DOI QR코드

DOI QR Code

P53 transcription-independent activity mediates selenite-induced acute promyelocytic leukemia NB4 cell apoptosis

  • Guan, Liying (National Laboratory of Medical Molecular Biology, Institute of Basic Medicine Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences) ;
  • Huang, Fang (National Laboratory of Medical Molecular Biology, Institute of Basic Medicine Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences) ;
  • Li, Zhushi (National Laboratory of Medical Molecular Biology, Institute of Basic Medicine Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences) ;
  • Han, Bingshe (National Laboratory of Medical Molecular Biology, Institute of Basic Medicine Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences) ;
  • Jiang, Qian (National Laboratory of Medical Molecular Biology, Institute of Basic Medicine Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences) ;
  • Ren, Yun (National Laboratory of Medical Molecular Biology, Institute of Basic Medicine Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences) ;
  • Yang, Yang (National Laboratory of Medical Molecular Biology, Institute of Basic Medicine Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences) ;
  • Xu, Caimin (National Laboratory of Medical Molecular Biology, Institute of Basic Medicine Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences)
  • Published : 2008.10.31

Abstract

Selenium, an essential trace element possessing anti-carcinogenic properties, can induce apoptosis in cancer cells. We have previously shown that sodium selenite can induce apoptosis by activating the mitochondrial apoptosis pathway in NB4 cells. However, the detailed mechanism remains unclear. Presently, we demonstrate that p53 contributes to apoptosis by directing signaling at the mitochondria. Immunofluorescent and Western blot procedures revealed selenite-induced p53 translocation to mitochondria. Inhibition of p53 blocked accumulation of reactive oxygen species (ROS) and loss of mitochondrial membrane potential, suggesting that mitochondrial p53 acts as an upstream signal of ROS and activates the mitochondrial apoptosis pathway. Selenite also disrupted cellular calcium ion homeostasis in a ROS-dependent manner and increased mitochondrial calcium ion concentration. p38 kinase mediated phosphorylation and mitochondrial translocation of p53. Taken together, these results indicate that p53 involves selenite-induced NB4 cell apoptosis by translocation to mitochondria and activation mitochondrial apoptosis pathway in a transcription-independent manner.

Keywords

References

  1. Bennett, J.M., Catovsky, D., Daniel, M.T., Flandrin, G., Galton, D.A., Gralnick, H.R. and Sultan, C. (1976) Proposals for the classification of the acute leukaemias. French- American-British (FAB) co-operative group. Br. J. Hema. 33, 451-458 https://doi.org/10.1111/j.1365-2141.1976.tb03563.x
  2. Jones, M.E. and Saleem, A. (1978) Acute promyelocytic leukemia. A review of literature. Am. J. Med. 65, 673-677 https://doi.org/10.1016/0002-9343(78)90856-2
  3. Chomienne, C. and Lanotte, M. (1990) The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor gene to a novel transcribed locus. Nature. 347, 558-561 https://doi.org/10.1038/347558a0
  4. Huang, M.E., Ye, Y.C., Chen, S.R., Chai, J.R., Lu, J.X., Zhoa, L., Gu, L.J. and Wang, Z.Y. (1988) Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood. 72, 567-572
  5. Shen, Z.X., Chen, G.Q., Ni, J.H., Li, X.S., Xiong, S.M., Qiu, Q.Y., Zhu, J., Tang, W., Sun, G.L., Yang, K.Q., Chen, Y., Zhou, L., Fang, Z.W., Wang, Y.T., Ma, J., Zhang, P., Zhang, T.D., Chen, S.J., Chen, Z. and Wang, Z.Y. (1997) Use of arsenic trioxide ($As_{2}O_{3}$) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood. 89, 3354-3360
  6. Lallemand-Breitenbach, V., Guillemin, M.C., Janin, A., Li, X.S., Xiong, S.M., Qiu, Q.Y., Zhu, J., Tang, W., Sun, G.L., Yang, K.Q., Chen, Y., Zhou, L., Fang, Z.W., Wang, Y.T., Ma, J., Zhang, P., Zhang, T.D., Chen, S.J., Chen, Z. and Wang, Z.Y. (1999) Retinoic acid and arsenic synergize to eradicate leukemic cells in a mouse model of acute promyelocytic leukemia. J. Exp. Med. 189, 1043-1052 https://doi.org/10.1084/jem.189.7.1043
  7. Klein, E.A. (2004) Selenium: epidemiology and basic science. J. Urol. 171, S50-53 https://doi.org/10.1097/01.ju.0000107837.66277.e9
  8. Nelson, M.A., Reid, M., Duffield-Lillico, A.J., Li, X.S., Xiong, S.M., Qiu, Q.Y., Zhu, J., Tang, W., Sun, G.L., Yang, K.Q., Chen, Y., Zhou, L., Fang, Z.W., Wang, Y.T., Ma, J., Zhang, P., Zhang, T.D., Chen, S.J., Chen, Z. and Wang, Z.Y. (2002) Prostate cancer and selenium. Urol. Clin. North. Am. 29, 67-70 https://doi.org/10.1016/S0094-0143(02)00018-6
  9. Rayman, M.P. (2005) Selenium in cancer prevention: a review of the evidence and mechanism of action. Proc. Nutr. Soc. 64, 527-542 https://doi.org/10.1079/PNS2005467
  10. Asfour, I.A., EShazly, S., Fayek, M.H., Hegab, H. M., Raouf, S. and Moussa, M. A. (2006) Effect of high-dose sodium selenite therapy on polymorphonuclear leukocyte apoptosis in non-Hodgkin's lymphoma patients. Biol. Trace. Elem. Res. 110, 19-32 https://doi.org/10.1385/BTER:110:1:19
  11. Li, J., Zuo, L., Shen, T., Xu, C. M. and Zhang, Z. N. (2003) Induction of apoptosis by sodium selenite in human acute promyelelocytic leukemia NB4 cell: Involvement of oxidative stress and mitochondria. J. Trace. Elem. Med. Bio. 7,19-26
  12. Wei, W., Han, B.S., Guan, L.Y., Hang, F., Fen, L., Yang, Y. and Xu, C.M. (2007) Mitochondrial transmembrane potential loss caused by reactive oxygen species plays a major role in sodium selenite-induced apoptosis in NB4 cells. Zhongguo. Yi. Xue. K.e Xue. Yuan. Xue. Bao. 29, 324-328
  13. Fridman, J.S. and Lowe, S.W. (2003) Control of apoptosis by p53. Oncogene. 22, 9030-9040 https://doi.org/10.1038/sj.onc.1207116
  14. Caelles, C., Helmberg, A. and Kal'in, M. (1994) P53-dependent apoptosis in the absence of transcriptional activation of p53 target genes. Nature. 370, 220-223 https://doi.org/10.1038/370220a0
  15. Mihara, M., Erster, S., Zaika, A., Petrenko, O., Chittenden, T., Pancoska, P. and Moll, U.M. (2003) P53 has a direct apoptogenic role at the mitochondria. Mol. Cell. 1l, 577-590 https://doi.org/10.1016/S1097-2765(03)00050-9
  16. Endo, H., Kamada, H., Nito, C., Nishi, T. and Chan, P.H. (2006) Mitochondrial translocation of p53 mediates release of cytochrome c and hippocampal CA1 neuronal death after transient global cerebral ischemia in rats. J. Neurosci. 26, 7974-7983 https://doi.org/10.1523/JNEUROSCI.0897-06.2006
  17. Shieh, S. Y., Ikeda, M., Taya, Y. and Prives, C. (1997) DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell. 91, 325-334 https://doi.org/10.1016/S0092-8674(00)80416-X
  18. Unger, T., Sionov, R.V., Moallem, E., Yee, C. L., Howley, P. M., Oren, M. and Haupt, Y. (1999) Mutations in serines 15 and 20 of human p53 impair its apoptotic activity. Oncogene. 18, 3205-3212 https://doi.org/10.1038/sj.onc.1202656
  19. Komarov, R.G., Komarova, E.A., Kondratov, R.V., Christov- Tselkov, K., Coon, J.S., Chernov, M.V., Gudkov, A.V. (1999) A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science. 285, 1733-1737 https://doi.org/10.1126/science.285.5434.1733
  20. Endo, H., Saito, A. and Chanl, P.H. (2006) Mitochondrial translocation of p53 underlies the selective death of hippocampal CA1 neurons after global cerebral ischaemia. Biochem. Soc. Trans. 34, 1283-1286 https://doi.org/10.1042/BST0341283
  21. Song, X.D., Sheppard, H.M., Norman, A.W. and Liu, X. (1998) Mitogen-activated protein kinase is involved in the degradation of p53 protein in the bryostatin-1-induced differentiation of the acute promyelocytic leukemia NB4 cell line. J. Biol. Chem. 18, 1677-1682
  22. Zhao, Y.F., Chaiswing, L., Velez, J.M., Batinic-Haberle. I., Colburn, N.H., Oberley, T.D. and St Clair, D.K. (2005) P53 translocation to mitochondria precedes its nuclear translocation and target mitochondria oxidative defense protein manganese superoxide dismutase. Cancer. Res. 65, 3745-3750 https://doi.org/10.1158/0008-5472.CAN-04-3835
  23. Li, G.X., Hu, H., Jiang, C., Schuster, T. and Lü, J. (2007) Differential involvement of reactive oxygen species in apoptosis induced by two classes of selenium compounds in human prostate cancer cells. J. Cancer. 120, 2034-2043
  24. Hajnoczky, G., Davies, E. and Madesh, M. (2003) Muniswamy Madesh, Calcium signaling and apoptosis. Biochem. Biophys. Res. Commun. 304, 445-454 https://doi.org/10.1016/S0006-291X(03)00616-8
  25. Savino, J.A., Evans, J.F., Rabinowitz, D., Auborn K.J. and Carter, T.H. (2006) Multiple, disparate roles for calcium signaling in apoptosis of human prostate and cervical cancer cells exposed to diindolylmethane. Mol. Cancer. Ther. 5, 556-563 https://doi.org/10.1158/1535-7163.MCT-05-0355
  26. Tiwari, M., Kumar, A., Sinha, R.A., Shrivastava, A., Balapure, A.K., Sharma, R., Bajpai, V.K., Mitra, K., Babu, S. and Godbole, M.M. (2006) Mechanism of 4-HPR-induced apoptosis in glioma cells: evidences suggesting role of mitochondrial- mediated pathway and endoplasmin reticulum stress. Carcinogenesis. 27, 2047-2058 https://doi.org/10.1093/carcin/bgl051
  27. She, Q.B., Bode, A.M., Ma, W.Y., Chen, N.Y. and Dong, Z. (2001) Resveratrol-induced activation of p53 and apoptosis is mediated by extracellular-signal-regulated protein kinases and p38 kinase. Cancer. Res. 61, 1604-1610
  28. She, Q.B., Chen, N. and Dong, Z. (2000) ERKs and p38 kinase phosphorylate p53 protein at Serine 15 in response to UV radiation. J. Bio. Chem. 275, 20444-20449 https://doi.org/10.1074/jbc.M001020200
  29. Han, B., Wei, W., Hua, F.Y., Cao, T. M., Dong, H., Yang, T. Yang, Y., Pan, H.Z. and Xu, C.M. (2007) Requirement for ERK activity in sodium selenite-induced apoptosis of acute promyelocytic leukemia-derived NB4 cells. J. Biochem. Mol. Biol. 40, 196-204 https://doi.org/10.5483/BMBRep.2007.40.2.196
  30. Chin, T.Y., Lin, H.C. and Kuo, J. P., (2007) Dual effect of thapsigargin on cell death in porcine aortic smooth muscle cells. Am. J. Physiol. Cell. Physiol. 292, C383-C395 https://doi.org/10.1152/ajpcell.00069.2006
  31. Deniaud, A., Sharaf el dein, O., Maillier, E., Poncet, D., Kroemer, G., Lemaire, C. and Brenner, C. (2008) Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene. 27, 285-299 https://doi.org/10.1038/sj.onc.1210638
  32. Leo, S., Bianchi, K., Brini, M. and Rizzuto, R. (2005) Mitochondrial calcium signalling in cell death. FEBS. J. 272, 4013-4022 https://doi.org/10.1111/j.1742-4658.2005.04855.x

Cited by

  1. Pharmacological inhibition of GSK3 attenuates DNA damage-induced apoptosis via reduction of p53 mitochondrial translocation and Bax oligomerization in neuroblastoma SH-SY5Y CELLS vol.18, pp.1, 2013, https://doi.org/10.2478/s11658-012-0039-y
  2. Effects of selenium on the proliferation, apoptosis and testosterone production of sheep Leydig cells in vitro vol.93, 2017, https://doi.org/10.1016/j.theriogenology.2017.01.022
  3. 2-[5-Selenocyanato-pentyl]-6-amino-benzo[de]isoquinoline-1,3-dione inhibits angiogenesis, induces p53 dependent mitochondrial apoptosis and enhances therapeutic efficacy of cyclophosphamide vol.105, 2014, https://doi.org/10.1016/j.biochi.2014.07.010
  4. p53 Plays an Important Role in Cell Fate Determination after Exposure to Microcystin-LR vol.118, pp.9, 2010, https://doi.org/10.1289/ehp.1001899
  5. Sensitization of cancer cells to cyclophosphamide therapy by an organoselenium compound through ROS-mediated apoptosis vol.84, 2016, https://doi.org/10.1016/j.biopha.2016.11.006
  6. Selenium Compounds, Apoptosis and Other Types of Cell Death: An Overview for Cancer Therapy vol.13, pp.12, 2012, https://doi.org/10.3390/ijms13089649
  7. Selenoprotein W depletion induces a p53- and p21-dependent delay in cell cycle progression in RWPE-1 prostate epithelial cells vol.113, pp.1, 2012, https://doi.org/10.1002/jcb.23328
  8. DSePA Antagonizes High Glucose-Induced Neurotoxicity: Evidences for DNA Damage-Mediated p53 Phosphorylation and MAPKs and AKT Pathways vol.53, pp.7, 2016, https://doi.org/10.1007/s12035-015-9373-1
  9. Activity of selenium on cell proliferation, cytotoxicity, and apoptosis and on the expression of CASP9, BCL-XL and APC in intestinal adenocarcinoma cells vol.715, pp.1-2, 2011, https://doi.org/10.1016/j.mrfmmm.2011.06.015
  10. Porcine Serum Can Be Biofortified with Selenium to Inhibit Proliferation of Three Types of Human Cancer Cells vol.143, pp.7, 2013, https://doi.org/10.3945/jn.113.177410
  11. Phenotype-dependent apoptosis signalling in mesothelioma cells after selenite exposure vol.28, pp.1, 2009, https://doi.org/10.1186/1756-9966-28-92