Semin Thromb Hemost 2010; 36(8): 845-856
DOI: 10.1055/s-0030-1267038
© Thieme Medical Publishers

The Plasma Microparticle Proteome

Kristina M. Little1 , 2 , David M. Smalley3 , Nancy L. Harthun4 , Klaus Ley1
  • 1Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California
  • 2Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
  • 3Ernest G. Stillman Proteomics Laboratory, Maine Institute for Human Genetics and Health, Bangor, Maine
  • 4Johns Hopkins School of Medicine, Baltimore, Maryland
Further Information

Publication History

Publication Date:
03 November 2010 (online)

ABSTRACT

All cell types shed ectosomes and exosomes, collectively known as microparticles (MP; 0.1 to 1.5 μm in diameter), when activated or stressed; normal human plasma contains ~2 μg MP protein/mL. The cellular composition of plasma MP is altered in many diseases, including acute coronary syndrome, diabetes mellitus, sepsis, and sickle cell disease. We measured the plasma MP protein composition of 42 patients (median age 69.5 years, most with cardiovascular disease) by label-free liquid chromatography coupled to tandem mass spectrometry. Among 458 proteins detected with high confidence (identified by at least two unique peptides with SEQUEST XCor (Thermo Electron Corp., San Jose, CA) ≥2.0, 2.2, and 3.3 for charge states +1, +2, and +3, respectively), 130 were present in most patients, representing a “core” set of plasma MP proteins. This core is enriched in cytoskeletal, integrin complex, and hemostasis proteins, and spectral counts of several proteins correlate with patient age and gender. We conclude that the MP proteome may be a useful and reliable source of biologically relevant disease biomarkers.

REFERENCES

  • 1 Smalley D M, Ley K. Plasma-derived microparticles for biomarker discovery.  Clin Lab. 2008;  54(3–4) 67-79
  • 2 VanWijk M J, VanBavel E, Sturk A, Nieuwland R. Microparticles in cardiovascular diseases.  Cardiovasc Res. 2003;  59(2) 277-287
  • 3 Doeuvre L, Plawinski L, Toti F, Anglés-Cano E. Cell-derived microparticles: a new challenge in neuroscience.  J Neurochem. 2009;  110(2) 457-468
  • 4 Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more.  Trends Cell Biol. 2009;  19(2) 43-51
  • 5 Flaumenhaft R. Formation and fate of platelet microparticles.  Blood Cells Mol Dis. 2006;  36(2) 182-187
  • 6 Horstman L L, Jy W, Jimenez J J, Bidot C, Ahn Y S. New horizons in the analysis of circulating cell-derived microparticles.  Keio J Med. 2004;  53(4) 210-230
  • 7 Peerschke E I, Yin W, Ghebrehiwet B. Platelet mediated complement activation.  Adv Exp Med Biol. 2008;  632 81-91
  • 8 Barry O P, Pratico D, Lawson J A, FitzGerald G A. Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles.  J Clin Invest. 1997;  99(9) 2118-2127
  • 9 Simoncini S, Njock M S, Robert S et al. TRAIL/Apo2L mediates the release of procoagulant endothelial microparticles induced by thrombin in vitro: a potential mechanism linking inflammation and coagulation.  Circ Res. 2009;  104(8) 943-951
  • 10 Raturi A, Miersch S, Hudson J W, Mutus B. Platelet microparticle-associated protein disulfide isomerase promotes platelet aggregation and inactivates insulin.  Biochim Biophys Acta. 2008;  1778(12) 2790-2796
  • 11 Engelmann B. Initiation of coagulation by tissue factor carriers in blood.  Blood Cells Mol Dis. 2006;  36(2) 188-190
  • 12 Furie B, Furie B C. Cancer-associated thrombosis.  Blood Cells Mol Dis. 2006;  36(2) 177-181
  • 13 Feng B, Chen Y, Luo Y, Chen M, Li X, Ni Y. Circulating level of microparticles and their correlation with arterial elasticity and endothelium-dependent dilation in patients with type 2 diabetes mellitus.  Atherosclerosis. 2010;  208(1) 264-269
  • 14 van Beers E J, Schaap M C, Berckmans R J CURAMA study group et al. Circulating erythrocyte-derived microparticles are associated with coagulation activation in sickle cell disease.  Haematologica. 2009;  94(11) 1513-1519
  • 15 van Tits L J, van Heerde W L, Landburg P P et al. Plasma annexin A5 and microparticle phosphatidylserine levels are elevated in sickle cell disease and increase further during painful crisis.  Biochem Biophys Res Commun. 2009;  390(1) 161-164
  • 16 Macey M G, Bevan S, Alam S et al. Platelet activation and endogenous thrombin potential in pre-eclampsia.  Thromb Res. 2010;  125(3) e76-e81
  • 17 Lok C A, Van Der Post J A, Sargent I L et al. Changes in microparticle numbers and cellular origin during pregnancy and preeclampsia.  Hypertens Pregnancy. 2008;  27(4) 344-360
  • 18 Mostefai H A, Meziani F, Mastronardi M L et al. Circulating microparticles from patients with septic shock exert protective role in vascular function.  Am J Respir Crit Care Med. 2008;  178(11) 1148-1155
  • 19 Zielińska M, Koniarek W, Goch J H et al. Circulating endothelial microparticles in patients with acute myocardial infarction.  Kardiol Pol. 2005;  62(6) 531-542; discussion 543–544
  • 20 Katopodis J N, Kolodny L, Jy W et al. Platelet microparticles and calcium homeostasis in acute coronary ischemias.  Am J Hematol. 1997;  54(2) 95-101
  • 21 Enjeti A K, Lincz L F, Seldon M. Detection and measurement of microparticles: an evolving research tool for vascular biology.  Semin Thromb Hemost. 2007;  33(8) 771-779
  • 22 Cravatt B F, Simon G M, Yates III J R. The biological impact of mass-spectrometry-based proteomics.  Nature. 2007;  450(7172) 991-1000
  • 23 Yates III J R, Eng J K, McCormack A L, Schieltz D. Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database.  Anal Chem. 1995;  67(8) 1426-1436
  • 24 Old W M, Meyer-Arendt K, Aveline-Wolf L et al. Comparison of label-free methods for quantifying human proteins by shotgun proteomics.  Mol Cell Proteomics. 2005;  4(10) 1487-1502
  • 25 Zhang B, VerBerkmoes N C, Langston M A, Uberbacher E, Hettich R L, Samatova N F. Detecting differential and correlated protein expression in label-free shotgun proteomics.  J Proteome Res. 2006;  5(11) 2909-2918
  • 26 Shen Z, Wang M, Briggs S P. Use of high-throughput LC-MS/MS proteomics technologies in drug discovery.  Drug Discov Today: Technol. 2006;  3 301-306
  • 27 Li R X, Chen H B, Tu K et al. Localized-statistical quantification of human serum proteome associated with type 2 diabetes.  PLoS One. 2008;  3(9) e3224
  • 28 Fu X, Gharib S A, Green P S et al. Spectral index for assessment of differential protein expression in shotgun proteomics.  J Proteome Res. 2008;  7(3) 845-854
  • 29 Choi H, Fermin D, Nesvizhskii A I. Significance analysis of spectral count data in label-free shotgun proteomics.  Mol Cell Proteomics. 2008;  7(12) 2373-2385
  • 30 Little K ML, Lee J K, Ley K. ReSASC: a resampling-based algorithm to determine differential protein expression from spectral count data.  Proteomics. 2010;  10(6) 1212-1222
  • 31 Garcia B A, Smalley D M, Cho H, Shabanowitz J, Ley K, Hunt D F. The platelet microparticle proteome.  J Proteome Res. 2005;  4(5) 1516-1521
  • 32 Jin M, Drwal G, Bourgeois T, Saltz J, Wu H M. Distinct proteome features of plasma microparticles.  Proteomics. 2005;  5(7) 1940-1952
  • 33 Smalley D M, Root K E, Cho H, Ross M M, Ley K. Proteomic discovery of 21 proteins expressed in human plasma-derived but not platelet-derived microparticles.  Thromb Haemost. 2007;  97(1) 67-80
  • 34 Forlow S B, McEver R P, Nollert M U. Leukocyte-leukocyte interactions mediated by platelet microparticles under flow.  Blood. 2000;  95(4) 1317-1323
  • 35 Huang W, Sherman B T, Lempicki R A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.  Nat Protocols. 2009;  4(1) 44-57
  • 36 Dennis Jr G, Sherman B T, Hosack D A et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery.  Genome Biol. 2003;  4(5) 3
  • 37 Morel O, Toti F, Hugel B et al. Procoagulant microparticles: disrupting the vascular homeostasis equation?.  Arterioscler Thromb Vasc Biol. 2006;  26(12) 2594-2604
  • 38 Kang P, Shen B, Yang J, Pei F. Circulating platelet-derived microparticles and endothelium-derived microparticles may be a potential cause of microthrombosis in patients with osteonecrosis of the femoral head.  Thromb Res. 2008;  123(2) 367-373
  • 39 Nomura S, Ishii K, Inami N et al. Evaluation of angiopoietins and cell-derived microparticles after stem cell transplantation.  Biol Blood Marrow Transplant. 2008;  14(7) 766-774
  • 40 Manly D A, Wang J, Glover S L et al. Increased microparticle tissue factor activity in cancer patients with venous thromboembolism.  Thromb Res. 2010;  125(6) 511-512

Klaus LeyM.D. 

Head, Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology

9420 Athena Circle, La Jolla, CA 92037

Email: klaus@liai.org

    >