Spang JT, Dang AB, Mazzocca A, Rincon L, Obopilwe E, Beynnon B, et al. The effect of medial meniscectomy and meniscal allograft transplantation on knee and anterior cruciate ligament biomechanics. Arthroscopy 2010;26:192–201.

    PubMed  Google Scholar 

  128. Saltzman BM, Meyer MA, Weber AE, Poland SG, Yanke AB, Cole BJ, et al. Prospective clinical and radiographic outcomes after concomitant anterior cruciate ligament reconstruction and meniscal allograft transplantation at a mean 5-year followup. Am J Sports Med 2017;45:550–62.

    PubMed  Google Scholar 

  129. Christensen JJ, Krych AJ, Engasser WM, Vanhees MK, Collins MS, Dahm DL, et al. Lateral tibial posterior slope is increased in patients with early graft failure after anterior cruciate ligament reconstruction. Am J Sports Med 2015;43:2510–4.

    PubMed  Google Scholar 

  130. Alentorn-Geli E, Mendiguchía J, Samuelsson K, Musahl V, Karlsson J, Cugat R, et al. Prevention of anterior cruciate ligament injuries in sports. Part I: Systematic review of risk factors in male athletes. Knee Surg Sports Traumatol Arthrosc 2014;22:3–15.

    PubMed  Google Scholar 

  131. Arun GR, Kumaraswamy V, Rajan D, Vinodh K, Singh AK, Kumar P, et al. Long term follow up of single-stage anterior cruciate ligament reconstruction and high tibial osteotomy and its relation with posterior tibial slope. Arch Orthop Trauma Surg 2016;136:505–11.

    CAS  PubMed  Google Scholar 

  132. Dean CS, Chahla J, Matheny LM, Cram TR, Moulton SG, Dornan GJ, et al. Posteromedially placed plates with anterior staple reinforcement are not successful in decreasing tibial slope in opening-wedge proximal tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 2016; doi: 10.1007/s00167-016-4311-y. [Epub ahead of print]

  133. Huo Z, Griffin J, Babiuch R, Gray A, Willis B, Marjorie S, et al. Examining the feasibility of a Microsoft Kinect™ based game intervention for individuals with anterior cruciate ligament injury risk. Conf Proc IEEE Eng Med Biol Soc 2015;2015:7059–62.

    Google Scholar 

  134. Hewett TE, Ford KR, Hoogenboom BJ, Myer GD. Understanding and preventing ACL injuries: Current biomechanical and epidemiologic considerations - Update 2010. N Am J Sports Phys Ther 2010;5:234–51.

    PubMed  PubMed Central  Google Scholar 

  135. Ford KR, Myer GD, Hewett TE. Valgus knee motion during landing in high school female and male basketball players. Med Sci Sports Exerc 2003;35:1745–50.

    PubMed  Google Scholar 

  136. Paterno MV, Schmitt LC, Ford KR, Rauh MJ, Myer GD, Huang B, et al. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med 2010;38:1968–78.

    PubMed  PubMed Central  Google Scholar 

  137. Myer GD, Ford KR, Hewett TE. New method to identify athletes at high risk of ACL injury using clinic-based measurements and freeware computer analysis. Br J Sports Med 2011;45:238–44.

    PubMed  Google Scholar 

  138. Myer GD, Ford KR, Khoury J, Succop P, Hewett TE. Development and validation of a clinic-based prediction tool to identify female athletes at high risk for anterior cruciate ligament injury. Am J Sports Med 2010;38:2025–33.

    PubMed  PubMed Central  Google Scholar 

  139. Hewett TE, Myer GD, Ford KR. Anterior cruciate ligament injuries in female athletes: Part 1, mechanisms and risk factors. Am J Sports Med 2006;34:299–311.

    PubMed  Google Scholar 

  140. Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J. The effects of core proprioception on knee injury: A prospective biomechanical-epidemiological study. Am J Sports Med 2007;35:368–73.

    PubMed  Google Scholar 

  141. Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J. Deficits in neuromuscular control of the trunk predict knee injury risk: A prospective biomechanical-epidemiologic study. Am J Sports Med 2007;35:1123–30.

    PubMed  Google Scholar 

  142. Hewett TE, Stroupe AL, Nance TA, Noyes FR. Plyometric training in female athletes. Decreased impact forces and increased hamstring torques. Am J Sports Med 1996;24:765–73.

    CAS  PubMed  Google Scholar 

  143. Hewett TE, Lindenfeld TN, Riccobene JV, Noyes FR. The effect of neuromuscular training on the incidence of knee injury in female athletes. A prospective study. Am J Sports Med 1999;27:699–706.

    CAS  PubMed  Google Scholar 

  144. Myer GD, Ford KR, Hewett TE. The effects of gender on quadriceps muscle activation strategies during a maneuver that mimics a high ACL injury risk position. J Electromyogr Kinesiol 2005;15:181–9.

    PubMed  Google Scholar 

  145. Myklebust G, Engebretsen L, Braekken IH, Skjølberg A, Olsen OE, Bahr R, et al. Prevention of anterior cruciate ligament injuries in female team handball players: A prospective intervention study over three seasons. Clin J Sport Med 2003;13:71–8.

    PubMed  Google Scholar 

  146. Solomonow M, Krogsgaard M. Sensorimotor control of knee stability. A review. Scand J Med Sci Sports 2001;11:64–80.

    CAS  PubMed  Google Scholar 

  147. Lloyd DG, Buchanan TS. A model of load sharing between muscles and soft tissues at the human knee during static tasks. J Biomech Eng 1996;118:367–76.

    CAS  PubMed  Google Scholar 

  148. Stone EE, Butler M, McRuer A, Gray A, Marks J, Skubic M, et al. Evaluation of the Microsoft Kinect for screening ACL injury. Conf Proc IEEE Eng Med Biol Soc 2013;2013:4152–5.

    Google Scholar 

  149. Hewett TE, Myer GD, Ford KR, Paterno MV, Quatman CE. Mechanisms, prediction, and prevention of ACL injuries: Cut risk with three sharpened and validated tools. J Orthop Res 2016;34:1843–55.

    PubMed  PubMed Central  Google Scholar 

  150. Gray AD, Marks JM, Stone EE, Butler MC, Skubic M, Sherman SL. Validation of the Microsoft Kinect as a portable and inexpensive screening tool for identifying ACL injury risk. Orthop J Sports Med 2014;2 (2 Suppl). [doi: 10.1177/2325967114S00106].

  151. Sherman SL, Gulbrandsen TR, Miller SM, Guess T, Willis BW, Blecha KM, et al. Mass screening of youth athletes for high risk landing patterns using a portable and inexpensive motion sensor device. Orthop J Sports Med 2016;4 (7 Suppl 4). [doi: 10.1177/2325967116S00120].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth L. Sherman.

Additional information

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raines, B.T., Naclerio, E. & Sherman, S.L. Management of Anterior Cruciate Ligament Injury. IJOO 51, 563–575 (2017). https://doi.org/10.4103/ortho.IJOrtho_245_17

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.4103/ortho.IJOrtho_245_17

Keywords

Navigation