Semin Thromb Hemost 2010; 36(8): 819-823
DOI: 10.1055/s-0030-1267035
© Thieme Medical Publishers

Impedance-Based Flow Cytometry for the Measurement of Microparticles

Jeffrey I. Zwicker1
  • 1Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
Further Information

Publication History

Publication Date:
03 November 2010 (online)

ABSTRACT

Over the last several years, there has been considerable interest in evaluating the biological relevance of alterations in blood-borne microparticle populations. The most commonly employed technique for the characterization of microparticles is light scatter flow cytometry. However, the enumeration and sizing of submicron particles based on light scattering properties can be problematic. Impedance-based flow cytometry based on the Coulter principle offers a sensitive methodology to characterize microparticles. This review details the rationale for employing impedance-based flow cytometry in the measurement of blood-borne microparticles.

REFERENCES

  • 1 Shapiro H M. Practical Flow Cytometry. 4th ed. New York, NY; Wiley-Liss 2003
  • 2 Piccin A, Murphy W G, Smith O P. Circulating microparticles: pathophysiology and clinical implications.  Blood Rev. 2007;  21(3) 157-171
  • 3 Koga H, Sugiyama S, Kugiyama K et al. Elevated levels of remnant lipoproteins are associated with plasma platelet microparticles in patients with type-2 diabetes mellitus without obstructive coronary artery disease.  Eur Heart J. 2006;  27(7) 817-823
  • 4 Koga H, Sugiyama S, Kugiyama K et al. Elevated levels of VE-cadherin-positive endothelial microparticles in patients with type 2 diabetes mellitus and coronary artery disease.  J Am Coll Cardiol. 2005;  45(10) 1622-1630
  • 5 Redman C W, Sargent I L. Circulating microparticles in normal pregnancy and pre-eclampsia.  Placenta. 2008;  29(Suppl A) S73-S77
  • 6 Orozco A F, Jorgez C J, Horne C et al. Membrane protected apoptotic trophoblast microparticles contain nucleic acids: relevance to preeclampsia.  Am J Pathol. 2008;  173(6) 1595-1608
  • 7 Germain S J, Sacks G P, Sooranna S R, Soorana S R, Sargent I L, Redman C W. Systemic inflammatory priming in normal pregnancy and preeclampsia: the role of circulating syncytiotrophoblast microparticles.  J Immunol. 2007;  178(9) 5949-5956
  • 8 Zwicker J I, Liebman H A, Neuberg D et al. Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy.  Clin Cancer Res. 2009;  15(22) 6830-6840
  • 9 Kageyama K, Nakajima Y, Shibasaki M, Hashimoto S, Mizobe T. Increased platelet, leukocyte, and endothelial cell activity are associated with increased coagulability in patients after total knee arthroplasty.  J Thromb Haemost. 2007;  5(4) 738-745
  • 10 Brodsky S V, Facciuto M E, Heydt D et al. Dynamics of circulating microparticles in liver transplant patients.  J Gastrointestin Liver Dis. 2008;  17(3) 261-268
  • 11 Al-Massarani G, Vacher-Coponat H, Paul P et al. Impact of immunosuppressive treatment on endothelial biomarkers after kidney transplantation.  Am J Transplant. 2008;  8(11) 2360-2367
  • 12 Esposito K, Ciotola M, Schisano B et al. Endothelial microparticles correlate with endothelial dysfunction in obese women.  J Clin Endocrinol Metab. 2006;  91(9) 3676-3679
  • 13 Scanu A, Molnarfi N, Brandt K J, Gruaz L, Dayer J M, Burger D. Stimulated T cells generate microparticles, which mimic cellular contact activation of human monocytes: differential regulation of pro- and anti-inflammatory cytokine production by high-density lipoproteins.  J Leukoc Biol. 2008;  83(4) 921-927
  • 14 Pattanapanyasat K, Gonwong S, Chaichompoo P et al. Activated platelet-derived microparticles in thalassaemia.  Br J Haematol. 2007;  136(3) 462-471
  • 15 Trowbridge E A, Reardon D M, Hutchinson D, Pickering C. The routine measurement of platelet volume: a comparison of light-scattering and aperture-impedance technologies.  Clin Phys Physiol Meas. 1985;  6(3) 221-238
  • 16 Hercher M, Mueller W, Shapiro H M. Detection and discrimination of individual viruses by flow cytometry.  J Histochem Cytochem. 1979;  27(1) 350-352
  • 17 Coulter W H. Means for counting particles suspended in a fluid. US patent 2,656,508 October 20, 1953
  • 18 Graham M D. The Coulter principle: foundation of an industry.  JALA. 2003;  8 72-81
  • 19 Kubitschek H E. Electronic counting and sizing of bacteria.  Nature. 1958;  182(4630) 234-235
  • 20 DeBlois R W, Bean C P. Counting and sizing submicron particles by the resistive pulse technique.  Rev Sci Instrum. 1970;  41 909-916
  • 21 DeBlois R W, Wesley R K. Sizes and concentrations of several type C oncornaviruses and bacteriophage T2 by the resistive-pulse technique.  J Virol. 1977;  23(2) 227-233
  • 22 Feuer B I, Uzgiris E E, Deblois R W, Cluxton D H, Lenard J. Length of glycoprotein spikes of vesicular stomatitis virus and Sindbis virus, measured in situ using quasi elastic light scattering and a resistive-pulse technique.  Virology. 1978;  90(1) 156-161
  • 23 Thomas R A, Krishan A, Brochu M. High resolution flow cytometric analysis of electronic nuclear volume and DNA content in normal and abnormal human tissue.  Methods Cell Sci. 2002;  24(1–3) 11-18
  • 24 Krishan A, Wen J, Thomas R A, Sridhar K S, Smith Jr W I. NASA/American Cancer Society High-Resolution Flow Cytometry Project - III. Multiparametric analysis of DNA content and electronic nuclear volume in human solid tumors.  Cytometry. 2001;  43(1) 16-22
  • 25 Harfield J G, Wharton R T, Lines R W. Response of the Coulter counter model ZM to spheres.  Part Part Syst Charact. 1984;  1 32-36
  • 26 Cowan M P, Harfield J. The linearity and response of focussed apertures.  Part Part Syst Charact. 1990;  7 1-5
  • 27 Maurer-Spurej E, Pittendreigh C, Yakimec J, De Badyn M H, Chipperfield K. Erroneous automated optical platelet counts in 1-hour post-transfusion blood samples.  Int J Lab Hematol. 2010;  32(1 Pt 1) e1-e8
  • 28 Segal H C, Briggs C, Kunka S et al. Accuracy of platelet counting haematology analysers in severe thrombocytopenia and potential impact on platelet transfusion.  Br J Haematol. 2005;  128(4) 520-525
  • 29 Tesselaar M E, Romijn F P, Van Der Linden I K, Prins F A, Bertina R M, Osanto S. Microparticle-associated tissue factor activity: a link between cancer and thrombosis?.  J Thromb Haemost. 2007;  5(3) 520-527
  • 30 Yuana Y, Oosterkamp T H, Bahatyrova S et al. Atomic force microscopy: a novel approach to the detection of nanosized blood microparticles.  J Thromb Haemost. 2010;  8(2) 315-323
  • 31 Zwicker J I. Predictive value of tissue factor bearing microparticles in cancer associated thrombosis.  Thromb Res. 2010;  125(Suppl 2) S89-S91
  • 32 Saleh O A, Sohn L L. Quantitative sensing of nanoscale colloids using a microchip coulter counter.  Rev Sci Instrum. 2001;  72 4449-4451
  • 33 Sohn L L, Saleh O A, Facer G R, Beavis A J, Allan R S, Notterman D A. Capacitance cytometry: measuring biological cells one by one.  Proc Natl Acad Sci U S A. 2000;  97(20) 10687-10690
  • 34 Saleh O A, Sohn L L. Direct detection of antibody-antigen binding using an on-chip artificial pore.  Proc Natl Acad Sci U S A. 2003;  100(3) 820-824
  • 35 Bayley H, Cremer P S. Stochastic sensors inspired by biology.  Nature. 2001;  413(6852) 226-230

Jeffrey I ZwickerM.D. 

Division of Hematology-Oncology, Beth Israel Deaconess Medical Center

Harvard Medical School, Boston, MA

Email: jzwicker@bidmc.harvard.edu

    >