Semin Reprod Med 2011; 29(1): 005-014
DOI: 10.1055/s-0030-1268699
© Thieme Medical Publishers

Microfluidics for Gametes, Embryos, and Embryonic Stem Cells

G. D. Smith1 , 2 , 3 , 4 , J. E. Swain1 , C. L. Bormann5
  • 1Department of Obstetrics and Gynecology, University of Wisconsin, Madison, Wisconsin
  • 2Department of Molecular and Integrative Physiology, University of Wisconsin, Madison, Wisconsin
  • 3Department of Urology, University of Wisconsin, Madison, Wisconsin
  • 4Department of Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan
  • 5Department of Obstetrics and Gynecology, University of Wisconsin, Madison, Wisconsin
Further Information

Publication History

Publication Date:
04 January 2011 (online)

ABSTRACT

Microfluidics is a young but established field that holds significant potential for scientific discovery. The utility of microfluidics can improve our knowledge of basic biology as well as expand our understanding in specialized areas such as assisted reproduction and stem cell developmental biology. This review describes the technology of microfluidics and discusses applications within assisted reproduction technology and embryonic stem cell growth and directed differentiation. Development of an integrated microfluidic platform for assisted reproduction, which can manipulate gametes, embryos, embryonic stem cells, their culture environment, and incorporate biomarker analysis, could have a dramatic impact on the basic understanding of embryo/embryonic stem cell development, as well as provide significant improvements in current technologies used to treat infertility, preserve fertility, and derive therapeutic cells from stem cells.

REFERENCES

  • 1 Centers for Disease Control and Prevention .Assisted Reproductive Technology Success Rates; National Summary and Fertility Clinic Reports. Atlanta, GA: Centers for Disease Control and Prevention; 2001: 549
  • 2 Centers for Disease Control and Prevention .Assisted Reproductive Technology (ART) Report: National Summary. Atlanta, GA: Center for Disease Control and Prevention; 2005
  • 3 Memili E, First N L. Zygotic and embryonic gene expression in cow: a review of timing and mechanisms of early gene expression as compared with other species.  Zygote. 2000;  8 (1) 87-96
  • 4 Ravindranatha B M, Nandi S, Raghu H M, Reddy S M. In vitro maturation and fertilization of buffalo oocytes: effects of storage of ovaries, IVM temperatures, storage of processed sperm and fertilization media.  Reprod Domest Anim. 2003;  38 (1) 21-26
  • 5 Xie Y, Wang F, Zhong W, Puscheck E, Shen H, Rappolee D A. Shear stress induces preimplantation embryo death that is delayed by the zona pellucida and associated with stress-activated protein kinase-mediated apoptosis.  Biol Reprod. 2006;  75 (1) 45-55
  • 6 Beebe D, Wheeler M, Zeringue H, Walters E, Raty S. Microfluidic technology for assisted reproduction.  Theriogenology. 2002;  57 (1) 125-135
  • 7 Beebe D J, Mensing G A, Walker G M. Physics and applications of microfluidics in biology.  Annu Rev Biomed Eng. 2002;  4 261-286
  • 8 Quake S R, Scherer A. From micro- to nanofabrication with soft materials.  Science. 2000;  290 (5496) 1536-1540
  • 9 Sia S K, Whitesides G M. Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies.  Electrophoresis. 2003;  24 (21) 3563-3576
  • 10 Walker G M, Ozers M S, Beebe D J. Insect cell culture in microfluidic channels.  Biomed Microdevices. 2002;  4 161-166
  • 11 Raty S DJ, Beebe D J, Rodriguez-Zas S L, Wheeler M B. Culture in microchannels enhances in vitro embryonic development of preimplantation mouse embryos.  Theriogenology. 2001;  55 241
  • 12 Huang W H, Cheng W, Zhang Z et al. Transport, location, and quantal release monitoring of single cells on a microfluidic device.  Anal Chem. 2004;  76 (2) 483-488
  • 13 Cho B S, Schuster T G, Zhu X, Chang D, Smith G D, Takayama S. Passively driven integrated microfluidic system for separation of motile sperm.  Anal Chem. 2003;  75 (7) 1671-1675
  • 14 Davis J A, Raty S, Eddington D T et al. Development of microfluidic channels for the culture of mammalian embryos. 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies.  Med Biol Proc. 2000;  307-310
  • 15 Glasgow I K, Zeringue H C, Beebe D J, Choi S J, Lyman J, Wheeler M B. Individual embryo transport on a chip for a total analysis system. Paper presented at: Third International Symposium on Micro-Total Analysis System; October 13–16, 1998; Banff, Alberta, Canada
  • 16 Schuster T G, Cho B, Keller L M, Takayama S, Smith G D. Isolation of motile spermatozoa from semen samples using microfluidics.  Reprod Biomed Online. 2003;  7 (1) 75-81
  • 17 Mosher W D, Pratt W F. Fecundity and infertility in the United States: incidence and trends.  Fertil Steril. 1991;  56 (2) 192-193
  • 18 Mortimer D. Sperm transfer in the human female reproductive tract. Oxford, United Kingdom: Oxford University Press; 1989
  • 19 Trounson A O, Gardner D K. Handbook of in Vitro Fertilization. Boca Raton, FL: CRC Press; 2000
  • 20 Aitken R J, Clarkson J S. Significance of reactive oxygen species and antioxidants in defining the efficacy of sperm preparation techniques.  J Androl. 1988;  9 (6) 367-376
  • 21 Zini A, Finelli A, Phang D, Jarvi K. Influence of semen processing technique on human sperm DNA integrity.  Urology. 2000;  56 (6) 1081-1084
  • 22 Zini A, Mak V, Phang D, Jarvi K. Potential adverse effect of semen processing on human sperm deoxyribonucleic acid integrity.  Fertil Steril. 1999;  72 (3) 496-499
  • 23 Virant-Klun I, Tomazevic T, Meden-Vrtovec H. Sperm single-stranded DNA, detected by acridine orange staining, reduces fertilization and quality of ICSI-derived embryos.  J Assist Reprod Genet. 2002;  19 (7) 319-328
  • 24 Benchaib M, Braun V, Lornage J et al. Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique.  Hum Reprod. 2003;  18 (5) 1023-1028
  • 25 Seli E, Gardner D K, Schoolcraft W B, Moffatt O, Sakkas D. Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization.  Fertil Steril. 2004;  82 (2) 378-383
  • 26 Bungum M, Humaidan P, Spano M, Jepson K, Bungum L, Giwercman A. The predictive value of sperm chromatin structure assay (SCSA) parameters for the outcome of intrauterine insemination, IVF and ICSI.  Hum Reprod. 2004;  19 (6) 1401-1408
  • 27 Henkel R, Hajimohammad M, Stalf T et al. Influence of deoxyribonucleic acid damage on fertilization and pregnancy.  Fertil Steril. 2004;  81 (4) 965-972
  • 28 Tesarik J, Greco E, Mendoza C. Late, but not early, paternal effect on human embryo development is related to sperm DNA fragmentation.  Hum Reprod. 2004;  19 (3) 611-615
  • 29 Carrell D T, Liu L, Peterson C M et al. Sperm DNA fragmentation is increased in couples with unexplained recurrent pregnancy loss.  Arch Androl. 2003;  49 (1) 49-55
  • 30 Englert Y, Van den Bergh M, Rodesch C, Bertrand E, Biramane J, Legreve A. Comparative auto-controlled study between swim-up and Percoll preparation of fresh semen samples for in-vitro fertilization.  Hum Reprod. 1992;  7 (3) 399-402
  • 31 Smith S, Hosid S, Scott L. Use of postseparation sperm parameters to determine the method of choice for sperm preparation for assisted reproductive technology.  Fertil Steril. 1995;  63 (3) 591-597
  • 32 Palermo G, Joris H, Devroey P, Van Steirteghem A C. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte.  Lancet. 1992;  340 (8810) 17-18
  • 33 Schultz R M, Williams C J. The science of ART.  Science. 2002;  296 (5576) 2188-2190
  • 34 Palermo G D, Alikani M, Bertoli M et al. Oolemma characteristics in relation to survival and fertilization patterns of oocytes treated by intracytoplasmic sperm injection.  Hum Reprod. 1996;  11 (1) 172-176
  • 35 Nagy Z P, Liu J, Joris H et al. The influence of the site of sperm deposition and mode of oolemma breakage at intracytoplasmic sperm injection on fertilization and embryo development rates.  Hum Reprod. 1995;  10 (12) 3171-3177
  • 36 Kricka L J, Nozaki O, Heyner S, Garside W T, Wilding P. Applications of a microfabricated device for evaluating sperm function.  Clin Chem. 1993;  39 (9) 1944-1947
  • 37 Kricka L J, Faro I, Heyner S et al. Micromachined analytical devices: microchips for semen testing.  J Pharm Biomed Anal. 1997;  15 (9–10) 1443-1447
  • 38 Anderson J R, Chiu D T, Jackman R J et al. Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping.  Anal Chem. 2000;  72 (14) 3158-3164
  • 39 Unger M A, Chou H P, Thorsen T, Scherer A, Quake S R. Monolithic microfabricated valves and pumps by multilayer soft lithography.  Science. 2000;  288 (5463) 113-116
  • 40 Figeys D, Pinto D. Lab-on-a-chip: a revolution in biological and medical sciences.  Anal Chem. 2000;  72 (9) 330-335
  • 41 Dietl J A, Rauth G. Molecular aspects of mammalian fertilization.  Hum Reprod. 1989;  4 (8) 869-875
  • 42 Hickman D L, Beebe D J, Rodriguez-Zas S L, Wheeler M B. Comparison of static and dynamic medium environments for culturing of pre-implantation mouse embryos.  Comp Med. 2002;  52 (2) 122-126
  • 43 Funahashi H, Fujiwara T, Nagai T. Modulation of the function of boar spermatozoa via adenosine and fertilization promoting peptide receptors reduce the incidence of polyspermic penetration into porcine oocytes.  Biol Reprod. 2000;  63 (4) 1157-1163
  • 44 Li Y H, Ma W, Li M, Hou Y, Jiao L H, Wang W H. Reduced polyspermic penetration in porcine oocytes inseminated in a new in vitro fertilization (IVF) system: straw IVF.  Biol Reprod. 2003;  69 (5) 1580-1585
  • 45 Ranoux C, Poirot C, Foulot H et al. Human egg fertilization in capillary tubes.  J In Vitro Fert Embryo Transf. 1988;  5 (1) 49-50
  • 46 Ranoux C, Seibel M M. New techniques in fertilization: intravaginal culture and microvolume straw.  J In Vitro Fert Embryo Transf. 1990;  7 (1) 6-8
  • 47 van der Ven H H, Hoebbel K, al-Hasani S, Diedrich K, Krebs D. Fertilization of human oocytes in capillary tubes with very small numbers of spermatozoa.  Hum Reprod. 1989;  4 (1) 72-76
  • 48 Töpfer-Petersen E, Petrounkina A M, Ekhlasi-Hundrieser M. Oocyte-sperm interactions.  Anim Reprod Sci. 2000;  60–61 653-662
  • 49 Clark S G, Walters E M, Beebe D J, Wheeler M B. In vitro fertilization of porcine oocytes in polydimethylsiloxane (PDMS)-glass microchannels.  Biol Reprod. 2002;  66 528
  • 50 Ahlgren M. Sperm transport to and survival in the human fallopian tube.  Gynecol Invest. 1975;  6 (3–4) 206-214
  • 51 Settlage D S, Motoshima M, Tredway D R. Sperm transport from the external cervical os to the fallopian tubes in women: a time and quantitation study.  Fertil Steril. 1973;  24 (9) 655-661
  • 52 Suh R S, Zhu X, Phadke N, Ohl D A, Takayama S, Smith G D. IVF within microfluidic channels requires lower total numbers and lower concentrations of sperm.  Hum Reprod. 2006;  21 (2) 477-483
  • 53 Gardner D K, Lane M. Culture of viable human blastocysts in defined sequential serum-free media.  Hum Reprod. 1998;  13 (Suppl 3) 148-159 discussion 160
  • 54 Beebe D J, Mensing G A, Walker G M. Physics and applications of microfluidics in biology.  Annu Rev Biomed Eng. 2002;  4 261-286
  • 55 Glasgow I K, Zeringue H C, Beebe D J et al. Handling individual mammalian embryos using microfluidics.  IEEE Trans Biomed Eng. 2001;  48 (5) 570-578
  • 56 Schuck P, Millar D B, Kortt A A. Determination of binding constants by equilibrium titration with circulating sample in a surface plasmon resonance biosensor.  Anal Biochem. 1998;  265 (1) 79-91
  • 57 Gu W, Zhu X, Futai N, Cho B S, Takayama S. Computerized microfluidic cell culture using elastomeric channels and Braille displays.  Proc Natl Acad Sci U S A. 2004;  101 (45) 15861-15866
  • 58 Gardner D K, Vella P, Lane M, Wagley L, Schlenker T, Schoolcraft W B. Culture and transfer of human blastocysts increases implantation rates and reduces the need for multiple embryo transfers.  Fertil Steril. 1998;  69 (1) 84-88
  • 59 Gerecht-Nir S, Cohen S, Itskovitz-Eldor J. Bioreactor cultivation enhances the efficiency of human embryoid body (hEB) formation and differentiation.  Biotechnol Bioeng. 2004;  86 (5) 493-502
  • 60 Fong W J, Tan H L, Choo A, Oh S K. Perfusion cultures of human embryonic stem cells.  Bioprocess Biosyst Eng. 2005;  27 (6) 381-387
  • 61 Kim L, Vahey M D, Lee H-Y, Voldman J. Microfluidic arrays for logarithmically perfused embryonic stem cell culture.  Lab Chip. 2006;  6 (3) 394-406
  • 62 Villa-Diaz L G, Pacut C, Slawny N A, Ding J, O'Shea K S, Smith G D. Analysis of the factors that limit the ability of feeder cells to maintain the undifferentiated state of human embryonic stem cells.  Stem Cells Dev. 2009;  18 (4) 641-651
  • 63 Cheng W, Klauke N, Sedgwick H, Smith G L, Cooper J M. Metabolic monitoring of the electrically stimulated single heart cell within a microfluidic platform.  Lab Chip. 2006;  6 (11) 1424-1431
  • 64 Shackman J G, Dahlgren G M, Peters J L, Kennedy R T. Perfusion and chemical monitoring of living cells on a microfluidic chip.  Lab Chip. 2005;  5 (1) 56-63
  • 65 Mehta G, Mehta K, Sud D et al. Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture.  Biomed Microdevices. 2007;  9 (2) 123-134

Gary D Smith

Departments of Obstetrics and Gynecology, Physiology, and Urology, University of Michigan

6410 Medical Science 1, 1301 E. Catherine Street, Ann Arbor, MI 48109-0617

Email: smithgd@umich.edu

    >